Skip to main content

Abstract

This chapter provides an introduction to the concept of laboratory animal models, focusing on a general classification of animal models for the study of human diseases. Animal models can be grouped into one of the following five categories: (1) induced (experimental) models, (2) spontaneous (genetic, mutant) models, (3) genetically modified models, (4) negative models, and (5) orphan models. This is followed by a discussion of how knowledge concerning human biology and pathobiology can be extrapolation from results obtained from studies of animals. Finally the chapter discusses how the difference in body size and metabolic rate between small laboratory animals and humans has an impact on the calculation of relevant doses for animals used as models for humans in experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coffey DS, Isaacs JT. Requirements for an idealized animal model in prostatic cancer. In: Murphy GP, Ed. Models for Prostate Cancer. New York: Alan R. Liss, 1980:379.

    Google Scholar 

  2. Held JR. Muhlbock memorial lecture: Considerations in the provision and characterization of animal models. In: Spiegel A, Erichsen S, Solleveld HA, Eds. Animal Quality and Models in Biomedical Research, 7th ICLAS Symposium Utrecht 1979. Stuttgart, Germany: Gustav Fisher Verlag, 1980.

    Google Scholar 

  3. Loew FM. Scholarship and clinical service; comparative and laboratory animal medicine. In: Nevalainen T, Hau J, Sarviharju M, Eds. Frontiers in Laboratory Animal Science. Proceedings of Joint International Conference of ICLAS, Scand LAS and FinLAS, Helsinki 1995. Scand J Lab Anim Sci 1996;23(Suppl. 1):13.

    Google Scholar 

  4. Overmier JB. Animal models on human pathology: A bibliography of a quarter century of behavioral research, 1967–1992. In: Overmier JB, Burke PD, Eds. Bibliographies in Psychology: Number 12. Washington, DC: American Psychological Association, 1992:vii–xiv.

    Google Scholar 

  5. Wessler S. Introduction: What is a model? In: Animal Models of Thrombosis and Hemorrhagic Diseases. Bethesda, MD: National Institutes of Health, 1976:xi.

    Google Scholar 

  6. Salén J. Animal models, principles and problems. In: Svendsen P, Hau J, Eds. Handbook of Laboratory Animal Science, Vol. II, Animal Models. Boca Raton, FL: CRC Press, 1994:Chapter 1.

    Google Scholar 

  7. Kornetsky C. Animal models: Promises and problems. In: Hanin I, Usdin E, Eds. Animal Models in Psychiatry and Neurology. Oxford, UK: Pergamon Press, 1977:1.

    Google Scholar 

  8. Mogensen J, Holm S. Basic research and animal models in neuroscience—the necessity of “co-evolution.” Scand J Lab Anim Sci 1989;16(Suppl. 1):51.

    Google Scholar 

  9. Hau J. Animal Models. In: Hau J, Van Hoosier G, Eds. Handbook of Laboratory Animal Science, Vol. II, Animal Models. Boca Raton, FL: CRC Press, 2003.

    Google Scholar 

  10. Hau J, Buschard K. Effect of encephalomyocarditis (EMC) virus on murine foetal and placental growth monitored by quantification of maternal plasma levels of pregnancy-associated murine protein-2 and alpha-fetoprotein. Acta Pathol Microbiol Immunol Scand Sect B 1986;94:339.

    CAS  Google Scholar 

  11. Poulsen OM, Hau J, Kollerup J. Effect of homogenization and pasteurization on the allergenicity of bovine milk analysed by a murine anaphylactic shock model. Clin Allergy 1987;17:449.

    Article  PubMed  CAS  Google Scholar 

  12. Hau J, Cervinkova Z, O’Brien D, Stodulski G, Simek J. Serum levels of selected liver proteins following partial hepatectomy in the female rat. Lab Anim 1995;29:185.

    Article  PubMed  CAS  Google Scholar 

  13. King NW. Simian models of acquired immunodeficiency syndrome (AIDS): A review. Vet Pathol 1986;23:345.

    Article  PubMed  CAS  Google Scholar 

  14. Farah IO, Kariuki TM, King CL, Hau J. An overview of animal models in experimental schistosomiasis and refinements in the use of non-human primates. Lab Anim 2001;35:205.

    Article  PubMed  CAS  Google Scholar 

  15. Pantelouris EM. Absence of thymus in a mouse mutant. Nature 1968;217:370.

    Article  PubMed  CAS  Google Scholar 

  16. Hau J, Poulsen OM, Dagnæs-Hansen NF. Induction of pregnancyassociated murine protein-1 (PAMP-1) in dwarf (dw) mice by growth hormone. Lab Anim 1990;24:183.

    Article  PubMed  CAS  Google Scholar 

  17. Jensen HE, Andersen LLI, Hau J. Fetal malformations and maternal alpha-fetoprotein levels in curly tail (ct) mice. Int J Feto Matern Med 1991;4:205.

    Google Scholar 

  18. Migaki G. Compendium of inherited metabolic diseases in animals. In: Animal Models for Inherited Metabolic Diseases. New York: Alan R. Liss, 1982:473.

    Google Scholar 

  19. Van der Meer M, Baumans V, Olivier B, et al. Behavioral and physiological effects of biotechnology procedures used for gene targeting in mice. Physiol Behav 2001;73:719.

    Article  PubMed  Google Scholar 

  20. Lander ES. Array of hope. Nat Genet 1999;21(1 Suppl.):3.

    Article  PubMed  CAS  Google Scholar 

  21. Van Zutphen LFM. Is there a need for animal models of human genetic disorders in the post-genome era? Comp Med 2000;50:10.

    PubMed  Google Scholar 

  22. Committee on New and Emerging Models in Biomedical and Behavioral Research. Biomedical Models and Resources. Current Needs and Future Opportunities. Washington, DC: National Academy Press, 1998.

    Google Scholar 

  23. Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, Hawkins GA, Miller MS, Weir HM, Du W, DeLong CJ. Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA 2003;100(11):6682.

    Article  PubMed  CAS  Google Scholar 

  24. Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 2000;32:56.

    Article  PubMed  CAS  Google Scholar 

  25. Mann RD. Modern Drug Use. An Enquiry on Historical Principles. Lancaster: MTP, 1984.

    Google Scholar 

  26. Koppanyi T, Avery MA. Species differences and the clinical trial of new drugs: A review. Clin Pharmacol Ther 1966;7:250.

    PubMed  CAS  Google Scholar 

  27. Lewis P. Animal tests for teratogenicity, their relevance to clinical practice. In: Hawkins, DF, Ed. Drugs and Pregnancy: Human Teratogenesis and Related Problems. Edinburgh: Churchill Livingstone, 1983;17.

    Google Scholar 

  28. Calabrese E J. Principles of Animal Extrapolation. Chelsea, MI: Lewis Publishers Inc., 1991.

    Google Scholar 

  29. Beynen AC, Hau J. Animal models. In: Van Zutphen LFM, Baumans V, Beynen AC, Eds. Principles of Laboratory Animal Science. New York: Elsevier, 2001:Chapter 10.

    Google Scholar 

  30. Schmidt-Nielsen K. How Animals Work. London: Cambridge University Press, 1972.

    Google Scholar 

  31. Schmidt-Nielsen K. Animal Physiology, Adaptation and Environment. London: Cambridge University Press, 1975.

    Google Scholar 

  32. Kleiber M. Body size and metabolism. Hilgardia 1932;6:315.

    CAS  Google Scholar 

  33. Hau J, Poulsen OM. Doses for laboratory animals based on metabolic rate. Scand J Lab Anim Sci 1988;15:81.

    Google Scholar 

  34. Bartels H. Metabolic rates of mammals equals the 0.75 power of their body weight. Exp Biol Med 1982;7:1.

    Google Scholar 

  35. Snider GL, Lucey ED, Stone PJ. Animal models of emphysema. Am Rev Respir Dis 1986;133:149.

    PubMed  CAS  Google Scholar 

  36. Frenkel JK. Choice of animal models for the study of disease processes in man. Fed Proc 1969;28:160.

    PubMed  CAS  Google Scholar 

  37. Hagelin J, Hau J, Carlsson H.-E. The refining influence of ethics committees on animal experimentation in Sweden. Lab Anim 2003;37(1):10.

    Article  PubMed  CAS  Google Scholar 

  38. Carlsson HE, Schapiro SJ, Farah IO, Hau J. The use of primates in research: a global overview. Am J Primatol 2004;63(4):225.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hau, J. (2008). Animal Models for Human Diseases. In: Conn, P.M. (eds) Sourcebook of Models for Biomedical Research. Humana Press. https://doi.org/10.1007/978-1-59745-285-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-285-4_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-933-8

  • Online ISBN: 978-1-59745-285-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics