Skip to main content

Zebrafish as a Model for Studying Adult Effects of Challenges to the Embryonic Nervous System

  • Chapter
  • 7493 Accesses

Abstract

Zebrafish is introduced as a model system to study environmental, chemical, and pharmaceutical challenges to the embryonic nervous system that can affect adult behavior/learning. The characteristics of the zebrafish system that make it possible to examine the developing nervous system in live embryos and larvae are presented. Gene discovery techniques, methodologies to generate fluorescent transgenic indicator embryos, as well as larval and adult zebrafish behavioral assays are described.

Key Words

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koger SM, Schettler T, Weiss B. Environmental toxicants and developmental disabilities: A challenge for psychologists. Am Psychol 2005;60(3):243–255.

    Article  PubMed  Google Scholar 

  2. Safer DJ, Zito JM, Fine EM. Increased methylphenidate usage for attention deficit disorder in the 1990s. Pediatrics 1996;98(6, Pt. 1):1084–1088.

    PubMed  CAS  Google Scholar 

  3. Gillberg C, Wing L. Autism: Not an extremely rare disorder. Acta Psychiatr Scand 1999;99(6):399–406.

    Article  PubMed  CAS  Google Scholar 

  4. Muir T, Zegarac M. Societal costs of exposure to toxic substances: Economic and health costs of four case studies that are candidates forenvironmentalcausation. Environ Health Perspect 2001;109(Suppl. 6):885–903.

    Article  PubMed  Google Scholar 

  5. Schettler T. Toxic threats to neurologic development of children. Environ Health Perspect 2001;109(Suppl. 6):813–816.

    Article  PubMed  CAS  Google Scholar 

  6. Plomin R, Owen MJ, McGuffin P. The genetic basis of complex human behaviors. Science 1994;264(5166):1733–1739.

    Article  PubMed  CAS  Google Scholar 

  7. Ostrea EM, Morales V, Ngoumgna E, et al. Prevalence of fetal exposure to environmental toxins as determined by meconium analysis. Neurotoxicology 2002;23(3):329–339.

    Article  PubMed  CAS  Google Scholar 

  8. Bellinger DC, Stiles KM, Needleman HL. Low-level lead exposure, intelligence and academic achievement: A long-term follow-up study. Pediatrics 1992;90(6):855–861.

    PubMed  CAS  Google Scholar 

  9. Lanphear BP, Dietrich K, Auinger P, Cox C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep 2000;115(6):521–529.

    Article  PubMed  CAS  Google Scholar 

  10. Needleman H. Lead poisoning. Annu Rev Med 2004;55:209–222.

    Article  PubMed  CAS  Google Scholar 

  11. Mendola P, Selevan SG, Gutter S, Rice D. Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment Retard Dev Disabil Res Rev 2002;8(3):188–197.

    Article  PubMed  Google Scholar 

  12. Slotkin TA, Levin ED, Seidler FJ. Comparative developmental neurotoxicity of organophosphate insecticides: Effects on brain development are separable from systemic toxicity. Environ Health Perspect 2006;114(5):746–751.

    Article  PubMed  CAS  Google Scholar 

  13. Slotkin TA. Guidelines for developmental neurotoxicity and their impact on organophosphate pesticides: A personal view from an academic perspective. Neurotoxicology 2004;25(4):631–640.

    Article  PubMed  CAS  Google Scholar 

  14. Stein J, Schettler T, Wallinga D, Valenti M. In harm’s way: Toxic threats to child development. J Dev Behav Pediatr 2002;23(1Suppl.): S13–22.

    Google Scholar 

  15. Welch-Carre E. The neurodevelopmental consequences of prenatal alcohol exposure. Adv Neonatal Care 2005;5(4):217–229.

    Article  PubMed  Google Scholar 

  16. Mattson SN, Schoenfeld AM, Riley EP. Teratogenic effects of alcohol on brain and behavior. Alcohol Res Health 2001;25(3):185–191.

    PubMed  CAS  Google Scholar 

  17. Slikker W Jr, Xu ZA, Levin ED, Slotkin TA. Mode of action: Disruption of brain cell replication, second messenger, and neurotransmitter systems during development leading to cognitive dysfunctiondevelopmental neurotoxicity of nicotine. Crit Rev Toxicol 2005; 35(8–9):703–711.

    Article  PubMed  CAS  Google Scholar 

  18. Eskenazi B, Castorina R. Association of prenatal maternal or postnatal child environmental tobacco smoke exposure and neurodevelopmental and behavioral problems in children. Environ Health Perspect 1999;107(12):991–1000.

    Article  PubMed  CAS  Google Scholar 

  19. Ferriero DM, Dempsey DA. Impact of addictive and harmful substances on fetal brain development. Curr Opin Neurol 1999; 12(2): 161–166.

    Article  PubMed  CAS  Google Scholar 

  20. Ward AC, Lieschke GJ. The zebrafish as a model system for human disease. Front Biosci 2002;7:d827–833.

    Article  Google Scholar 

  21. Bernhardt RR, Chitnis AB, Lindamer L, Kuwada JY. Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 1990;302(3):603–616.

    Article  PubMed  CAS  Google Scholar 

  22. Bernhardt RR, Patel CK, Wilson SW, Kuwada JY. Axonal trajectories and distribution of GAB Aergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol 1992;326(2): 263–272.

    Article  PubMed  CAS  Google Scholar 

  23. Ritter DA, Bhatt DH, Fetcho JR. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J Neurosci 2001;21(22):8956–8965.

    PubMed  CAS  Google Scholar 

  24. Gahtan E, O’Malley DM. Rapid lesioning of large numbers of identified vertebrate neurons: Applications in zebrafish. J Neurosci Methods 2001;108(1):97–110.

    Article  PubMed  CAS  Google Scholar 

  25. Fetcho JR, O’Malley DM. Visualization of active neural circuitry in the spinal cord of intact zebrafish. J Neurophysiol 1995;73(1): 399–406.

    PubMed  CAS  Google Scholar 

  26. Higashijima S, Mandel G, Fetcho JR. Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 2004;480(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  27. Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E. Development of the locomotor network in zebrafish. Prog Neurobiol 2002;68(2):85–111.

    Article  PubMed  CAS  Google Scholar 

  28. Brustein E, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Drapeau P. Steps during the development of the zebrafish locomotor network. J Physiol Paris 2003;97(1):77–86.

    Article  PubMed  Google Scholar 

  29. Lewis KE, Eisen JS. From cells to circuits: Development of the zebrafish spinal cord. Prog Neurobiol 2003;69(6):419–449.

    Article  PubMed  CAS  Google Scholar 

  30. Saint-Amant L, Drapeau P. Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 2001;31(6):1035–1046.

    Article  PubMed  CAS  Google Scholar 

  31. Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 1998;37(4):622–632.

    Article  PubMed  CAS  Google Scholar 

  32. Buss RR, Drapeau P. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 2001;86(1): 197–210.

    PubMed  CAS  Google Scholar 

  33. Behra M, Cousin X, Bertrand C, et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 2002;5(2):111–118.

    Article  PubMed  CAS  Google Scholar 

  34. Downes GB, Granato M. Acetylcholinesterase function is dispensable for sensory neurite growth but is critical for neuromuscular synapse stability. Dev Biol 2004;270(1):232–245.

    Article  PubMed  CAS  Google Scholar 

  35. Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model. Neurotoxicol Teratol 2004;26(6):709–718.

    Article  PubMed  CAS  Google Scholar 

  36. Levin ED, Chrysanthis E, Yacisin K, Linney E. Chlorpyrifos exposure of developing zebrafish: Effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol 2003;25(1):51–57.

    Article  PubMed  CAS  Google Scholar 

  37. Jacob F, Perrin D, Sanchez C, Monod J. [Operon: A group of genes with the expression coordinated by an operator.] CR Hebd Seances Acad Sci 1960;250:1727–1729.

    CAS  Google Scholar 

  38. Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 2004;429(6991):523–530.

    Article  PubMed  CAS  Google Scholar 

  39. Zebrafish Issue. Development 1996;123.

    Google Scholar 

  40. Cui WW, Low SE, Hirata H, et al. The zebrafish shocked gene encodes a glycine transporter and is essential for the function of early neural circuits in the CNS. J Neurosci 2005;25(28):6610–6620.

    Article  PubMed  CAS  Google Scholar 

  41. Hirata H, Saint-Amant L, Downes GB, et al. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit. Proc Natl Acad Sci USA 2005; 102(23):8345–8350.

    Article  PubMed  CAS  Google Scholar 

  42. Nasevicius A, Ekker SC. Effective targeted gene “knockdown” in zebrafish. Nat Genet 2000;26(2):216–220.

    Article  PubMed  CAS  Google Scholar 

  43. McLean DL, Fetcho JR. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol 2004;480(1):38–56.

    Article  PubMed  Google Scholar 

  44. Drapeau P, Ali DW, Buss RR, Saint-Amant L. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J Neurosci Methods 1999;88(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  45. Hirata H, Saint-Amant L, Waterbury J, et al. Accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 2004;131(21): 5457–5468.

    Article  PubMed  CAS  Google Scholar 

  46. Li J, Mack JA, Souren M, et al. Early development of functional spatial maps in the zebrafish olfactory bulb. J Neurosci 2005;25(24): 5784–5795.

