Skip to main content

Preparation of Polymeric Membranes

Part of the Handbook of Environmental Engineering book series (HEE,volume 13)

Abstract

This chapter mainly describes the principles of membrane formation process for polymeric membranes. With a brief introduction of relevant background information such as various membranes and membrane processes, a comprehensive list of polymer materials, which are suitable for making membranes, has been given. The most common technique used to prepare polymeric membranes – phase inversion process, including thermally induced phase separation (TIPS) and diffusion induced phase separation (DIPS), is discussed in detail. The thermodynamic behavior of the casting polymer solution, the process of membrane formation, and the fabrication of hollow fiber and flat sheet membranes are involved.

The thermodynamic description of the polymer solution is based on the concepts of spinodal, binodal, vitrification boundary, gelation boundary et al. in the phase diagram. The linearized cloud point curve correlation is presented. In addition, two important parameters, the approaching ratio of the polymer solution and the approaching coagulant ratio, are discussed in association with membrane formation. For the membrane formation process, the delay time and gelation time are two macroscopic time scales, which influence the membrane morphologies simultaneously. The formation of nascent porous membranes, the vitrification of the membrane morphology and the membrane surface formation are described. The macrovoid formation is related to the viscous fingering phenomenon. In the fabrication of hollow fiber membranes, the shear flow of the polymer solution inside the spinneret and the elongation flow in the air gap strongly influence the performance of resultant membranes. Thus, the shear flow and elongation flow are discussed in great detail. The hydrodynamics of the polymer solution at the casting window in the process of preparing flat sheet membranes is also concerned.

Key Words

  • Polymeric membranes
  • phase inversion process
  • thermodynamics
  • hydrodynamics
  • hollow fiber membranes
  • flat sheet membranes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-59745-278-6_2
  • Chapter length: 54 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-59745-278-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18
Fig. 2.19
Fig. 2.20
Fig. 2.21
Fig. 2.22
Fig. 2.23
Fig. 2.24
Fig. 2.25
Fig. 2.26
Fig. 2.27
Fig. 2.28
Fig. 2.29
Fig. 2.30
Fig. 2.31
Fig. 2.32
Fig. 2.33
Fig. 2.34
Fig. 2.35

References

  1. Mulder MHV (1991) Basic principals of membrane technology. Kluwer, Dordrecht

    Google Scholar 

  2. Baker RW (2004) Membrane technology and applications, 2nd ed., Wiley, New York

    Google Scholar 

  3. Loeb S, Sourirajan S (1962) Sea water demineralization by means of an osmotic membranes. Adv Chem Ser 38:117

    Google Scholar 

  4. van de Witte P, Dijkstra PJ, van de Berg JWA, Feijn BJ (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Memb Sci 117:1

    CAS  Google Scholar 

  5. Kesting RE (1985) Synthesis polymeric membranes, a structural perspective. Wiley, New York

    Google Scholar 

  6. Strathmann H (1981) Review – membrane separation processes. J Memb Sci 9:121

    CAS  Google Scholar 

  7. Matsuura T (1994) Synthetic membranes and membrane separation process. CRC Press, Boca Raton

    Google Scholar 

  8. Pinnau I, Freeman B (eds) (2000) Membrane formation and modification. American Chemical Society, Washington, DC.

    Google Scholar 

  9. Nunes SP, Peinemann KV (eds) (2001) Membrane technology in the chemical industry. Wiley-VCH, Verlag GmbH, Weinheim

    Google Scholar 

  10. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217

    CAS  Google Scholar 

  11. http://www.solvaymembranes.com/

  12. Peinemann KV, Fink K, Witt P (1986) Asymmetric polyetherimide membranes for helium separation. J Memb Sci 27:215

    CAS  Google Scholar 

  13. Bodzek M, Bohdziewicz J (1991) Porous polycarbonate phase-inversion membranes. J Memb Sci 60:25

    CAS  Google Scholar 

  14. Mark HF, Bikales NM, Overbeger CG, Menges G (1985) Encyclopedia of polymer science and engineering. 2nd ed, vol 11, Polyamides, Wiley, NY

    Google Scholar 

  15. Castro AJ (1981) Methods for making microporous products, US Patent 4247498.

    Google Scholar 

  16. Caneba GT, Soong DS (1985) Polymer membrane formation through the thermal inversion process: 1. Experimental study of membrane structure formation. Macromolecules 18:2538

    CAS  Google Scholar 

  17. Lloyd DR, Kinzer KE, Tseng HS (1990) Microporous membrane formation via thermally induced phase separation. I. Solid–liquid phase separation. J Memb Sci 52:239

    CAS  Google Scholar 

  18. Tsai FJ, Torkelson JM (1990) Microporous poly(methyl methacrylate) membranes: effect of a low-viscosity solvent on the formation mechanism. Macromolecules 23:4983

    CAS  Google Scholar 

  19. Lloyd DR, Kim S, Kinzer KE (1991) Microporous membrane formation via thermally-induced phase separation. II. Liquid–liquid phase separation. J Memb Sci 64:1

    CAS  Google Scholar 

  20. Vadalia HC, Lee HK, Myerson AS, Levon K (1994) Thermally induced phase separation in ternary crystallizable polymer solutions. J Memb Sci 89:37

    CAS  Google Scholar 

  21. Mehta RH, Madsen DA, Kalika DS (1995) Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation. J Memb Sci 107:93

    CAS  Google Scholar 

  22. Cha BJ, Char K, Kim JJ, Kim SS, Kim CK (1995) The effects of diluent molecular weight on the structure of thermally induced phase separation membrane. J Memb Sci 108:219

    CAS  Google Scholar 

  23. McGuire KS, Laxminarayan A, Martula DS, Lloyd DR (1996) Kinetics of droplet growth in liquid–liquid phase separation of polymer-diluent systems: model development. J Colloid Interface Sci 182:46

    CAS  Google Scholar 

  24. Matsuyama H, Berghmans S, Batarseh MT, Lloyd DR (1998) Effects of thermal history on anisotropic and asymmetric membranes formed by thermally induced phase separation. J Memb Sci 142:27

    CAS  Google Scholar 

  25. Matsuyama H, Berghmans S, Lloyd DR (1999) Formation of anisotropic membranes via thermally induced phase separation. Polymer 40:2289

    CAS  Google Scholar 

  26. Matsuyama H, Kudari S, Kiyofuji H, Kitamura Y (2000) Kinetic studies of thermally induced phase separation in polymer diluent system. J Appl Polym Sci 76:1028

    CAS  Google Scholar 

  27. Liu B, Du Q, Yang Y (2000) The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation. J Memb Sci 180:81

    CAS  Google Scholar 

  28. Atkinson PM, Lloyd DR (2000) Anisotropic flat sheet membrane formation via TIPS: atmospheric convection and polymer molecular weight effects. J Memb Sci 175:225

    CAS  Google Scholar 

  29. Kim JJ, Hwang JR, Kim UY, Kim SS (1995) Operation parameters of melt spinning of polypropylene hollow fiber membranes. J Memb Sci 108:25

    CAS  Google Scholar 

  30. Sun H, Rhee KB, Kitano T, Mah SI (2000) Hollow-fiber membrane via thermally induced phase separation HDPE II. Factors affecting the water permeability of the membrane. J Appl Polym Sci 75:1235

    CAS  Google Scholar 

  31. Matsuyama H, Maki T, Teramoto M, Asano K (2002) Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J Memb Sci 204:323

    CAS  Google Scholar 

  32. Matsuyama H, Yuasa M, Kitamura Y, Teramoto M, Lloyd DR (2000) Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation. J Memb Sci 179:91

    CAS  Google Scholar 

  33. Yang MC, Perng JS (2001) Microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent–camphene. J Memb Sci 187:13

    CAS  Google Scholar 

  34. Arnauts J, Berghmans H (1987) Amorphous thermoreversible gels of atactic polystyrene. Polym Commun 28:66

    CAS  Google Scholar 

  35. Frank FC, Keller A (1988) 2-fluid phase-separation – modified by a glass-transition. Polym Commun 29:186

    CAS  Google Scholar 

  36. Kelley FN, Bueche F (1961) Viscosity and glass temperature relations for polymer-diluent systems. J Polym Sci 50:549

    CAS  Google Scholar 

  37. Fedors RF (1979) Universal reduced glass-transition temperature for liquids. J Polym Sci Part C Polym Lett 17:719

    CAS  Google Scholar 

  38. Li SG (1994) Preparation of HollowFiber Membranes for Gas Separation, Ph.D. thesis, University of Twente, NL

    Google Scholar 

  39. Siggia ED (1979) Late stages of spinodal decomposition in binary mixtures. Phys Rev A 20:595

    CAS  Google Scholar 

  40. Caneba GT, Soong DS (1985) Polymer membrane formation through the thermal inversion process. 2. Mathematical modeling of membrane structure formation. Macromolecules 18:2545

    CAS  Google Scholar 

  41. Tsai FJ, Torkelson JM (1990) Roles of phase separation mechanism and coarsening in the formation of poly(methylmethacrylate) asymmetric membranes. Macromolecules 23:775

    CAS  Google Scholar 

  42. Laxminarayan A, McGuire KS, Kim SS, Lloyd DR (1994) Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structure via thermally induced phase separation. Polymer 35:3060

    CAS  Google Scholar 

  43. Koros WJ, Pinnau I (1994) Membrane Formation for gas separation processes. In: Paul DR, Yampol’skii YP (eds) Polymeric gas separation membranes. CRC Press, Boca Raton

    Google Scholar 

  44. Guo HF, Laxminarayan HFA, Caneba GT, Solc K (1995) Morphological studies of late-stage spinodal decomposition in polystyrene-cyclohexanol system. J Appl Polym Sci 55:753

    CAS  Google Scholar 

  45. Strathmann H, Scheible P, Baker RW (1971) A rational for the preparation of Lob-Sourirajan type cellulose acetate. J Appl Poly Sci 15:811

    Google Scholar 

  46. Altena FW, Smolders CA (1982) Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 15:1491

    CAS  Google Scholar 

  47. Li SG, van den Boomgaard T, Smolders CA, and Strathmann H (1996) Physical gelation of amorphous polymers in a mixture of solvent and nonsolvent. Macromolecules 29:2053

    CAS  Google Scholar 

  48. Wang L (1999) Studies on gelation time and formation mechanism of support layer of PES membrane-making system, Master thesis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China

    Google Scholar 

  49. Wang L, Li Z, Ren J, Li SG, Jiang C (2006) Preliminary studies on the gelation time of poly(ether sulfones) membrane-forming system with an elongation method. J Memb Sci 275:46

    CAS  Google Scholar 

  50. Flory PJ (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY

    Google Scholar 

  51. Matsuyama H, Nishiguchi M, Kitamura Y (2000) Phase separation mechanism during membrane formation by dry-cast process. J Appl Polym Sci 77:776

    CAS  Google Scholar 

  52. Li S, Jiang C, Zhang Y (1987) The investigation of solution thermodynamics for the polysufone – DMAC – water system. Desalination 62:79

    CAS  Google Scholar 

  53. Boom RM, van den Boomgaard T, van den Berg JWA, Smolders CA (1993) Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 34:2348

    CAS  Google Scholar 

  54. Kools WFC, van den Boomgaard T, strathmann H (1998) Considerations and restrictions on the theoretical validity of the linearized cloudpoint correlation. Polymer 39:4835

    CAS  Google Scholar 

  55. He T, Jiang CZ (1998) Effects of nonsolvent additives on performance of poly(ether sulfone) microporous membranes. Memb Sci Technol 18:43

    CAS  Google Scholar 

  56. Li Z, Jiang C (2001) Investigation into the rheological properties of PES/NMP/nonsolvent membrane-forming systems. J Appl Polym Sci 82:283

    CAS  Google Scholar 

  57. Ren J, Li Z, Wong FS (2004) Membrane structure control of asymmetric BTDA-TDI/MDI (P84) co-polyimide membranes by phase inversion process. J Memb Sci 241:305

    CAS  Google Scholar 

  58. Reuvers AJ and Smolders CA (1987) Formation of membranes by means of immersion precipitation: Part II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. J Memb Sci 34:67

    CAS  Google Scholar 

  59. Reuvers AJ (1987) Membrane Formation-diffusion Induced Demixing Processes in Ternary Polymeric Systems, Ph.D thesis, University of Twente, Enschede, The Netherlands

    Google Scholar 

  60. Tanaka F and Stockmayer WH (1994) Thermoreversible gelation with junctions of variable multiplicity. Macromolecules 27:3943

    CAS  Google Scholar 

  61. McKelvey SA (1997) Formation and characterization of hollow fiber membranes for gas separation. The University of Texas at Austin, Ph.D. thesis

    Google Scholar 

  62. Van’t Hof JA, Reuvers AJ, Boom RM, Rolevink HHM, Smolders CA (1992) Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method. J Memb Sci 70:17

    Google Scholar 

  63. Radovanovic P, Thiel SW, Hwang ST (1992) Formation of asymmetric polysulfone membranes by immersion precipitation. 1. Modeling mass-transport during gelation. J Memb Sci 65:213

    CAS  Google Scholar 

  64. Radovanovic P, Thiel SW, Hwang ST (1992) Formation of asymmetric polysulfone membranes by immersion precipitation. 2. The effects of casting solution and gelation bath compositions on membrane-structure and skin formation. J Memb Sci 65:231

    CAS  Google Scholar 

  65. Boom RM, van den Boomgaard T, Smolders CA (1994) Mass-transfer and thermodynamics during immersion precipitation for a 2-polymer system-evaluation with the system PES-PVP-NMP-water. J Memb Sci 90:231

    CAS  Google Scholar 

  66. Li SG, Koops GH, Mulder MHV, van den Boomgaard T, Smolders CA (1994) Wet spinning of integrally skinned hollow-fiber membranes by a modified dual-bath coagulation method using a triple orifice spinneret. J Memb Sci 94:329

    CAS  Google Scholar 

  67. Kools WFC (1998) Membrane Formation by Phase Inversion In Multicomponent Polymer Systems, Mechanism and Morphologies, Ph.D. thesis, University of Twente, NL

    Google Scholar 

  68. Ismail AF, Yean LP (2003) Review on the development of defect-free and ultrathin-skinned asymmetric membranes for gas separation through manipulation of phase inversion and rheological factors. J Appl Poly Sci 88:442

    CAS  Google Scholar 

  69. Pinnau I, Koros WJ (1993) A qualitative skin layer formation mechanism for membranes made by dry wet phase inversion. J Polym Sci Part B Polym Phys 31:419

    CAS  Google Scholar 

  70. Smolders CA, Reuvers AJ, Boom RM, Wienk IM (1992) Microstructures in phase-inversion membranes. Part 1: Formation of macrovoids. J Memb Sci 73:259

    CAS  Google Scholar 

  71. Strathmann H, Kock K, Amar P, Baker RW (1975) The formation mechanism of asymmetric membranes. Desalination 16:179

    CAS  Google Scholar 

  72. Strathmann H, Kock K (1977) The formation mechanism of phase inversion membranes. Desalination 21:241

    CAS  Google Scholar 

  73. McKelvey SA, Koros WJ (1996) Phase separation, vitrification, and the manifestation of macrovoids in polymeric asymmetric membranes. J Memb Sci 112:29

    CAS  Google Scholar 

  74. Pekny MR, Zartman J, Krantz WB, Greenberg AR, Todd P (2003) Flow-visualization during macrovoid pore formation in dry-cast cellulose acetate membranes. J Memb Sci 211:71

    CAS  Google Scholar 

  75. Matz R (1972) The structure of cellulose acetate membranes 1. The development of porous structures in anisotropic membranes. Desalination 10:1

    CAS  Google Scholar 

  76. Ray RJ, Krantz WB, Sani RL (1985) Linear stability theory for finger formation in asymmetric membranes. J Memb Sci 23:155

    CAS  Google Scholar 

  77. Frommer MA, Messalem FM (1973) Mechanism of membrane formation. VI. Convective flows and large void formation during membrane precipitation. Ind Eng Chem Prod Res Dev 12:328

    CAS  Google Scholar 

  78. Meakin P (1998) Fractals, scaling, and growth of far from equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  79. Kawaguchi M, Makino K, Kato T (1997) Viscous fingering patterns in polymer solutions. Physica D 109:325

    CAS  Google Scholar 

  80. Kawaguchi M (2001) Viscous fingering patterns in polymer systems. Nonlinear Anal 47:907

    Google Scholar 

  81. Lal J, Bansil R (1992) Effect of gelation on morphology of spinodal decomposition and viscous finger. Physica A 186:88

    CAS  Google Scholar 

  82. Vogrin N, Stropnik C, Musil V, Brumen M (2002) The wet phase separation: the effect of cast solution thickness on the appearance of macrovoids in the membrane forming ternary cellulose acetate/acetone/water system. J Memb Sci 207:139

    CAS  Google Scholar 

  83. Li D, Chung TS, Ren J, Wang R (2004) Thickness dependence of macrovoid evolution in wet-phase inversion asymmetric membranes. Ind Eng Chem Res 43:1553

    CAS  Google Scholar 

  84. Mahon HI (1966) Permeability separatory apparatus and membrane element, method of making the same and process ultilizing the same, US patent 3228876, Dow chemical

    Google Scholar 

  85. Mckelvey SA, Clausi DT, Koros WJ (1997) A guide to establishing hollow fiber macroscopic properties for membrane applications. J Memb Sci 124:223

    CAS  Google Scholar 

  86. Chung TS, Lin WH, Vora RH (2000) The effect of shear rates on gas separation performance of 6FDA-Durene polyimide hollow fibers. J Memb Sci 167:55

    CAS  Google Scholar 

  87. Chung TS, Teoh SK, Lau WWY, Srinivasan MP (1998) Effect of shear stress within the spinneret on hollow fiber membrane morphology and separation performance. Ind Eng Chem Res 37:3930

    CAS  Google Scholar 

  88. Chung TS, Qin JJ, Gu J (2000) Effect of shear rate within the spinneret on morphology, separation performance and mechanical properties of ultrafiltration polyethersolfone hollow fiber membranes. Chem Eng Sci 55:1077

    CAS  Google Scholar 

  89. Qin JJ, Wang R, Chung TS (2001) Investigation of shear stress effect within a spinneret on flux, separation and thermomechanical properties of hollow fiber ultrafiltration membranes. J Memb Sci 175:197

    Google Scholar 

  90. Ismail AF, Shilton SJ, Dunkin IR, Gallivan SL (1997) Direct measurement of rheologically induced molecular orientation in gas separation hollow fiber membranes and effects on selectivity. J Memb Sci 126:133

    CAS  Google Scholar 

  91. Shilton SJ, Ismail AF, Gough PJ (1997) Molecular orientation and the performance of synthetic polymeric membranes for gas separation. Polymer 38:2215

    CAS  Google Scholar 

  92. Ren J, Chung TS, Li D, Wang R, Liu Y (2002) Development of asymmetric 6FDA-2,6DAT hollow fiber membranes for CO2/CH4 separation 1. The influence of dope composition and rheology on membrane morphology and separation performance. J Memb Sci 207:227

    CAS  Google Scholar 

  93. Idris A, Ismail AF, Gordeyev SA, Shilton SJ (2003) Rheology assessment of cellulose acetate spinning solution and its influence on reverse osmosis hollow fiber membrane performance. Polym Test 22:319

    CAS  Google Scholar 

  94. Ismail AF, Ng BC, Rahman WA (2003) Effects of shear rate and forced convection residence time on asymmetric polysulfone membranes structure and gas separation performance. Sep Purf Technol 33:255

    CAS  Google Scholar 

  95. Gordeyev SA, Lees GB, Dunkin IR, Shilton SJ (2001) Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution. Polymer 42:4747

    Google Scholar 

  96. Ekiner OM, Vassilatos G (2001) Polyaramide hollow fibers for H2/CH4 separation II. Spinning and properties. J Memb Sci 186:71

    CAS  Google Scholar 

  97. Bird RB, Armstrong RC, Hasager O (1987) Dynamics of polymeric liquids, vol. 1. Fluid mechanics, 2nd ed. Wiley, New York

    Google Scholar 

  98. Ren J, Li Z, Wong FS, Li D (2005) Development of asymmetric BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes for ultrafiltration: The influence of shear rate and approaching ratio on membrane morphology and performance. J Memb Sci 248:177

    CAS  Google Scholar 

  99. Ren J, Wang R, Chung TS, Li D, Liu Y (2003) The effect of chemical modifications on morphology and performance of 6FDA-ODA/NDA hollow fiber membranes for CO2/CH4 Separation. J Memb Sci 222:133

    CAS  Google Scholar 

  100. Hagler GE (1981) Qualitative prediction of the effects of changes in spinning conditions on spun fiber orientation. Polym Eng Sci 21:121

    CAS  Google Scholar 

  101. Shilton SJ, Ismail AF, Gough PJ, Dunkin IR, Gallivan S (1997) Molecular orientation and the performance of synthetic polymeric membranes for gas separation. Polymer 38:2215

    CAS  Google Scholar 

  102. Shilton SJ, Bell G, Ferguson J (1994) The rheology of fiber spinning and the properties of hollow-fibre membranes for gas separation. Polymer 35:5327

    CAS  Google Scholar 

  103. Wang KY, Li DF, Chung TS, Chen SB (2004) The observation of elongation dependent macrovoid evolution in single and dual-layer asymmetric hollow fiber membranes. Chem Eng Sci 59:4657

    CAS  Google Scholar 

  104. Rozelle LT, Cadotte JE, Corneliussen RD, Erickson EE (1968) Final report on development of new reverse osmosis membranes, NTIS Report No.PB.206329, June

    Google Scholar 

  105. Ismail AF (1997) Novel studies of molecular orientation in synthetic polymeric membranes for gas separation, University of Strathclyde, Ph.D thesis

    Google Scholar 

  106. Ismail AF, Lai PY (2003) Effects of phase inversion and rheological factors on the defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep Purf Technol 33:127

    CAS  Google Scholar 

  107. He D, Ulbricht M (2006) Surface selective photo-grafting on porous polymer membranes via a synergist immobilization method. J Mater Chem 16:1860

    CAS  Google Scholar 

  108. Wang LK, Pereira NC, Hung YT (eds) (2004) Air pollution control engineering. Humana, Totowa, NJ, pp 471–475

    Google Scholar 

  109. Wang LK, Hung YT, Shammas NK (eds) (2005) Physicochemical treatment processes. Humana, Totowa, NJ, pp 526–671

    Google Scholar 

  110. Wang LK, Hung YT, Lo HH, Yapijakis C (eds) (2006) Hazardous industrial waste treatment. CRC Press/Taylor & Francis, New York, pp 468–487

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ren, J., Wang, R. (2011). Preparation of Polymeric Membranes. In: Wang, L.K., Chen, J.P., Hung, YT., Shammas, N.K. (eds) Membrane and Desalination Technologies. Handbook of Environmental Engineering, vol 13. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-278-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-278-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-940-6

  • Online ISBN: 978-1-59745-278-6

  • eBook Packages: EngineeringEngineering (R0)