Skip to main content

Catalyst Transport in Corn Stover Internodes

Elucidating Transport Mechanisms Using Direct Blue-I

  • Chapter
Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals

Abstract

The transport of catalysts (chemicals and enzymes) within plant biomass is believed to be a major bottleneck during thermochemical pretreatment and enzymatic conversion of lignocellulose. Subjecting biomass to size reduction and mechanical homogenization can reduce catalyst transport limitations; however, such processing adds complexity and cost to the overall process. Using high-resolution light microscopy, we have monitored the transport of an aqueous solution of Direct Blue-I (DB-I) dye through intact corn internodes under a variety of impregnation conditions. DB-I is a hydrophilic anionic dye with affinity for cellulose. This model system has enabled us to visualize likely barriers and mechanisms of catalyst transport in corn stems. Microscopic images were compared with calculated degrees of saturation (i.e., volume fraction of internode void space occupied by dye solution) to correlate impregnation strategies with dye distribution and transport mechanisms. Results show the waxy rind exterior and air trapped within individual cells to be the major barriers to dye transport, whereas the vascular bundles, apoplastic continuum (i.e., the intercellular void space at cell junctions), and fissures formed during the drying process provided the most utilized pathways for transport. Although representing only 20–30% of the internode volume, complete saturation of the apoplast and vascular bundles by fluid allowed dye contact with a majority of the cells in the internode interior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas, S., Porter, S., Jurich, J., et al. (2004), Technical Report FY04-561, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  2. McMillan, J. D. (1994), ACS Symposium Series 566, 292–324.

    Article  CAS  Google Scholar 

  3. Kazi, K. M. F., Jollez, P., and Chornet, E. (1998), Biomass Bioenergy 15, 125–141.

    Article  CAS  Google Scholar 

  4. Ramos, L. P. (2003), Quimica Nova 26, 863–871.

    CAS  Google Scholar 

  5. Malkov, S., Tikka, P., and Gullichsen, J. (2001), Paper Timber 83, 468–473.

    CAS  Google Scholar 

  6. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997), Biores. Technol. 59, 129–136.

    Article  CAS  Google Scholar 

  7. Soderstrom, J., Pilcher, L., Galbe, M., and Zacchi, G. (2003), Biomass and Bioenergy 24, 475–486.

    Article  CAS  Google Scholar 

  8. Zhu, Y., Lee, Y. Y., and Elander, R. T. (2004), Appl. Biochem. Biotechnol. 117, 103–114

    Article  CAS  Google Scholar 

  9. Schell, D. J., Farmer, J., Newman, M., and McMillan, J. D. (2003), Appl. Biochem Biotechnol. 105/108, 69–85.

    Article  Google Scholar 

  10. Aden, A., Ruth, M., Ibsen, K., et al. (2002), Technical Report NREL/TP-510-32438, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  11. Kim, K. H., Tucker, M. P., and Nguyen, Q. A. (2002), Biotechnol. Prog. 18, 489–494.

    Article  CAS  Google Scholar 

  12. Decker, S. and Vinzant, T. (2004), Office of Biomass Program E Milestone, ID No. FY04-602.

    Google Scholar 

  13. Raven, P. H., Evert, R. F., and Eichhorn, S. E. (1992), Biology of Plants, 5th edition, Worth Publishers, Inc., New York.

    Google Scholar 

  14. Horobin, R. W. and Kiernan, J. A. (2002), Conn’s Biological Stains, 10th edition, Biological Stain Commission, Oxford.

    Google Scholar 

  15. Mani, S., Tabil, L. G., and Sokhansanj, S. (2004), Canadian Biosys. Eng. 46, 55–61.

    Google Scholar 

  16. Kim, S. B. and Lee, Y. Y. (2002), Biores. Technol. 83, 165–171.

    Article  CAS  Google Scholar 

  17. Tucker, M. P., Kim, K. H., Newman, M. M., and Nguyen, Q. A. (2003), Appl. Biochem. Biotechnol. 105, 165–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Viamajala, S. et al. (2006). Catalyst Transport in Corn Stover Internodes. In: McMillan, J.D., Adney, W.S., Mielenz, J.R., Klasson, K.T. (eds) Twenty-Seventh Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59745-268-7_42

Download citation

Publish with us

Policies and ethics