Endothelial Dysfunction, Inflammation, and Exercise

  • John Doupis
  • Jordan C. Schramm
  • Aristidis Veves
Part of the Contemporary Diabetes book series (CDI)


Vascular endothelial function is essential for the maintenance of health of the vessel wall and for the vasomotor control in both conduit and resistance vessels. These functions are due to the production of numerous vasomodulators, of which nitric oxide (NO) has been the most significant and the most widely studied. Endothelial function deteriorates with age and in the presence of several other risk factors for atherosclerosis, including diabetes, obesity, hypercholesterolemia, hypertension, hyperhomocysteinemia, and smoking. In addition, endothelial dysfunction is highly related with chronic vascular inflammation and is considered to be an independent risk factor for atherosclerosis. Physical training has beneficial effects on multiple cardiovascular risk factors, such as dyslipidemia, hypertension, diabetes, and cardiovascular events, by augmenting endothelial, NO-dependent vasodilation in both large and small arteries. In addition, physical activity shows beneficial effect on the chronic vascular inflammation, reducing most of the biochemical inflammation markers.


Diabetes Exersice Endothelial Dysfunction 


  1. 1.
    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 1999;100:1134–46.PubMedGoogle Scholar
  2. 2.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.PubMedGoogle Scholar
  3. 3.
    Quinones MJ, Nicholas SB, Lyon CJ. Insulin resistance and the endothelium. Curr Diab Rep. 2005;5(4):246–53.PubMedGoogle Scholar
  4. 4.
    Libby P, Aikawa M, Jain MK. Vascular endothelium and atherosclerosis. Handb Exp Pharmacol. 2006;176(Pt. 2):285–306.PubMedGoogle Scholar
  5. 5.
    Glasser SP, Selwyn AP, Ganz P. Atherosclerosis: risk factors and the vascular endothelium. Am Heart J. 1996;131:379–84.PubMedGoogle Scholar
  6. 6.
    Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83(2):456S–60S.PubMedGoogle Scholar
  7. 7.
    Haffner SM. The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am J Cardiol. 2006;97(2A):3A–11A.PubMedGoogle Scholar
  8. 8.
    Key NS. Scratching the surface: endothelium as a regulator of thrombosis, fibrinolysis, and inflammation. J Lab Clin Med. 1992;120(2):184–6.PubMedGoogle Scholar
  9. 9.
    Anggard EE. J Endocrinol. The endothelium – the body's largest endocrine gland? J Endocrinol. 1990;127(3):371–5.Google Scholar
  10. 10.
    Inagami T, Naruse M, Hoover R. Endothelium as an endocrine organ. Annu Rev Physiol. 1995;57:171–89.PubMedGoogle Scholar
  11. 11.
    Baumgartner-Parzer SM, Waldhausl WK. The endothelium as a metabolic and endocrine organ: it's relation with insulin resistance. Exp Clin Endocrinol Diabetes 2001;109(Suppl. 2):S166–79.PubMedGoogle Scholar
  12. 12.
    Fleming I, Bauersachs J, Busse R. Paracrine functions of the coronary vascular endothelium. Mol Cell Biochem. 1996;157(1–2):137–45.PubMedGoogle Scholar
  13. 13.
    Triggle CR, Ding H, Anderson TJ, Pannirselvam M. The endothelium in health and disease: a discussion of the contribution of non-nitric oxide endothelium-derived vasoactive mediators to vascular homeostasis in normal vessels and in type II diabetes. Mol Cell Biochem. 2004;263:21–7.PubMedGoogle Scholar
  14. 14.
    Henrich WL. The endothelium – a key regulator of vascular tone. Am J Med Sci. 1991;302(5):319–28.PubMedGoogle Scholar
  15. 15.
    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl. 1):III27–32.PubMedGoogle Scholar
  16. 16.
    Kitamoto S, Egashira K. Endothelial dysfunction and coronary atherosclerosis. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4(1):13–22.PubMedGoogle Scholar
  17. 17.
    Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, Wiedmeyer HM, Byrd-Holt DD. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998;21:518–24.PubMedGoogle Scholar
  18. 18.
    Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA 2001;286:1195–200.PubMedGoogle Scholar
  19. 19.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.PubMedGoogle Scholar
  20. 20.
    Dogra G, Rich L, Stanton K, Watts GF. Endothelium-dependent and independent vasodilation studies at normoglycaemia in type I diabetes mellitus with and without microalbuminuria. Diabetologia 2001;44:593–601.PubMedGoogle Scholar
  21. 21.
    Meeking DR, Cummings MH, Thorne S, Donald A, Clarkson P, Crook JR, Watts GF, Shaw KM. Endothelial dysfunction in type 2 diabetic subjects with and without microalbuminuria. Diabet Med. 1999;16:841–7.PubMedGoogle Scholar
  22. 22.
    McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, Andrews JW, Hayes JR. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992;35:771–6.PubMedGoogle Scholar
  23. 23.
    Veves A, Akbari CM, Primavera J, Donaghue VM, Zacharoulis D, Chrzan JS, DeGirolami U, LoGerfo FW, Freeman R. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease and foot ulceration. Diabetes 1998;47:457–63.PubMedGoogle Scholar
  24. 24.
    Koitka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 2004;53:721–5.PubMedGoogle Scholar
  25. 25.
    Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005;109(2):143–59.Google Scholar
  26. 26.
    Goldenberg S, Alex M, Joshi RA, Blumenthal HT. Nonatheromatous peripheral vascular disease of the lower extremity in diabetes mellitus. Diabetes 1959;8:261–73.PubMedGoogle Scholar
  27. 27.
    Strandness DE Jr, Priest RE, Gibbons GE. Combined clinical and pathological study of diabetic and nondiabetic peripheral arterial disease. Diabetes 1964;13:366–72.PubMedGoogle Scholar
  28. 28.
    Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation 1967;36:83–91.PubMedGoogle Scholar
  29. 29.
    Barner HB, Kaiser GC, Willman VL. Blood flow in the diabetic leg. Circulation 1971;43:391–4.PubMedGoogle Scholar
  30. 30.
    LoGerfo FW, Coffman JP. Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. N Engl J Med. 1984;311:1615–9.PubMedGoogle Scholar
  31. 31.
    Cypress M, Tomky D. Microvascular complications of diabetes. Nurs Clin North Am. 2006;41(4):719–36.PubMedGoogle Scholar
  32. 32.
    He Z, King GL. Microvascular complications of diabetes. Endocrinol Metab Clin North Am. 2004;33(1):215–38.PubMedGoogle Scholar
  33. 33.
    Veldman BA, Vervoort G. Pathogenesis of renal microvascular complications in diabetes mellitus. Neth J Med. 2002;60(10):390–6.PubMedGoogle Scholar
  34. 34.
    Theuma P, Fonseca VA. Novel cardiovascular risk factors and macrovascular and microvascular complications of diabetes. Curr Drug Targets. 2003;4(6):477–86.PubMedGoogle Scholar
  35. 35.
    Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.PubMedGoogle Scholar
  36. 36.
    Akbari CM, Saouaf R, Barnhill DF, Newman PA, LoGerfo FW, Veves A. Endothelium-dependent vasodilatation is impaired in both micro- and macrocirculation during acute hyperglycemia. J Vasc Surg 1998;28:687–94.PubMedGoogle Scholar
  37. 37.
    Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J. Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 1998;351:88–92.PubMedGoogle Scholar
  38. 38.
    Altannavch TS, Roubalova K, Kucera P, Andel M. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res. 2004;53:77–82.PubMedGoogle Scholar
  39. 39.
    Ferri C, Desideri G, Baldoncini R, Bellini C, De Angelis C, Mazzocchi C, Santucci A. Early activation of vascular endothelium in nonobese, nondiabetic essential hypertensive patients with multiple metabolic abnormalities. Diabetes 1998;47:660–7.PubMedGoogle Scholar
  40. 40.
    Otosuki M, Hashimoto K, Morimoto Y, Kishimoto T, Kasayama S. Circulating vascular cell adhesion molecule-1 (V CAM-1) in atherosclerotic NIDDM patients. Diabetes 1997;46:2096–101.Google Scholar
  41. 41.
    Hernandez C, Burgos R, Canton A, Garcia-Arumi J, Segura RM, Simo R. Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study. Diabetes Care 2001;24:516–21.PubMedGoogle Scholar
  42. 42.
    Tull SP, Anderson SI, Hughan SC, Watson SP, Nash GB, Rainger GE. Cellular pathology of atherosclerosis: smooth muscle cells promote adhesion of platelets to cocultured endothelial cells. Circ Res. 2006;98:98–104.PubMedGoogle Scholar
  43. 43.
    Verrotti A, Greco R, Basciani F, Morgese G, Chiarelli F. von Willebrand factor and its propeptide in children with diabetes. Relation between endothelial dysfunction and microalbuminuria. Pediatr Res. 2003;53:382–6.PubMedGoogle Scholar
  44. 44.
    Economides PA, Caselli A, Zuo CS, Khaodhiar L, Sparks C, Katsilambros N, Horton ES, Veves A. Kidney oxygenation during water diuresis and endothelial function in patients with type 2 diabetes and subjects at risk to develop diabetes. Metabolism 2004;53:222–7.PubMedGoogle Scholar
  45. 45.
    Lim SC, Caballero AE, Smakowski P, LoGerfo FW, Horton ES, Veves A. Soluble intercellular adhesion molecule, vascular cell adhesion molecule, and impaired microvascular reactivity are early markers of vasculopathy in type 2 diabetic individuals without microalbuminuria. Diabetes Care. 1999;22(11):1865–70.PubMedGoogle Scholar
  46. 46.
    Elliott HL. Endothelial dysfunction in cardiovascular disease: risk factor, risk marker, or surrogate end point? J Cardiovasc Pharmacol. 1998;32(Suppl. 3):S74–7.PubMedGoogle Scholar
  47. 47.
    Feener EP, King GL. Endothelial dysfunction in diabetes mellitus: role in cardiovascular disease. Heart Fail Monit. 2001;1(3):74–82.PubMedGoogle Scholar
  48. 48.
    Sherman DL, Loscalzo J. Endothelial dysfunction and cardiovascular disease. Cardiologia 1997;42(2):177–87.PubMedGoogle Scholar
  49. 49.
    Pittilo MR. Cigarette smoking, endothelial injury and cardiovascular disease. Int J Exp Pathol. 2000;81(4):219–30.Google Scholar
  50. 50.
    Doupis J, Tentolouris N, Perrea D, Zacharopoulou O, Kyriaki D, Katsilambros N. Acute methionine-induced hyperhomocysteinaemia causes endothelial dysfunction in patients with type 2 diabetes. Diabetes 2003;52(Suppl. 1):A153–4.Google Scholar
  51. 51.
    Van Ittersum FJ, Spek JJ, Praet IJ . Ambulatory blood pressures and autonomic nervous function in normoalbuminuric type I diabetic patients. Nephrol Dial Transplant. 1998;13:326–32.PubMedGoogle Scholar
  52. 52.
    Schalkwijk CG, Poland, DC, van Dijk W . Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia 1999;42: 351–7.PubMedGoogle Scholar
  53. 53.
    Wetzels, JF. Transcapillary escape rate of albumin is increased and related to haemodynamic changes in normo-albuminuric type 1 diabetic patients. J. Hypertens. 1999;17:1911–6.PubMedGoogle Scholar
  54. 54.
    Cosentino F, Luscher TF. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 1998;32(Suppl. 3):S54–61.PubMedGoogle Scholar
  55. 55.
    De Mattia G, Bravi MC, Laurenti O, Cassone-Faldetta M, Proietti A, De Luca O, Armiento A, Ferri C. Reduction of oxidative stress by oral N-acetyl-l-cysteine treatment decreases plasma soluble vascular cell adhesion molecule-1 concentrations in nonobese, non-dyslipidaemic, normotensive patients with non-insulin-dependent diabetes. Diabetologia 1998;41:1392–6.PubMedGoogle Scholar
  56. 56.
    Gazis A, White DJ, Page SR, Cockcroft JR. Effect of oral vitamin E (a-tocopherol) supplementation on vascular endothelial function in type 2 diabetes mellitus. Diabet Med. 1999;16:304–11.PubMedGoogle Scholar
  57. 57.
    Bloomgarden ZT. Endothelial dysfunction, neuropathy and the diabetic foot, diabetic mastopathy, and erectile dysfunction. Diabetes Care 1998;21:183–9.PubMedGoogle Scholar
  58. 58.
    Hsueh WA, Anderson PW. Hypertension, the endothelial cell, and the vascular complications of diabetes mellitus [clinical conference]. Hypertension 1992;20:253–63.PubMedGoogle Scholar
  59. 59.
    Janka HU. Platelet and endothelial function tests during metformin treatment in diabetes mellitus. Horm Metab Res. 1985;(Suppl. 15):120–122.59. Janka HU. Platelet and endothelial function tests during metformin treatment in diabetes mellitus. Horm Metab Res. 1985;(Suppl. 15):120–122.Google Scholar
  60. 60.
    Neri S, Bruno CM, Leotta C, D'Amico RA, Pennisi G, Ierna D. Early endothelial alterations in non-insulin-dependent diabetes mellitus. Int J Clin Lab Res. 1998;28:100–3.PubMedGoogle Scholar
  61. 61.
    Watts GF, Playford DA. Dyslipoproteinaemia and hyperoxidative stress in the pathogenesis of endothelial dysfunction in non-insulin dependent diabetes mellitus: a hypothesis. Atherosclerosis 1998;141:17–30.PubMedGoogle Scholar
  62. 62.
    Escandon JC, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr Rev. 2001;22(1):36–52.Google Scholar
  63. 63.
    Ridker PM, Cushman M, Stampfer MJ, Tracy R, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.PubMedGoogle Scholar
  64. 64.
    Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, King GL, LoGerfo FW, Horton ES, Veves A. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 1999;48(9):1856–62.PubMedGoogle Scholar
  65. 65.
    Goldfine AB, Beckman JA, Betensky RA, Devlin H, Hurley S, Varo N, Schonbeck U, Patti ME, Creager MA. Family history of diabetes is a major determinant of endothelial function. J Am Coll Cardiol. 2006;47(12):2456–61.PubMedGoogle Scholar
  66. 66.
    Ridker PM, Glynn RJ, Hennekens CH. C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998;97:2007–11.PubMedGoogle Scholar
  67. 67.
    Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 1998;97:425–8.PubMedGoogle Scholar
  68. 68.
    Ridker PM, Buring JE, Shih J, Matia M, Hennekens CH. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 1998;98:731–3.PubMedGoogle Scholar
  69. 69.
    MRFIT Research Group. Relationship of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Am J Epidemiol. 1996;144:537–47.Google Scholar
  70. 70.
    Tracy RP, Lemaitre RN, Psaty BM, . Relationship of C-reactive protein to risk of cardiovascular disease in the elderly: results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler Thromb Vasc Biol. 1997;17:1121–7.PubMedGoogle Scholar
  71. 71.
    Liuzzo G, Biasucci LM, Gallimore JR, . The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N Engl J Med. 1994;331:417–24.PubMedGoogle Scholar
  72. 72.
    Thompson SG, . European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. N Engl J Med. 1995;332:635–41.PubMedGoogle Scholar
  73. 73.
    European Concerted Action on Thrombosis, and Disabilities Angina Pectoris Study Group. Production of C-reactive protein and risk of coronary events in stable and unstable angina. Lancet 1997;349:462–6.Google Scholar
  74. 74.
    Ridker PM, Rifai N, Pfeffer MA, . Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation 1998;98:839–44.PubMedGoogle Scholar
  75. 75.
    Ridker PM, Rifai N, Rose MA, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557–65.PubMedGoogle Scholar
  76. 76.
    Pischon T, Girman CJ, Hotamisligil GS, . Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004;291:1730–7.PubMedGoogle Scholar
  77. 77.
    Hotta K, Funahashi T, Arita Y, . Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000;20:1595–9.PubMedGoogle Scholar
  78. 78.
    Kumada M, Kihara S, Sumitsuji S, . Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol. 2003;23:85–9.PubMedGoogle Scholar
  79. 79.
    Kojima S, Funahashi T, Sakamoto T, . The variation of plasma concentrations of a novel, adipocyte derived protein, adiponectin, in patients with acute myocardial infarction. Heart 2003;89:667.PubMedGoogle Scholar
  80. 80.
    Kowalski J, Okopien B, Madej A, . Levels of sICAM-1, sVCAM-1 and MCP-1 in patients with hyperlipoproteinemia IIa and -IIb. Int J Clin Pharmacol Ther. 2001;39:48–52.PubMedGoogle Scholar
  81. 81.
    Matsumori A, Furukawa Y, Hashimoto T, . Plasma levels of the monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction. J Mol Cell Cardiol. 1997;29:419–23.PubMedGoogle Scholar
  82. 82.
    Schonbeck U, Varo N, Libby P, Buring J, Ridker PM. Soluble CD40L and cardiovascular risk in women. Circulation 2001;104:2266–8.PubMedGoogle Scholar
  83. 83.
    Kinlay S, Schwartz GG, Olsson AG, . Effect of atorvastatin on risk of recurrent cardiovascular events after an acute coronary syndrome associated with high soluble CD40 ligand in the Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study. Circulation 2004;110:386–91.PubMedGoogle Scholar
  84. 84.
    Caslake MJ, Packard CJ, Suckling KE, . Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase: a potential new risk factor for coronary artery disease. Atherosclerosis 2000;150:413–9.PubMedGoogle Scholar
  85. 85.
    Packard CJ, . West of Scotland Coronary Prevention Study Group. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. N Engl J Med. 2000;343:1148–55.PubMedGoogle Scholar
  86. 86.
    Blake GJ, Dada N, Fox JC, Manson JE, Ridker PM. A prospective evaluation of lipoproteinassociated phospholipase A2 levels and the risk of future cardiovascular events in women. J Am Coll Cardiol. 2001;38:1302–6.PubMedGoogle Scholar
  87. 87.
    Ballantyne CM, Hoogeveen RC, Bang H, . Lipoprotein associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2004;109:837–42.PubMedGoogle Scholar
  88. 88.
    Ballantyne CM, Nambi V. Markers of inflammation and their clinical significance. Atherosclerosis 2005;6:21–9.PubMedGoogle Scholar
  89. 89.
    Francisco G, Hernandez C, Simo R. Serum markers of vascular inflammation in dyslipemia. Clin Chim Acta. 2006;369(1):1–16.PubMedGoogle Scholar
  90. 90.
    Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995;92:3893–7.PubMedGoogle Scholar
  91. 91.
    Li D, Liu L, Chen H, Sawamura T, Mehta JL. LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23:816–21.PubMedGoogle Scholar
  92. 92.
    Yasojima K, Shwab C, McGeer EG, McGeer PL. Generation of C-reactive protein and complement components in atheroscleroticplaques. Am J Pathol. 2001;158:1039–51.PubMedGoogle Scholar
  93. 93.
    Albert MA. The role of C-reactive protein in cardiovascular disease risk. Curr Cardiol Rep. 2000;2(4):274–9.PubMedGoogle Scholar
  94. 94.
    Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14719 initially healthy American women. Circulation 2003;107:391–7.PubMedGoogle Scholar
  95. 95.
    Rutter MK, Meigs JB, Sullivan LM, D'Agostino Sr RB, Wilson PW. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 2004;110:380–5.PubMedGoogle Scholar
  96. 96.
    Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, Dhillon B, Weisel RD, Li RK, Mickle DA, Stewart DJ. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002;106(8):913–9.PubMedGoogle Scholar
  97. 97.
    Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 2004;109(17):2058–67.PubMedGoogle Scholar
  98. 98.
    Verma S. C-reactive protein incites atherosclerosis. Can J Cardiol. 2004;20(Suppl. B):29B–31B.PubMedGoogle Scholar
  99. 99.
    Manolov DE, Koenig W, Hombach V, Torzewski J. C-reactive protein and atherosclerosis. Is there a causal link? Histol Histopathol. 2003;18(4):1189–93.Google Scholar
  100. 100.
    Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, Waltenberger J, Koenig W, Schmitz G, Hombach V, Torzewski J. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol. 2000;20(9):2094–9.PubMedGoogle Scholar
  101. 101.
    Ferroni P, Basili S, Vieri M, . Soluble P-selectin and proinflammatory cytokines in patients with polygenic type IIa hypercholesterolemia. Haemostasis 1999;29:277–85.PubMedGoogle Scholar
  102. 102.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.PubMedGoogle Scholar
  103. 103.
    Harris TB, Ferrucci L, Tracy RP, . Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106:506–12.PubMedGoogle Scholar
  104. 104.
    Verma S, Szmitko PE, Wang CH, Li SH, Weisel RD,De Almeida JR, Todd J. New markers of inflammation and endothelial cell activation: part I. Circulation 2003;108;1917–23.PubMedGoogle Scholar
  105. 105.
    De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol. 2006;80:219–27.PubMedGoogle Scholar
  106. 106.
    Arita Y, Kihara S, Ouchi N, . Paradoxical decrease of an adiposespecific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.PubMedGoogle Scholar
  107. 107.
    Hotta K, Funahashi T, Arita Y, . Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.PubMedGoogle Scholar
  108. 108.
    Buras J, Reenstra WR, Orlow D, Horton ES, Veves A. Changes in adiponectin levels related to treatment with troglitazone do not affect endothelial function in type 2 diabetes. Obes Res. 2005;13:1167–74.PubMedGoogle Scholar
  109. 109.
    Shetty GK, Economides PA, Horton ES, Mantzoros CS, Veves A. Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 2004;27:2450–7.PubMedGoogle Scholar
  110. 110.
    Green DJ, Maiorana A, O'Driscoll G, Taylor R. Effect or exercise training on endothelium-derived nitric oxide function in humans J Physiol. 2004;561(Pt. 1):1–25.PubMedGoogle Scholar
  111. 111.
    Green DJ, Fowler DT, O' Driscoll JG, Blanksby BA, Taylor RR. Endothelium derived notric oxide activity in forearm vessels of tennis players. J Appl Physiol. 1996;81:943–8.PubMedGoogle Scholar
  112. 112.
    Green DJ, O' Driscoll, Blanksby BA, Taylor RR. Effects of casting on forearm resistance vessels in young men. Med Sci Sports Exerc. 1997;29:1325–31.PubMedGoogle Scholar
  113. 113.
    Green DJ, Cable NT, Fox C, Rankin JM, Taylor RR. Modification of forearm resistance vessels by exercise. J Appl Physiol. 2004;77:1929–33.Google Scholar
  114. 114.
    Kingwell BA, Sherrard B, Jennings GL, Dart AM. Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol. 1997;272:H1070–7.PubMedGoogle Scholar
  115. 115.
    Clarkson P, Montgomery HE, Mullen MJ, Donald AE, Powe AJ, Bull T, Jubb M, World M, Deanfield JE. Exercise training enhances endothelial function in young men. J Am Coll Cardiol. 1999;33:1379–85.PubMedGoogle Scholar
  116. 116.
    Maiorana A, O'Driscoll G, Dembo L, Cheetham C, Goodman C, Taylor R, Green D. Exercise training, vascular function and functional capacity in middle aged subjects. Med Sci Sports Exerc. 2001;33:2022–8.PubMedGoogle Scholar
  117. 117.
    Castelli WP. Epidemiology of coronary heart disease: the Framingham study. Am J Med 1984;76:4–12.PubMedGoogle Scholar
  118. 118.
    Paffenbarger RS, Hyde RT, Wing AL, . The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med. 1993;328:538–45.PubMedGoogle Scholar
  119. 119.
    Blair SN, Goodyear NN, Gibbons LW, Cooper, KH. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA 1984;252:487–90.PubMedGoogle Scholar
  120. 120.
    Maiorana A, O'Driscoll G, Dembo L, Cheetham C, Goodman C, Taylor R, Green D. Effect of aerobic and resistance exercise training on vascular function in heart failure. Am J Physiol. 2000;279:H1999–2005.Google Scholar
  121. 121.
    Linke A, Schoene N, Gielen S, Hofer J, Erbs S, Schuler G, Hambrecht R. Endothelial dysfunction in patients with chronic heart failure: systemic effect of lower limb exercise training. J Am Coll Cardiol. 2001;37:392–7.PubMedGoogle Scholar
  122. 122.
    Cohen ND, Dunstan DW, Robinson C, Vulikh E, Zimmet PZ, Shaw JE. Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res Clin Pract. 2008;79(3):405–11.PubMedGoogle Scholar
  123. 123.
    Horning B, Maier V, Dreler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation 1996;93:210–4.Google Scholar
  124. 124.
    Katz SD, Yuen J, Bijou R, Lejemtel TH. Training improves endothelium dependent vasodilation in resistance vessels of patients with heart failure. J Appl Physiol. 1997;82:1488–92.PubMedGoogle Scholar
  125. 125.
    Hambrecht R, Hilbrich L Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G. Corrections of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral l-arginine supplementation. J Am Coll Cardiol. 2000;35:706–13.PubMedGoogle Scholar
  126. 126.
    Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamman C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998;98:2709–15.PubMedGoogle Scholar
  127. 127.
    Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G. Effect of exercise on coronary endothelial function in patients with coronary heart disease. N Eng J Med. 2000;342:454–60.Google Scholar
  128. 128.
    Hambrecht R, Adams V, Erbs S, Linke a Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 2003;107:3152–8.PubMedGoogle Scholar
  129. 129.
    Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, Kajiyama G, Oshima T. Regular aerobic exercise augments endothelium dependent vascular relaxation in normotensive as well as hypertensive subjects. Circulation 1999;30:252–8.Google Scholar
  130. 130.
    Higashi Y, Yoshizumi M. Exersise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharm Ther. 2004;102:87–96.Google Scholar
  131. 131.
    Geffken DF, Cushman M, Burke GL, Polak JF, Sakkinen PA, Tracy RP. Association between physical activity and markers of inflammation in a healthy elderly population. Am J Epidemiol. 2001;153:242–50.PubMedGoogle Scholar
  132. 132.
    Abramson JL, Vaccarino V. Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med. 2002;162:1286–92.PubMedGoogle Scholar
  133. 133.
    Wannamethee SG, Lowe GD, Whincup PH, Rumley A, Walker M, Lennon L. Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 2002;105:1785–90.PubMedGoogle Scholar
  134. 134.
    Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of ischemic heart disease. JAMA 1999;281:1722.PubMedGoogle Scholar
  135. 135.
    Das UN. Free radicals, cytokines, and nitric oxide in cardiac failure and myocardial infarction. Mol Cell Biochem. 2000;215:145.PubMedGoogle Scholar
  136. 136.
    Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17:953.PubMedGoogle Scholar
  137. 137.
    Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16:1335–47.PubMedGoogle Scholar
  138. 138.
    Woods JA, Vieira VJ, Keylock KT. Exercise, inflammation, and innate immunity. Neurol Clin. 2006;24:585–99.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John Doupis
    • 1
  • Jordan C. Schramm
  • Aristidis Veves
  1. 1.Department of Clinical ResearchJoslin Diabetes Center, Harvard Medical SchoolBostonUSA

Personalised recommendations