    Article  PubMed  CAS  Google Scholar 

  47. Balkan W, Colbert M, Bock C, Linney E. Transgenic indicator mice for studying activated retinoic acid receptors during development. Proc Natl Acad Sci USA 1992;89(8):3347–3351.

    Article  PubMed  CAS  Google Scholar 

  48. Perz-Edwards A, Hardison NL, Linney E. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 2001; 229(1):89–101.

    Article  PubMed  CAS  Google Scholar 

  49. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004;22(12): 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  50. Linney E, Udvadia AJ. Construction and detection of fluorescent, germline transgenic zebrafish. Methods Mol Biol 2004;254:271–288.

    PubMed  Google Scholar 

  51. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 2005;33(4):e36.

    Article  CAS  Google Scholar 

  52. Misulovin Z, Yang XW, Yu W, Heintz N, Meffre E. A rapid method for targeted modification and screening of recombinant bacterial artificial chromosome. J Immunol Methods 2001;257(1–2):99–105.

    Article  PubMed  CAS  Google Scholar 

  53. Jessen JR, Willett CE, Lin S. Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish. Nat Genet 1999;23(1):15–16.

    Article  PubMed  CAS  Google Scholar 

  54. Kucenas S, Soto F, Cox JA, Voigt MM. Selective labeling of central and peripheral sensory neurons in the developing zebrafish using P2X(3) receptor subunit transgenes. Neuroscience 2006;138(2):641–652.

    Article  PubMed  CAS  Google Scholar 

  55. Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 2000;97(21):11403–11408.

    Article  PubMed  CAS  Google Scholar 

  56. Parinov S, Kondrichin I, Korzh V, Emelyanov A. Tol2 transposonmediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 2004;231(2):449–459.

    Article  PubMed  CAS  Google Scholar 

  57. Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL. Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138(3):351–362.

    Article  PubMed  CAS  Google Scholar 

  58. Mathavan S, Lee SG, Mak A, et al. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 2005;1(2): e29.

    Article  CAS  Google Scholar 

  59. Miska EA, Alvarez-Saavedra E, Townsend M, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004;5(9):R68.

    Article  Google Scholar 

  60. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods 2004;1(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  61. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003;4(12):1238–1246.

    Article  PubMed  CAS  Google Scholar 

  62. Budick SA, O’Malley DM. Locomotor repertoire of the larval zebrafish: Swimming, turning and prey capture. J Exp Biol 2000;203(Pt. 17):2565–2579.

    PubMed  CAS  Google Scholar 

  63. Granato M, van Eeden FJ, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 1996;123:399–413.

    PubMed  CAS  Google Scholar 

  64. Borla MA, Palecek B, Budick S, O’Malley DM. Prey capture by larval zebrafish: Evidence for fine axial motor control. Brain Behav Evol 2002;60(4):207–229.

    Article  PubMed  Google Scholar 

  65. Carvan MJ, 3rd, Loucks E, Weber DN, Williams FE. Ethanol effects on the developing zebrafish: Neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol2004;26(6):757–768.

    Article  PubMed  CAS  Google Scholar 

  66. Loucks E, Carvan MJ 3rd. Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol Teratol 2004;26(6): 745–755.

    Article  PubMed  CAS  Google Scholar 

  67. Reimers MJ, Flockton AR, Tanguay RL. Ethanol-and acetaldehydemediated developmental toxicity in zebrafish. Neurotoxicol Teratol 2004;26(6):769–781.

    Article  PubMed  CAS  Google Scholar 

  68. Pradel G, Schmidt R, Schachner M. Involvement of L1.1 in memory consolidation after active avoidance conditioning in zebrafish. J Neurobiol 2000;43(4):389–403.

    Article  PubMed  CAS  Google Scholar 

  69. Arthur D, Levin ED. Spatial and non-spatial discrimination learning in zebrafish. Anim Cogn 2001;4:125–131.

    Article  Google Scholar 

  70. Cerutti DT, Levin ED. Cognitive Impairment Models Using Complementary Species. Boca Raton, FL: CRS Press, 2006.

    Google Scholar 

  71. Williams FE, Messer WS. Memory function and muscarinic receptors in zebrafish. Soc Neurosci Abstr 1998;24:182.

    Google Scholar 

  72. Levin ED, Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 2004;26(6):731–735.

    Article  PubMed  CAS  Google Scholar 

  73. Levin ED, Bencan Z, Cerutti, DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav 2007;90(1):54–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Roy, N.M., Linney, E.A. (2008). Zebrafish as a Model for Studying Adult Effects of Challenges to the Embryonic Nervous System. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics