Skip to main content

Adsorption Desalination: A Novel Method

  • Chapter
  • First Online:

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 13))

Abstract

The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-kharabsheh S, Goswami DY (2004) Theoretical analysis of a water desalination system using low grade solar heat. J Solar Energy Eng Trans ASME 126(2):774–780

    Article  CAS  Google Scholar 

  2. Ehrenman G (2004) From sea to sink. Mech Eng 126(10):38–43

    Google Scholar 

  3. Ng KC, Wang XL, Gao LZ, Chakraborty A, Saha BB, Koyama S, Akisawa A, Kashiwagi T (2006) Apparatus and method for desalination. Patent, Publication Number: WO/2006/121414

    Google Scholar 

  4. Papadopoulos AM, Oxizidis S, Kyriakis N (2003) Perspectives of solar cooling in view of the developments in the air-conditioning sector. Renew Sustain Energy Rev 7(5):419–438

    Article  Google Scholar 

  5. Ruthven DM (1984) Principles of adsorption and adsorption process. Wiley, Boston, MA

    Google Scholar 

  6. Suzuki M (1990) Adsorption engineering. Elsevier, Amsterdam

    Google Scholar 

  7. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic, San Diego

    Google Scholar 

  8. Srivastava NC, Eames IW (1998) A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems. Appl Therm Eng 18(9–10):707–714

    Article  CAS  Google Scholar 

  9. El-Sharkawy II, Kuwahara K, Saha BB, Koyama S, Ng KC (2006) Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application. Appl Therm Eng 26:859–865

    Article  CAS  Google Scholar 

  10. Glueckauf E (1955) Formula for diffusion into sphere and their application to chromatography. Trans Faraday Soc 51:1540–1551

    Article  CAS  Google Scholar 

  11. Liaw CH, Wang JSP, Greenkorn RH, Chao KC (1979) Kinetics of fixed-bed adsorption: a new solution. AIChE J 25:376–381

    Article  Google Scholar 

  12. Li Z, Yang RT (1999) Concentration profile for linear driving force model for diffusion in a particle. AIChE J 45(1):196–200

    Article  CAS  Google Scholar 

  13. Sircar S, Hufton JR (2000) Interparticle adsorbate concentration profile for linear driving force model. AIChE J 46(3):659–660

    Article  CAS  Google Scholar 

  14. El-Sharkawy II, Saha BB, Koyama S, Ng KC (2006) A study on the kinetics of ethanol-activated carbon fiber: theory and experiments. Int J Heat Mass Transf 49:3104–3110

    Article  CAS  Google Scholar 

  15. El-Sharkawy II, Saha BB, Chakraborty A, Kuwahara K, Koyama S, Ng KC (2006) Determination of an improved linear driving force equation for adsorption of ethanol on activated carbon fiber. In: Proceedings of the 3rd Asian conference on refrigeration and air-conditioning, Gyeongju, Korea, vol 1, pp 129–132

    Google Scholar 

  16. Akkimaradi BS, Prasad M, Dutta P, Srinivasan K (2001) Adsorption of 1,1,1,2-tetrafluoroethane (HFC 134a) on activated carbon. J Chem Eng Data 46:417–422

    Article  CAS  Google Scholar 

  17. Prasad M, Akkimaradi BS, Rastogi SC, Rao RR, Srinivasan K (1999) Heats of adsorption for charcoal-nitrogen systems. Carbon 37:1641–1642

    Article  CAS  Google Scholar 

  18. Critoph RE (1988) Performance limitations of adsorption cycles for solar cooling. Solar Energy 41(1):21–31

    Article  CAS  Google Scholar 

  19. Cacciola G, Restuccia G (1995) Reversible adsorption heat pump: a thermodynamic model. Int J Refrig 18(2):100–106

    Article  CAS  Google Scholar 

  20. El-Sharkawy II, Saha BB, Koyama S, Srinivasan K (2007) Isosteric heats of adsorption extracted from experiments of ethanol and HFC 134a on carbon based adsorbents. Int J Heat Mass Transf 50(5–6):902–907

    Article  CAS  Google Scholar 

  21. Chakraborty A, Saha BB, Koyama S, Ng KC (2006) On the thermodynamic modeling of the isosteric heat of adsorption and comparison with experiments. Appl Phys Lett 89:171901

    Article  Google Scholar 

  22. Chakraborty A, Saha BB, Ng KC, Koyama S, Srinivasan K (2009) Theoretical insight of physical adsorption for a single component adsorbent–adsorbate system: I. Thermodynamic property surfaces. Langmuir 25(4):2204–2211

    Article  CAS  PubMed  Google Scholar 

  23. Dunne AJ, Mariwala R, Rao M, Sircar S, Gorte RJ, Myers AL (1996) Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12(24):5888–5895

    Article  CAS  Google Scholar 

  24. Dunne AJ, Rao M, Sircar S, Gorte RJ, Myers AL (1996) Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites. Langmuir 12(24):5896–5904

    Article  CAS  Google Scholar 

  25. El-Sharkawy II (2006) Development of adsorption systems powered by renewable energy or waste heat sources. Ph.D. Thesis, Kyushu University, Japan

    Google Scholar 

  26. Fan Y, Luo L, Souyri B (2007) Review of solar sorption refrigeration technologies: development and applications. Renew Sustain Energy Rev 11(8):1758–1775

    Article  CAS  Google Scholar 

  27. Ito M, Watanabe F, Hasatani M (1996) Improvement of both adsorption performances of silica gel and heat transfer characteristics by means of heat exchange modulation for a heat pump. Heat Transf Jpn Res 25(7):420–431

    Article  Google Scholar 

  28. Dehler FC (1940) Silica gel adsorption. Chem Metall Eng 37:307–310

    Google Scholar 

  29. Saha BB, Koyama S, Alam KCA, Hamamoto Y, Akisawa A Kashiwagi T, Ng KC, Chua HT (2003) Isothermal adsorption measurement for the development of high performance solid sorption cooling system. Trans JSRAE 20(3):421–427

    CAS  Google Scholar 

  30. Ryu Z, Zheng J, Wang M, Zhang B (1999) Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 37(8):1257–1264

    Article  CAS  Google Scholar 

  31. Ng KC, Chua HT, Chung CY, Loke CH, Kashiwagi T, Akisawa A, Saha BB (2001) Experimental investigation of the silica gel–water adsorption isotherm characteristics. Appl Therm Eng 21(16):1631–1642

    Article  CAS  Google Scholar 

  32. Wang X, Zimmermann W, Ng KC, Chakraborty A, Keller JU (2004) Investigation on the isotherm of silica gel + water systems. J Therm Anal Calorim 76(2):659–669

    Article  CAS  Google Scholar 

  33. Valenzuela DP, Myers DP (1989) Adsorption equilibrium data handbook. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  34. Sircar S (1991) Isosteric heats of multicomponent gas adsorption on heterogeneous adsorbents. Langmuir 7(12):3065–3069

    Article  CAS  Google Scholar 

  35. Tóth J (1971) State equations of the solid–gas interface layers. Acta Chim Acad Sci Hung 69:311–328

    Google Scholar 

  36. NACC (1992) PTX data for silica gel/water pair, Manufacturer’s proprietary data. Nishiyodo Air Conditioning Co Ltd., Tokyo, Japan

    Google Scholar 

  37. Chihara K, Suzuki M (1983) Air drying by pressure swing adsorption. J Chem Eng Jpn 16:293–298

    Article  CAS  Google Scholar 

  38. Cremer HW, Davis T (1958) Chemical engineering practice, vol 6. Butterworths, London, pp 286–287

    Google Scholar 

  39. Sakoda A, Suzuki M (1984) Fundamental study on solar powered adsorption cooling system. J Chem Eng Jpn 17:52–57

    Article  CAS  Google Scholar 

  40. Wang XL, Ng KC (2005) Experimental investigation of an adsorption desalination plant using low-temperature waste heat. Appl Therm Eng 25:2780–2789

    Article  CAS  Google Scholar 

  41. Ng KC, Chua HT, Wang XL, Kashiwagi T, Saha BB (2003) Prototype testing of a novel four-bed regenerative silica gel–water adsorption chiller. In: ICR 0042, Washington, DC

    Google Scholar 

  42. Saha BB, El-Sharkawy II, Chakraborty A, Koyama S (2007) Study on an activated carbon fiber–ethanol adsorption chiller: Part II – performance evaluation. Int J Refrig 30(1):96–102

    Article  CAS  Google Scholar 

  43. Wang XL, Chua HT, Ng KC (2006) Experimental investigation of silica gel adsorption chillers with and without a passive heat recovery scheme. Int J Refrig 28:756–765

    Article  Google Scholar 

  44. El-Sharkawy II, Thu K, Ng KC, Saha BB, Chakraborty A, Koyama S (2007) Performance improvement of adsorption desalination plant: experimental investigation. Int Rev Mech Eng 1(1):25–31

    Google Scholar 

  45. Ng KC, Wang X, Lim YS, Saha BB, Chakraborty A, Koyama S, Akisawa A, Kashiwagi T (2006) Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery. Int J Heat Mass Transf 49(19–20):3343–3348

    Article  Google Scholar 

  46. NUS (2008) Adsorption desalination to quench global thirst. Engineering Research, 23(3), Oct. 2008. National University of Singapore (NUS)

    Google Scholar 

  47. Thu K, Ng KC, Saha BB, Chakraborty A, Koyama S (2009) Operational strategy of adsorption desalination systems. Int J Heat Mass Transf 52(7–8):1811–1816, March

    Google Scholar 

Download references

Acknowledgments

The authors express sincere thanks to King Abdullah University of Science and Technology (KAUST) for the financial support through the project (WBS R265-000-286-597). The authors would also like to thank Mr. Kyaw Thu, a NUS Ph.D. student in the ME Department, for his help in experimental investigations of the AD plant (4647).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ng, K.C., El-Sharkawy, I.I., Saha, B.B., Chakraborty, A. (2011). Adsorption Desalination: A Novel Method. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics