The Epidemic of Type 2 Diabetes Mellitus: Its Links to Obesity, Insulin Resistance, and Lipotoxicity

  • Kenneth Cusi
Chapter
Part of the Contemporary Diabetes book series (CDI)

Abstract

The epidemic of type 2 diabetes (T2DM) is a public health problem that threatens to spiral out of control in the twenty-first century. Early intervention can greatly mitigate the serious socioeconomic impact of the disease, driven largely by disabling microvascular complications and cardiovascular disease. Obesity is at the core of the epidemic of T2DM, affecting 2/3 of adults and reaching alarming rates in children in modern society. Our understanding of adipose tissue has evolved drastically in the past decade being now viewed as a dynamic ‘endocrine organ’ responsible for the development or worsening of insulin resistance and ‘lipotoxicity’ in obese individuals. ‘Lipotoxicity’ describes the damage that occurs when chronic energy supply exceeds metabolic needs and lipid accumulates in tissues that would not normally store large amounts of lipid. In this setting, lipid is redirected into harmful pathways of nonoxidative metabolism, with accumulation of toxic metabolites that activate inflammatory pathways and eventually lead to apoptosis. It affects organs responsible for maintaining normal energy homeostasis, such as the liver, skeletal muscle, and pancreatic beta-cells, but also the vascular bed. The ability of fatty acids to disrupt insulin signaling and how the mitochondria adapts to chronic lipid overload are essential steps in understanding FFA-induced insulin resistance and lipotoxicity across different tissues. Interventions that may prevent lipotoxicity in different target tissues, but in particularpancreatic beta-cell lipotoxicity, such as exercise, weight loss, and/or pharmacological therapies such as thiazolidinediones, hold the key to prevent diabetes in subjects genetically predisposed to T2DM and tackle the looming epidemic of the coming century.

Keywords

Type 2 diabetes mellitus Obesity Insulin resistance Lipotoxicity Free fatty acids β-cell function Fatty liver 

References

  1. 1.
    Boyle J, Honeycutt A, Narayan K, Hoerger T, Geiss L, Chen H, Thompson T: Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care 24:1936–1940, 2001PubMedGoogle Scholar
  2. 2.
    Harris M, Klein R, Welborn TA et al.: Onset of NIDDM occurs at least 4–7 years before clinical diagnosis. Diabetes Care 15:815–819, 1992PubMedGoogle Scholar
  3. 3.
    Turner R, Cull C, Holman R: United Kingdom Prospective Diabetes Study 17: the effect of improved metabolic control on complications of NIDDM. Ann Intern Med 124:136–145, 1996PubMedGoogle Scholar
  4. 4.
    Cusi K: Cardiovascular risk management in type 2 diabetes: from clinical trials to clinical practice. The Endocrinologist 11:474–490, 2001Google Scholar
  5. 5.
    Hu F, Stampfer M, Haffner S, et al.: Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care 25:1129–1134, 2002PubMedGoogle Scholar
  6. 6.
    Stamler J, Vaccaro O, Neaton J, et al.: Diabetes, other risk factors, and the 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16:434–444, 1993PubMedGoogle Scholar
  7. 7.
    Miettinen H, Lehto S, Salomaa V, et al.: Impact of diabetes on mortality after the first myocardial infarction. Diabetes Care 21:69–75, 1998PubMedGoogle Scholar
  8. 8.
    Tandl E, Schnell O: A new look at the heart in diabetes mellitus: from ailing to failing. Diabetologia 43:1455–1469, 2000Google Scholar
  9. 9.
    Elezi S, Kastrati A, Pache J, et al.: Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement. J Am Coll Cardiol 32:1866–1873, 1998PubMedGoogle Scholar
  10. 10.
    Gu K, Cowie C, Harris M: Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diabetes Care 21:1138–1145, 1998PubMedGoogle Scholar
  11. 11.
    Ford E, Ajani U, Croft J, et al.: Explaining the decrease in U.S, deaths from coronary artery disease. N Engl J Med 356:2388–2398, 2007PubMedGoogle Scholar
  12. 12.
    Fox C, Coady S, Sorlie P, Levy D, Meigs J, D'Agostino RS, Wilson P, Savage P: Trends in cardiovascular complications of diabetes. JAMA 292:2495–2499, 2004PubMedGoogle Scholar
  13. 13.
    Fang J, Alderman M: Impact of the increasing burden of diabetes on acute myocardial infarction in New York city: 1999–2000. Diabetes 55:768–773, 2006PubMedGoogle Scholar
  14. 14.
    Kuller L, Lewis H: Ethnic differences in atherposclerosis, cardiovascular disease and lipid metabolism. Curr Opin Lipidol 15:109–113, 2004PubMedGoogle Scholar
  15. 15.
    Wild S, Roglic G, Green A, Sicree R, King H: Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053, 2004PubMedGoogle Scholar
  16. 16.
    International Diabetes Federation: Diabetes atlas (2nd edition). International Diabetes Federation, Brussels, 2003Google Scholar
  17. 17.
    Yach D, Stuckler S, Brownell D: Epidemiological and economic consequences of the global epidemics of obesity and diabetes. Nat Med 12:62–66, 2006PubMedGoogle Scholar
  18. 18.
    Wild SH, Forouhi NG: What is the scale of the future diabetes epidemic, and how certain are we about it? Diabetologia 50:903–905, 2007PubMedGoogle Scholar
  19. 19.
    King H, Aubert R, Herman W: Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431, 1998PubMedGoogle Scholar
  20. 20.
    Narayan K, Boyle J, Geiss L, et al.: Impact of recent increase in incidence on future diabetes burden. Diabetes Care 29:2114–2116, 2006PubMedGoogle Scholar
  21. 21.
    Mainous A, Baker R, Koopman R, Saxena S, Diaz V, Everett C, Majeed A: Impact of the population at risk of diabetes on projections of diabetes burden in the United States: an epidemic on the way. Diabetologia 50:934–940, 2007PubMedGoogle Scholar
  22. 22.
    Gillies C, Abrams K, Lambert P, et al.: Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334:299, 2007Google Scholar
  23. 23.
    Nathan D, Davidson M, DeFronzo R, Heine R, Henry R, Pratley R, Zinman B: Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30:753–759, 2007PubMedGoogle Scholar
  24. 24.
    Tuomilehto J: Counterpoint: evidence-based prevention of type 2 diabetes: the power of lifestyle management. Diabetes Care 30:435–438, 2007PubMedGoogle Scholar
  25. 25.
    Alberti K, Zimmet P, Shaw J: International Diabetes Federation: a consensus on type 2 diabetes prevention. Diabet Med 24:451–463, 2007PubMedGoogle Scholar
  26. 26.
    Pi-Sunyer F: How effective are lifestyle changes in the prevention of type 2 diabetes mellitus? Nutr Rev 65:101–110, 2007PubMedGoogle Scholar
  27. 27.
    Hellman R, Regan J, Rosen H: Effect of intensive treatment of diabetes on the risk of death or renal failure in NIDDM and IDDM. Diabetes Care 20:258–264, 1997PubMedGoogle Scholar
  28. 28.
    Gaede P, Vedel P, Larsen N, Jensen GVH, Parving H-H, Pedersen O: Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348:383–393, 2003PubMedGoogle Scholar
  29. 29.
    National Heart Lung and Blood Institute: Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The Evidence Report. National Intitutes of Health. Obes Res 6 (Suppl. 2):51S–209S, 1998Google Scholar
  30. 30.
    Gallagher D, Visser M, Sepulveda D, et al.: How useful is body mass index for comparison of body fatness accross age, sex, and ethnic groups? Am J Epidemiol 143:228–239, 1996PubMedGoogle Scholar
  31. 31.
    Deurenberg P, Yap M, van Staveren W: Body mass index and percent body fat: meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22:1164–1171, 1998PubMedGoogle Scholar
  32. 32.
    Bray G: Obesity: the disease. J Med Chem 49:4001–4007, 2006PubMedGoogle Scholar
  33. 33.
    Hamilton M, Hamilton D, Zderic T: Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 45:2655–2667, 2007Google Scholar
  34. 34.
    Jeffrey R, Harnack L: Evidence implicating eating as a primary driver for the obesity epidemic. Diabetes 56:2673–2676, 2007Google Scholar
  35. 35.
    Wyatt SB, Winters KP, Dubbert PM: Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Am J Med Sci 331:166–174, 2006PubMedGoogle Scholar
  36. 36.
    Runge C: Economic consequences of the obese. Diabetes 56:2668–2672, 2007PubMedGoogle Scholar
  37. 37.
    Christakis N, Fowler J: The spread of obesity in a large social network over 32 years. N Engl J Med 357:370–379, 2007PubMedGoogle Scholar
  38. 38.
    Peeters A, Barendregt J, Willekens F, et al.: Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med 138:1138–1145, 2003Google Scholar
  39. 39.
    van Dam RM, Willett WC, Manson JE, Hu FB: The relationship between overweight in adolescence and premature death in women. Ann Intern Med 145:91–97, 2006PubMedGoogle Scholar
  40. 40.
    Abbasi F, Brown B, Lamendola C, McLaughlin T, Reaven G: Relationship between obesity, insulin sensitivity and coronary artery disease risk. J Am Coll Cardiol 40:37–43, 2002Google Scholar
  41. 41.
    National Institutes of Health Consensus Development Conference Statement: health implications of obesity. Ann Intern Med 103:1073–1077, 1985Google Scholar
  42. 42.
    Pi-Sunyer F: Medical hazards of obesity. Ann Intern Med 119:655–660, 1993PubMedGoogle Scholar
  43. 43.
    Poirier P, Giles T, Bray G, Hong Y, Stern J: Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 26:968–976, 2006PubMedGoogle Scholar
  44. 44.
    Bray G, Bellanger T: Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 29:109–117, 2006PubMedGoogle Scholar
  45. 45.
    Gunnell D, Frankel S, Nanchahal K, Peters T, Davey Smith G: Childhood obesity and adult cardiovascular mortality. Am J Clin Nutr 67:1111–1118, 1998PubMedGoogle Scholar
  46. 46.
    World Health Organization: Obesity. Preventing and managing the global epidemic. Report of WHO consultation on obesity. World Health Organization, 1997Google Scholar
  47. 47.
    Flegal K, Graubard B, Williamson D, Gail M: Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298:2028–2037, 2007PubMedGoogle Scholar
  48. 48.
    Olshansky S, Passaro D, Hershow R, et al.: A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 352:1138–1145, 2005PubMedGoogle Scholar
  49. 49.
    Ford E: Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28:1769–1778, 2005PubMedGoogle Scholar
  50. 50.
    Alley D, Chang V: The changing relationship of obesity and disability. JAMA 298:2020–2027, 2007PubMedGoogle Scholar
  51. 51.
    Sui X, LaMonte MJ, Laditka JN, Hardin JW, Chase N, Hooker SP, Blair SN: Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA 298:2507–2516, 2007PubMedGoogle Scholar
  52. 52.
    Mokdad A, Marks J, Stroup D, Gerberding J: Actual causes of death in the United States, 2000. JAMA 291:1238–1245, 2004PubMedGoogle Scholar
  53. 53.
    Baker J, Olsen L, Sorensen T: Childhood body-mass index and the risk of coronary heart disease in adulthood. N Engl J Med 357:2329–2337, 2007PubMedGoogle Scholar
  54. 54.
    Okoro C, Denny C, McGuire L, Balluz L, Goins R, Mokdad A: Disability among older American Indians and Alaska natives: disparities in prevalence, health-risk behaviors, obesity, and chronic conditions. Ethn Dis 17:686–692, 2007PubMedGoogle Scholar
  55. 55.
    Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R, Buzzigoli E, Sironi AM, Cersosimo E, Ferrannini E, DeFronzo RA: Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 133:496–506, 2007PubMedGoogle Scholar
  56. 56.
    Jensen M, Haymond M, Rizza R, Cryer P, Miles J: Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83:1168–1172, 1989PubMedGoogle Scholar
  57. 57.
    Despres J: Cardiovascular disease under the influence of excess visceral fat. Crit Pathways Cardiol 6:51–59, 2007Google Scholar
  58. 58.
    Cassano P, Rosner B, Vokonas P, Weiss S: Obesity and body fat distribution in relation to the incidence of non-insulin-dependent diabetes mellitus. Am J Epidemiol 136:1474–1486, 1992PubMedGoogle Scholar
  59. 59.
    Charles M, Eschwege E, Thibult N, Claude J-R, Warnet J-M, Rosselin G, Girard J, Balkau B: The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40:1101–1106, 1997PubMedGoogle Scholar
  60. 60.
    Ostman J, Arner P, Engfeldt P, Kager L: Regional differences in the control of lipolysis in human adipose tissue. Metabolism 29:1198–1205, 1979Google Scholar
  61. 61.
    Klein S: The case of visceral fat: argument for the defense. J Clin Invest 113:1530–1532, 2004PubMedGoogle Scholar
  62. 62.
    Miles J, Jensen M: Visceral adiposity is not causally related to insulin resistance. Diabetes Care 28:2326–2327, 2005PubMedGoogle Scholar
  63. 63.
    Ferrannini E, Balkau B, Coppack S, Dekker J, Mari A, Nolan J, Walker M, Natali A, Beck-Nielsen H, and the RISC Investigators: Insulin resistance, insulin response, and obesity as indicators of metabolic risk. J Clin Endocrinol Metab 92:2885–2892, 2007PubMedGoogle Scholar
  64. 64.
    Belfort R, Harrison SA, Brown K, Darland C, Finch J, Balas B, Gastaldelli A, Tio F, Hardies J, Pulcini J, Berria R, Ma J, Dwivedi S, Havranek R, Fincke C, DeFronzo R, Bannayan G, Schenker S, Cusi K: A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355:2297–2307, 2006PubMedGoogle Scholar
  65. 65.
    Nielsen S, Guo Z, Johnson C, Hensrud D, Jensen M: Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588, 2004PubMedGoogle Scholar
  66. 66.
    Shoelson S, Lee J, Goldfine A: Inflammation and insulin resistance. J Clin Invest 116:1793–1801, 2006PubMedGoogle Scholar
  67. 67.
    Fontana L, Eagon J, Trujillo M, Scherer P, Klein S: Visceral fat adipokine secretion is associatd with systemic inflammation in obese humans. Diabetes 56:1010–1013, 2007PubMedGoogle Scholar
  68. 68.
    Reaven G: Role of insulin resistance in human disease. Diabetes 37:1595–1607, 1988PubMedGoogle Scholar
  69. 69.
    DeFronzo RA, Ferrannini E: Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194, 1991PubMedGoogle Scholar
  70. 70.
    Ingelsson E, Sullivan LM, Murabito JM, Fox CS, Benjamin EJ, Polak JF, Meigs JB, Keyes MJ, O'Donnell CJ, Wang TJ, D'Agostino RB, Sr., Wolf PA, Vasan RS: Prevalence and prognostic impact of subclinical cardiovascular disease in individuals with the metabolic syndrome and diabetes. Diabetes 56:db07–0078, 2007Google Scholar
  71. 71.
    Hunt K, Williams K, Hazuda H, Stern M, Haffner S: The metabolic syndrome and the impact of diabetes on coronary heart disease mortality in women and men: the San Antonio Heart Study. Ann Epidemiol. 2007 July 26; [Epub ahead of print], 2007Google Scholar
  72. 72.
    Skilton MR: A comparison of the NCEP-ATPIII, IDF and AHA/NHLBI metabolic syndrome definitions with relation to early carotid atherosclerosis in subjects with hypercholesterolemia or at risk of CVD: evidence for sex-specific differences. Atherosclerosis 190:416–422, 2007PubMedGoogle Scholar
  73. 73.
    Wilson P, D'Agostino R, Parise H, Sullivan L, Meigs J: The metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112:3066–3072, 2005PubMedGoogle Scholar
  74. 74.
    Resnick H, Jones K, Ruotolo G, Jain A, Henderson J, Lu W, Howard B, Study SH: Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic american indians: the Strong Heart Study. Diabetes Care 26:861–867, 2003PubMedGoogle Scholar
  75. 75.
    Klein B, Klein R, Lee K: Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam. Diabetes Care 25:1790–1794, 2002PubMedGoogle Scholar
  76. 76.
    Stern M, Williams K, González-Villalpando C, Hunt K, Haffner S: Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 27:2676–2681, 2004PubMedGoogle Scholar
  77. 77.
    Haffner SM: Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity 14:121S–127S, 2006PubMedGoogle Scholar
  78. 78.
    Lakka H-M, Laaksonen D, Lakka T, Niskanen L, Kumpusalo E, Tuomilehto J, Salonen J: The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716, 2002PubMedGoogle Scholar
  79. 79.
    Kahn R, Buse J, Ferrannini E, Stern M: The metabolic syndrome: time for a critical appraisal. Diabetes Care 28:2289–2304, 2005PubMedGoogle Scholar
  80. 80.
    Eckel R, Grundy S, Zimmet P: The metabolic syndrome. The Lancet 365:1415–1428, 2005Google Scholar
  81. 81.
    Grundy S: Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 47:1093–1100, 2006PubMedGoogle Scholar
  82. 82.
    DeFronzo RA: Pathogenesis of type 2 diabetes: metabolic and molecular implications of identifying diabetes genes. Diabetes Rev 5:177–269, 1997Google Scholar
  83. 83.
    Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R: Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111:1448–1454, 2005PubMedGoogle Scholar
  84. 84.
    Meigs J: Metabolic syndrome and risk for type 2 diabetes. Expert Rev Endocrin Metab 1:57–66, 2006Google Scholar
  85. 85.
    Rashid S, Watanabe T, Sakaue T, Lewis G: Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem 36:421–429, 2003PubMedGoogle Scholar
  86. 86.
    Ginsberg H, Zhang Y-L, Hernandez-Ono A: Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 36:232–240, 2005PubMedGoogle Scholar
  87. 87.
    Laaksonen D, Lakka H, Niskanen L, Kaplan G, Salonen J, Lakka T: Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 156:1070–1077, 2002PubMedGoogle Scholar
  88. 88.
    Lorenzo C, Okoloise M, Williams K, Stern M, Haffner S, Study SAH: The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care 26:3153–3159, 2003PubMedGoogle Scholar
  89. 89.
    Stern M, Williams K, Haffner S: Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med 136:575–581, 2002PubMedGoogle Scholar
  90. 90.
    Schmidt M, Duncan B, Bang H, Pankow J, Ballantyne C, Golden S, Folsom A, Chambless L, the Atherosclerosis Risk in Communities Investigators: Identifying individuals at high risk for diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care 28:2013–2018, 2005PubMedGoogle Scholar
  91. 91.
    Abdul-Ghani M, Williams K, DeFronzo R, Stern M: What is the best predictor of future type 2 diabetes? Diabetes Care 30:1544–1548, 2007PubMedGoogle Scholar
  92. 92.
    Wilson P, Meigs J, Sullivan L, Fox C, Nathan D, D'Agostino R: Prediction of incident diabetes mellitus in middle-aged adults. The Framingham Offspring Study. Arch Intern Med 167:1068–1074, 2007PubMedGoogle Scholar
  93. 93.
    Lazarus R, Baur L, Webb K, Blyth F: Body mass index in screening for adiposity in children and adolescents: systematic evalaution using receiver operating characteristic curves. Am J Clin Nutr 63:183–193, 1996Google Scholar
  94. 94.
    Schwimmer JB: Influence of gender, race, and ethnicity on suspected fatty liver in obese adolescents. Pediatrics 115:e561–e565, 2005PubMedGoogle Scholar
  95. 95.
    Westwood M, Fayter D, Hartley S, Rithalia A, Butler G, Glasziou P, Bland M, Nixon J, Stirk L, Rudolf M: Childhood obesity: should primary school children be routinely screened? A systematic review and discussion of the evidence. Arch Dis Child 92:416–422, 2007PubMedGoogle Scholar
  96. 96.
    Li C, Ford E, Mokdad A, Cook S: Recent trends in waist circumference and waist-height ratio among US children and adolescents. Pediatrics 118:1390–1398, 2006Google Scholar
  97. 97.
    Zimmet P, Alberti K, Kaufman F, Tajima N, Silink M, Arslanian S, Wong G, Bennett P, Shaw J, Caprio S, Group, ftIC: The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes 8:299–306, 2007PubMedGoogle Scholar
  98. 98.
    Mokdad A, Ford E, Bowman B, Dietz W, Vinicor F, Bales V, Marks J: Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289:76–79, 2003PubMedGoogle Scholar
  99. 99.
    Caprio S, Genel M: Confronting the epidemic of childhood obesity. Pediatrics 115:494–495, 2005PubMedGoogle Scholar
  100. 100.
    Hellman R: Pediatric obesity: are we ready to pay the piper? Rev Endocrinol July/August:47–48, 2007Google Scholar
  101. 101.
    Butte N, Comuzzie A, Cole S, Mehta N, Cai G, Tejero M, Bastarrachea R, Smith E: Quantative genetic analysis of the metabolic syndrome in Hispanic children. Pediatr Res 58: 1243–50, 2005Google Scholar
  102. 102.
    Targher G: Increased prevalence of cardiovascular disease in type 2 diabetic patients with non-alcoholic fatty liver disease. Diabet Med 23:403–409, 2006PubMedGoogle Scholar
  103. 103.
    de Piano A, Prado W, Caranti D, Siqueira K, Stella S, Lofrano M, Tock L, Cristofalo D, Lederman H, Tufik S, de Mello M, Damaso A: Metabolic and nutritional profile of obese adolescents with nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 44:446–452, 2007PubMedGoogle Scholar
  104. 104.
    Allen K, Byrne S, Blair E, Davis E: Why do some overweight children experience psychological problems? The role of weight and shape concern. Int J Pediatr Obes 1:239–247, 2006PubMedGoogle Scholar
  105. 105.
    Burgert TS, Taksali SE, Dziura J, Goodman TR, Yeckel CW, Papademetris X, Constable RT, Weiss R, Tamborlane WV, Savoye M, Seyal AA, Caprio S: Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral Fat. J Clin Endocrinol Metab 91:4287–4294, 2006PubMedGoogle Scholar
  106. 106.
    Hassan A, Gordon C: Polycystic ovary syndrome update in adolescence. Curr Opin Pediatr 19:389–397, 2007PubMedGoogle Scholar
  107. 107.
    Nieto F, Szklo M, Comstock G: Childhood weight and growth rate as predictors of adult mortality. Am J Epidemiol 136:201–213, 1992PubMedGoogle Scholar
  108. 108.
    Calle E, Rodriguez C, Walker-Thurmond K, Thun M: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638, 2003PubMedGoogle Scholar
  109. 109.
    The Expert Committee on the Assessment Prevention and Treatment of Child and Adolescent Overweight and Obesity: Assessment recommendations. Available at http://www.ama-assn.org/ama1/pub/upload/mm/433/ped_obesity_recs.pdf, 2007
  110. 110.
    Robinson T: Reducing children's television viewing to prevent obesity: a randomized controlled trial. JAMA 282:1561–1567, 1999PubMedGoogle Scholar
  111. 111.
    Collins C, Warren J, Neve M, McCoy P, Stokes B: Measuring effectiveness of dietetic interventions in child obesity: a systematic review of randomized trials. Arch Pediatr Adolesc Med 160:906–922, 2006PubMedGoogle Scholar
  112. 112.
    Savoye M, Shaw M, Dziura J, Tamborlane WV, Rose P, Guandalini C, Goldberg-Gell R, Burgert TS, Cali AMG, Weiss R, Caprio S: Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA 297:2697–2704, 2007PubMedGoogle Scholar
  113. 113.
    Rossner S, Sjostrom L, Noack R, Meinders A, Noseda G: Weight loss, weight mantenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity. European Orlistat Obesity Study Group. Obes Res 8:49–61, 2000PubMedGoogle Scholar
  114. 114.
    Berkowitz R, Fujioka K, Daniels S, et al.for the Sibutramine Adolescent Study Group: Effects of sibutramine treatment in obese adolescents. A randomized trial. Ann Intern Med 145:81–90, 2006PubMedGoogle Scholar
  115. 115.
    Bays H, Mandarino L, DeFronzo RA: Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89:463–478, 2004PubMedGoogle Scholar
  116. 116.
    Bays H, Dujovne C: Adiposopathy is a more rational treatment target for metabolic disease than obesity alone. Curr Sci 8:144–156, 2006Google Scholar
  117. 117.
    Nadler S, Stoehr J, Schueler K, Tanimoto G, Yandell B, Attie A: The expression of adipogenic genes is decreased in obesity and diabetes mellitus. PNAS 97:11371–11376, 2000PubMedGoogle Scholar
  118. 118.
    Lazar M: How obesity causes diabetes: not a tall tale. Science 307:373–375, 2005PubMedGoogle Scholar
  119. 119.
    Dubois S, Heilbronn L, Smith S, Albu J, Kelley D, Ravussin E: Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity 14:1543–1552, 2006PubMedGoogle Scholar
  120. 120.
    Qatanani M, Lazar M: Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21:1443–1455, 2007PubMedGoogle Scholar
  121. 121.
    Gregor M, Hotamisligil G: Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48:1905–1914, 2007PubMedGoogle Scholar
  122. 122.
    Spiegelman B, Enerbäck S: “The adipocyte: a multifunctional cell.” Cell Metabolism 4:425–427, 2006PubMedGoogle Scholar
  123. 123.
    Hotamisligil G, Shargill N, Spiegelman B: Adipose expression of tumor necrosis factor-a: direct role in obesity-linked insulin resistance. Science 259:87–91, 1993PubMedGoogle Scholar
  124. 124.
    Feinstein R, Kanety H, Papa M, Lunenfeld B, Karasik A: Tumor necrosis factor-a suppresses insulin-induced tyrosine phophorylation of insulin receptor and its substrates. J Biol Chem 268:26055–26058, 1993PubMedGoogle Scholar
  125. 125.
    Lehrke M, Lazar M: Inflammed about obesity. Nat Med 10:126–127, 2004PubMedGoogle Scholar
  126. 126.
    Kolak M, Westerbacka J, Velagapudi VR, Wagsater D, Yetukuri L, Makkonen J, Rissanen A, Hakkinen A-M, Lindell M, Bergholm R, Hamsten A, Eriksson P, Fisher RM, Oresic M, Yki-Jarvinen H: Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes 56:1960–1968, 2007PubMedGoogle Scholar
  127. 127.
    Kadowaki TYT: Adiponectin and adiponectin receptors. Endocr Rev 26:439–451, 2005PubMedGoogle Scholar
  128. 128.
    Kim J, van de Wall E, Laplante M, Azzara A, Trujillo M, Hofmann S, Schraw T, Durand J, Li H, Li G, Jelicks L, Mehler M, Hui D, Deshaies Y, Shulman G, Schwartz G, Scherer P: Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117: :2621–30, 2007Google Scholar
  129. 129.
    Cusi K, DeFronzo R: Non-insulin dependent diabetes mellitus. In “The Endocrine Pancreas and Regulation of Metabolism,” Handbook of Physiology, ed. LS Jefferson and AD Cherrington, Oxford University Press Chap. 37:1115–1168, 2001Google Scholar
  130. 130.
    McGarry J: What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770, 1992PubMedGoogle Scholar
  131. 131.
    DeFronzo RA: Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687, 1988PubMedGoogle Scholar
  132. 132.
    Boden G: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10, 1997PubMedGoogle Scholar
  133. 133.
    Kelley D, Mandarino L: Fuel selection in human skeletal muscle in insulin resistance. A reexamination. Diabetes 49:677–683, 2000PubMedGoogle Scholar
  134. 134.
    Morino K, Petersen K, Shulman G: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55:S9–S15, 2006Google Scholar
  135. 135.
    Unger R, Grundy S: Hyperglycemia as in inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia 28:119–121, 1985PubMedGoogle Scholar
  136. 136.
    Rossetti L, Giaccari A, DeFronzo R: Glucose toxicity. Diabetes Care 13:610–630, 1990PubMedGoogle Scholar
  137. 137.
    Yki-Jarvinen Y, Makimattila S: Insulin resistance due to hyperglycaemia: an adaptation protecting insulin-sensitive tissues. Diabetologia 40:S141–S144, 1997PubMedGoogle Scholar
  138. 138.
    Gulli G, Ferrannini E, Stern M, Haffner S, DeFronzo R: The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents. Diabetes 41:1575–1586, 1992PubMedGoogle Scholar
  139. 139.
    Vauhkonen INL, Vanninen E, Kainulainen S, Uusitupa M, Laakso M: Defects in insulin secretion and insulin action in non-insulin dependent diabetes mellitus are inherited. J Clin Invest 100:86–96, 1997Google Scholar
  140. 140.
    Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, Vehkavaara S, Goto T, Halavaara J, Hakkinen A-M, Yki-Jarvinen H: Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 50:2337–2343, 2001PubMedGoogle Scholar
  141. 141.
    Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K: A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52:2461–2474, 2003PubMedGoogle Scholar
  142. 142.
    Kashyap SR, Belfort R, Berria R, Suraamornkul S, Pratipranawatr T, Finlayson J, Barrentine A, Bajaj M, Mandarino L, DeFronzo R, Cusi K: Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol - Endocrinol Metab 287:E537–E546, 2004PubMedGoogle Scholar
  143. 143.
    Felber J-P, Ferrannini E, Golay A, Meyer H, Theibaud D, Curchod B, Maeder E, Jequier E, DeFronzo R: Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes 36:1341–1350, 1987PubMedGoogle Scholar
  144. 144.
    Felber JP, Golay A, Jequier E, Curchod B, Temler E, DeFronzo RA, Ferrannini E: The metabolic consequences of long-term human obesity. Int J Obes 12:377–389, 1988PubMedGoogle Scholar
  145. 145.
    Bonadonna R, Groop L, Kraemer N, Ferrannini E, Del PS, DeFronzo R: Obesity and insulin resistance in humans: a dose-response study. Metab Clin Exp 39:452–459, 1990PubMedGoogle Scholar
  146. 146.
    Frayn K, Arner P, Yki-Järvinen H: Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 42:89–103, 2006PubMedGoogle Scholar
  147. 147.
    Unger R: Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44:861–870, 1995Google Scholar
  148. 148.
    Unger R, Zhou Y: Lipotoxicity of b-cells in obesity and in other causes of fatty acid spillover. Diabetes 50 (Suppl. 1):S118–S121, 2001PubMedGoogle Scholar
  149. 149.
    Iozzo P, Pranawatapatr T, Pijl H, Vogt C, Kumar V, Pipek R, Matsuda M, Mandarino L, Cusi K, DeFronzo R: Physiological hyperinsulinemia impairs insulin-stimulated glycogen synthase activity and glycogen synthesis. Am J Physiol Endocrinol Metab 280:E712–E719, 2001PubMedGoogle Scholar
  150. 150.
    Pratipanawatr W, Pratipanawatr T, Cusi K, Berria R, Adams JM, Jenkinson CP, Maezono K, DeFronzo RA, Mandarino LJ: Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes 50:2572–2578, 2001PubMedGoogle Scholar
  151. 151.
    Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, DeFronzo RA, Cusi K: Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54:1640–1648, 2005PubMedGoogle Scholar
  152. 152.
    Buchanan TA: (How) Can we prevent type 2 diabetes? Diabetes 56:1502–1507, 2007PubMedGoogle Scholar
  153. 153.
    Randle P, Garland P, Hales C, Newsholme E: The glucose fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789, 1963PubMedGoogle Scholar
  154. 154.
    Felber J, Vanotti A: Effects of fat infusions on glucose tolerance and insulin plasma levels. Med Exp 10:153–156, 1964PubMedGoogle Scholar
  155. 155.
    Thiebaud D, DeFronzo RA, Jacot E, Golay A, Acheson K, Maeder E, Jequier E, Felber JP: Effect of long chain triglyceride infusion on glucose metabolism in man. Metab Clin Exp 31:1128–1136, 1982PubMedGoogle Scholar
  156. 156.
    Bevilacqua S, Bonnadona R, Buzzigoli G, Boni C, Ciocaro D, Maccari F, Giorico M, Ferranini E: Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metab Clin Exp 37:502–506, 1987Google Scholar
  157. 157.
    Wolfe B, Klein M, Peters E, Schmidt B, Wolfe R: Effect of elevated free fatty acids on glucose oxidation in normal humans. Metabolism 36:323–329, 1988Google Scholar
  158. 158.
    Bonadonna R, Zych K, Boni C, Ferrannini E, DeFronzo R: Time dependence of the interaction between lipid and glucose in humans. Am J Physiol 257:E49–E56, 1989PubMedGoogle Scholar
  159. 159.
    Bevilacqua S, Buzzigoli G, Bonnadona R, Brandi S, Oleggini M, Boni C, Geloni M, Ferranini E: Operation of the Randle's cycle in patients with NIDDM. Diabetes 39:383–389, 1990PubMedGoogle Scholar
  160. 160.
    Boden G, Chen X, Ruiz J, White J, Rossetti L: Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 93:2438–2446, 1994PubMedGoogle Scholar
  161. 161.
    Kelley DE, Mokan M, Simoneau JA, Mandarino LJ: Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 92:91–98, 1993PubMedGoogle Scholar
  162. 162.
    Kelley D, Mandarino L: Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J Clin Invest 86:1999–2007, 1990PubMedGoogle Scholar
  163. 163.
    Boden G, Chen X: Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 96:1261–1268, 1995PubMedGoogle Scholar
  164. 164.
    Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Colemen E, Smith C: Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 88:960–966, 1991PubMedGoogle Scholar
  165. 165.
    Roden M, Price T, Perseghin G, Petersen K, Rothman D, Cline G, Shulman G: Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865, 1996PubMedGoogle Scholar
  166. 166.
    Dresner A, Laurent D, Marcucci M, Griffin M, Dufour S, Cline G, Slezak L, Andersen D, Hundal R, Rothman D, Petersen K, Shulman G: Effects of free fatty acids on glucose transport and IRS-1 associated phophatidylinositol 3-kinase activity. J Clin Invest 103:253–259, 1999PubMedGoogle Scholar
  167. 167.
    Roden M, Krssak M, Stingl H, Gruber S, Hofer A, Furnsinn C, Moser E, Waldhausl W: Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes 48:358–364, 1998Google Scholar
  168. 168.
    Krebs M, Krssak M, Nowotny P, Weghuber D, Gruber S, Mlynarik V, Bischof M, Stingl H, Furnsinn C, Waldhausl W, Roden M: Free fatty acids inhibit the glucose-stimulated increase of intramuscular glucose-6-phosphate concentration in humans. J Clin Endocrinol Metab 86:2153–2160, 2001PubMedGoogle Scholar
  169. 169.
    Holland W, Knotts T, Chavez J, Wang J-L, Hoehn K, Summers S: Lipid mediators of insulin resistance. Nutr Rev 65:S39–S46, 2007PubMedGoogle Scholar
  170. 170.
    Rachek LSIM, LeDoux S, Wilson G: Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in L6 rat skeletal muscle cells. Endocrinology 148:293–299, 2006PubMedGoogle Scholar
  171. 171.
    Ellis B, Poynten A, Lowy A, Furler S, Chisholm D, Kraegen E, Cooney G: Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 279:E554–E560, 2000PubMedGoogle Scholar
  172. 172.
    Kruszynska YWD, Ofrecio J, Frias J, Macaraeg G, Olefsky J: Fatty acid-induced insulin resistance: decreased muscle PI3K activation but unchanged AKT phophorylation. J Clin Endocrinol Metab 87:226–234, 2002PubMedGoogle Scholar
  173. 173.
    Chavez J, Summers S: Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101–109, 2003PubMedGoogle Scholar
  174. 174.
    Chavez JA, Knotts TA, Wang L-P, Li G, Dobrowsky RT, Florant GL, Summers SA: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278:10297–10303, 2003PubMedGoogle Scholar
  175. 175.
    Storgaard H, Jensen C, Bjornholm M, Song X, Madsbad S, Zierath J, Vaag A: Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes. J Clin Endocrinol Metab 89:1301–1311, 2004PubMedGoogle Scholar
  176. 176.
    Boden G, Lebed B, Schatz M, Homko C, Lemieux S: Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50:1612–1617, 2001PubMedGoogle Scholar
  177. 177.
    Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, Maier T, Loviscach M, Stumvoll M, Claussen CD, Schick F, Haring HU, Jacob S: Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 50:2579–2584, 2001PubMedGoogle Scholar
  178. 178.
    Pan D, Lillioja S, Kriketos A, Milner M, Baur L, Bogardus C, Jenkins A, Storlien L: Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes 46:983–988, 1997PubMedGoogle Scholar
  179. 179.
    Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, Schick F, Claussen C, Haring H-U: Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48:1113–1119, 1999PubMedGoogle Scholar
  180. 180.
    Schick F, Machann J, Brechtel K, Strempfer A, Klumpp B, Stein D: MRI of muscular fat. Magn Reson Med 47:720–727, 2002PubMedGoogle Scholar
  181. 181.
    Thamer C, Machann J, Bachmann O, Haap M, Dahl D, Wietek B, Tschritter O, Niess A, Brechtel K, Fritsche A, Claussen C, Jacob S, Schick F, Haring H-U, Stumvoll M: Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity. J Clin Endocrinol Metab 88:1785–1791, 2003PubMedGoogle Scholar
  182. 182.
    Machann J, Haring HU, Schick F, Stumvoll M: Intramyocellular lipids and insulin resistance. Diabetes Obes Metab 6:239–248, 2004PubMedGoogle Scholar
  183. 183.
    Anderwald C, Bernroider E, Krssak M, Stingl H, Brehm A, Bischof MG, Nowotny P, Roden M, Waldhausl W: Effects of insulin treatment in type 2 diabetic patients on intracellular lipid content in liver and skeletal muscle. Diabetes 51:3025–3032, 2002PubMedGoogle Scholar
  184. 184.
    Roden M: Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes 29 (Suppl. 2):S111–S115, 2005Google Scholar
  185. 185.
    Ross R, Dagnone D, Jones PJ, Smith H, Paddags A: Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 133:92–103, 2000PubMedGoogle Scholar
  186. 186.
    Itani SI, Ruderman NB, Schmieder F, Boden G: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IKB-a. Diabetes 51:2005–2011, 2002PubMedGoogle Scholar
  187. 187.
    Adams JM, II, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ: Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31, 2004PubMedGoogle Scholar
  188. 188.
    Sriwijitkamol A, Christ-Roberts C, Berria R, Eagan P, Pratipanawatr T, DeFronzo RA, Mandarino LJ, Musi N: Reduced skeletal muscle inhibitor of kappa-B beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 55:760–767, 2006PubMedGoogle Scholar
  189. 189.
    Hundal R, Petersen K, Mayerson A, Randhawa P, Inzucchi S, Shoelson S, Shulman G: Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 109:1321–1326, 2002PubMedGoogle Scholar
  190. 190.
    Evans J, Goldfine I, Maddux B, Grodsky G: Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622, 2002PubMedGoogle Scholar
  191. 191.
    Shi H, Kokoeva M, Inouye K, Tzameli I, Yin H, Flier J: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025, 2006PubMedGoogle Scholar
  192. 192.
    Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA, Saad MJA: Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998, 2007PubMedGoogle Scholar
  193. 193.
    Johnson A, Argyraki M, Thow J, Cooper G, Fulcher G, Taylor R: Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man. Clin Sci 82:219–226, 1992PubMedGoogle Scholar
  194. 194.
    Wolfe B, Peters E, Klein S, Holland O, Rosenblatt J, Gary H: Effect of short-term fasting on lipolytic responsiveness in normal and obese subjects. Am J Physiol Endocrinol Metab 252:E189–E196, 1987Google Scholar
  195. 195.
    Dobbins R, Chester M, Daniels M, McGarry J, Stein D: Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 47:1613–1618, 1998PubMedGoogle Scholar
  196. 196.
    Groop LC, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA: The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 72:96–107, 1991PubMedGoogle Scholar
  197. 197.
    Golay A, Munger R, Felber J-P: Obesity and NIDDM: the retrograde regulation concept. Diabetes Rev 5:69–82, 1997Google Scholar
  198. 198.
    Reaven G, Hollenbeck C, Jeng C-Y, Shung M, Chen Y-DI: Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37:1020–1024, 1988PubMedGoogle Scholar
  199. 199.
    Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo RA: Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 84:205–213, 1989PubMedGoogle Scholar
  200. 200.
    Cusi K, Conmstock J, Cunningham G: Safety and efficacy of normalizing fasting glucose with bedtime NPH insulin alone in NIDDM. Diabetes Care 18:843–851, 1995PubMedGoogle Scholar
  201. 201.
    Cusi K, Consoli A, DeFronzo R: Metabolic effects of metformin on glucose and lactate metabolism in NIDDM. J Clin Endo Metab 81:4059–4067, 1996Google Scholar
  202. 202.
    Pratipanawatr T, Cusi K, Ngo P, Pratipanawatr W, Mandarino LJ, DeFronzo RA: Normalization of plasma glucose concentration by insulin therapy improves insulin-stimulated glycogen synthesis in type 2 diabetes. Diabetes 51:462–468, 2002PubMedGoogle Scholar
  203. 203.
    Perseghin G, Ghosh S, Gerow K, Shulman G: Metabolic defects in lean nondiabetic offspring of NIDDM parents. A cross-sectional study. Diabetes 46:1001–1009, 1997PubMedGoogle Scholar
  204. 204.
    Nyholm B, Walker M, Gravholt C, Shearing P, Sturis J, Alberti K: Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 42:1314–1323, 1999PubMedGoogle Scholar
  205. 205.
    Nyholm B, Nielsen MF, Kristensen K, Nielsen S, Ostergard T, Pedersen SB, Christiansen T, Richelsen B, Jensen MD, Schmitz O: Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur J Endocrinol 150:207–214, 2004PubMedGoogle Scholar
  206. 206.
    Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671, 2004PubMedGoogle Scholar
  207. 207.
    Ostergard T, Nyholm B, Hansen TK, Rasmussen LM, Ingerslev J, Sorensen KE, Botker HE, Saltin B, Schmitz O: Endothelial function and biochemical vascular markers in first-degree relatives of type 2 diabetic patients: the effect of exercise training. Metabolism 55:1508–1515, 2006PubMedGoogle Scholar
  208. 208.
    Ostergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B, Schmitz O: Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 290:E998–E1005, 2006PubMedGoogle Scholar
  209. 209.
    Heilbronn L, Gregersen S, Shirkhedkar D, Hu D, Campbell L: Impaired fat oxidation after a single high fat meal in insulin sensitive non-diabetic individuals with a family history of type 2 diabetes. Diabetes 56:2046–2053, 2007PubMedGoogle Scholar
  210. 210.
    Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL, Shulman GI: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56:1376–1381, 2007PubMedGoogle Scholar
  211. 211.
    Warram J, Krolewski A, Kahn C: Slow glucose removal rate and hyperinsulinemia precede the development of type 2 diabetes in offspring of diabetic parents. Ann Intern Med 113:909–915, 1990PubMedGoogle Scholar
  212. 212.
    Martin B, Warram J, Krolewski A, Soeldner J, Kahn C, Martin B, Bergman R: Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–929, 1992PubMedGoogle Scholar
  213. 213.
    Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma Y-Z, Savoye M, Rothman DL, Shulman GI, Caprio S: Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51:1022–1027, 2002PubMedGoogle Scholar
  214. 214.
    Liska D, Dufour S, Zern T, Taksali S, Calí A, Dziura J, Shulman G, Pierpont B, Caprio S: Interethnic differences in muscle, liver and abdominal fat partitioning in obese adolescents. PLoS ONE Jun 27, 2(6):e569, 2007Google Scholar
  215. 215.
    Kelley DE, Mokan M, Mandarino LJ: Intracellular defects in glucose metabolism in obese patients with NIDDM. Diabetes 41:698–706, 1992PubMedGoogle Scholar
  216. 216.
    Kelley DE, He J, Menshikova EV, Ritov VB: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950, 2002PubMedGoogle Scholar
  217. 217.
    Lane N: Mitochondrial disease: Powerhouse of disease. Nature 440:600–602, 2006PubMedGoogle Scholar
  218. 218.
    Schrauwen-Hinderling V, Roden M, Kooi M, Hesselink MPS: Muscular mitochondrial dysfunction and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care 10:698–703, 2007PubMedGoogle Scholar
  219. 219.
    Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci 100:8466–8471, 2003PubMedGoogle Scholar
  220. 220.
    Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273, 2003PubMedGoogle Scholar
  221. 221.
    Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, DeFronzo RA, Jenkinson CP, Mandarino LJ: Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280:10290–10297, 2005PubMedGoogle Scholar
  222. 222.
    Fromenty B, Robin M, Igoudjil A, Mansouri A, Pessayre D: The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab 30:121–138, 2004PubMedGoogle Scholar
  223. 223.
    Diehl AM, Li ZP, Lin HZ, Yang SQ: Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut 54:303–306, 2005PubMedGoogle Scholar
  224. 224.
    Cusi K, Kashyap S, Belfort R, Bajaj M, Cersosimo E, Lee S: Effects on insulin secretion and action of short-term reduction of plasma free fatty acids with acipimox in non-diabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab 292:E1775–E1781, 2007PubMedGoogle Scholar
  225. 225.
    Santomauro A, Boden G, Silva M, Rocha D, Santos R, Ursich M, Strassmann P, Wajchenberg B: Overnight lowering of free fatty acids with acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48:1836–1841, 1999PubMedGoogle Scholar
  226. 226.
    Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, DeFronzo RA: Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty acyl-Co as and insulin action in type 2 diabetic patients. Diabetes 54:3148–3153, 2005PubMedGoogle Scholar
  227. 227.
    Toledo FGS, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, Kelley DE: Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56:2142–2147, 2007PubMedGoogle Scholar
  228. 228.
    Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K: Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599, 2007PubMedGoogle Scholar
  229. 229.
    Brehm A, Krssak M, Schmid AI, Nowotny P, Waldhausl W, Roden M: Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 55:136–140, 2006PubMedGoogle Scholar
  230. 230.
    Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsøe R, Dela F: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796, 2007PubMedGoogle Scholar
  231. 231.
    LaMonte M, Barlow C, Jurca R, Kampert J, Church T, Blair S: Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation 112:505–512, 2005PubMedGoogle Scholar
  232. 232.
    Braith R, Stewart K: Resistance exercise training: its role in the prevention of cardiovascular disease. Contemp Rev Cardiovasc Med 113:2642–2650, 2006Google Scholar
  233. 233.
    Gill JMR, Malkova D: Physical activity, fitness and cardiovascular disease risk in adults: interactions with insulin resistance and obesity. Clin Sci 110:409–425, 2006PubMedGoogle Scholar
  234. 234.
    Goodpaster B, Brown N: Skeletal muscle lipid and its association with insulin resistance: What is the role for exercise? Exerc Sport Sci Rev 33:150–154, 2005Google Scholar
  235. 235.
    Hawley J, Hargreaves M, Zierath J: Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Essays Biochem 42:1–12, 2006PubMedGoogle Scholar
  236. 236.
    Coffey VGRD, Lancaster GI, Yeo WK, Febbraio MA, Yaspelkis BB III, Hawley JA: Effect of high-frequency resistance exercise on adaptive responses in skeletal muscle. Med Sci Sports Exerc 39:2135–2144, 2007PubMedGoogle Scholar
  237. 237.
    Yaspelkis BB III, Lessard SJ, Reeder DW, Limon JJ, Saito M, Rivas DA, Kvasha I, Hawley JA: Exercise reverses high-fat diet-induced impairments on compartmentalization and activation of components of the insulin-signaling cascade in skeletal muscle. Am J Physiol Endocrinol Metab 293:E941–E949, 2007PubMedGoogle Scholar
  238. 238.
    Goodpaster BH, Katsiaras A, Kelley DE: Enhanced fat oxidation through physical activity Is associated with improvements in insulin sensitivity in obesity. Diabetes 52:2191–2197, 2003PubMedGoogle Scholar
  239. 239.
    Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE: Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol 103:21–27, 2007PubMedGoogle Scholar
  240. 240.
    Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH: Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534–540, 2006PubMedGoogle Scholar
  241. 241.
    Cusi K, Maezono K, Osman A, Pendergrass M, Patti M, Pranawatapatr T, DeFronzo R, Kahn C, Mandarino L: Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320, 2000PubMedGoogle Scholar
  242. 242.
    Cusi KJ, Pratipanawatr T, Koval J, Printz R, Ardehali H, Granner DK, DeFronzo RA, Mandarino LJ: Exercise increases hexokinase II mRNA, but not activity in obesity and type 2 diabetes. Metabolism 50:602–606, 2001PubMedGoogle Scholar
  243. 243.
    Christ-Roberts CY, Pratipanawatr T, Pratipanawatr W, Berria R, Belfort R, Kashyap S, Mandarino LJ: Exercise training increases glycogen synthase activity and GLUT4 expression but not insulin signaling in overweight nondiabetic and type 2 diabetic subjects. Metabolism 53:1233–1242, 2004PubMedGoogle Scholar
  244. 244.
    Sriwijitkamol A, Coletta D, Estela W, Gabriela B, Sara M, John B, Eagan P Jenkinson C, Cersosimo E, DeFronzo R, Sakamoto K, Musi N: Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 56:836–848, 2007PubMedGoogle Scholar
  245. 245.
    Tay C, Belfort R, Mathew M, Cusi K: A 2-day lipid or combined lipid-glucose infusion reproduce in healthy subjects the metabolic abnormalities seen in the metabolic syndrome. Diabetes 55 (Suppl. 1):A66, 2006Google Scholar
  246. 246.
    Kashyap S, Belfort R, Cersosimo E, Lee S, Cusi K: Chronic low-dose lipid infusion in healthy subjects induces markers of endothelial activation independent of its metabolic effects. J Cardiometabolic Syndrome 3:141–146, 2008Google Scholar
  247. 247.
    Rattigan S, Wheatley C, Richards S, Barrett E, Clark M: Exercise and insulin mediated capillary recruitment in muscle. Exerc Sport Sci Rev 32:43–48, 2004Google Scholar
  248. 248.
    De Filippis E, Cusi K, Ocampo G, Berria R, Buck S, Consoli A, Mandarino LJ: Exercise-induced improvement in vasodilatory function accompanies increased insulin sensitivity in obesity and type 2 diabetes mellitus. J Clin Endocrinol Metab 91:4903–4910, 2006PubMedGoogle Scholar
  249. 249.
    Duncan GE, Perri MG, Theriaque DW, Hutson AD, Eckel RH, Stacpoole PW: Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care 26:557–562, 2003PubMedGoogle Scholar
  250. 250.
    Jeon CY, Lokken RP, Hu FB, van Dam RM: Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care 30:744–752, 2007PubMedGoogle Scholar
  251. 251.
    Sui X, Hooker SP, Lee IM, Church TS, Colabianchi N, Lee C-D, Blair SN: A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women. Diabetes Care 30:dc07–1870, 2007Google Scholar
  252. 252.
    Physical Activity and Public Health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116:1081–1093, 2007Google Scholar
  253. 253.
    Physical Activity and Public Health in Older Adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116:1094–1105, 2007Google Scholar
  254. 254.
    Ekberg K, Landau B, Wajngot A, Chandramouli V, Efendic S, Brunengraber H, Wahren J: Contributions of kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48:292–298, 1999PubMedGoogle Scholar
  255. 255.
    DeFronzo RA, Ferrannini E: Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev 3:415–459, 1987PubMedGoogle Scholar
  256. 256.
    Campbell PJ, Mandarino LJ, Gerich JE: Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metab Clin Exp 37:15–21, 1988PubMedGoogle Scholar
  257. 257.
    Lewis GF, Carpentier A, Vranic M, Giacca A: Resistance to insulin's acute direct hepatic effect in suppressing steady-state glucose production in individuals with type 2 diabetes. Diabetes 48:570–576, 1999PubMedGoogle Scholar
  258. 258.
    Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR, Ferrannini E: Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49:1367–1373, 2000PubMedGoogle Scholar
  259. 259.
    Edgerton DS, Cardin S, Emshwiller M, Neal D, Chandramouli V, Schumann WC, Landau BR, Rossetti L, Cherrington AD: Small increases in insulin inhibit hepatic glucose production solely caused by an effect on glycogen metabolism. Diabetes 50:1872–1882, 2001PubMedGoogle Scholar
  260. 260.
    Gastaldelli A, Toschi E, Pettiti M, Frascerra S, Quinones-Galvan A, Sironi AM, Natali A, Ferrannini E: Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 50:1807–1812, 2001PubMedGoogle Scholar
  261. 261.
    Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M: FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 283:E12–E19, 2002PubMedGoogle Scholar
  262. 262.
    Steiner K, Williams P, Lacy W, Cherrington A: Effects of insulin on glucagon-stimulated glucose production in the conscious dog. Metabolism 39:1325–1333, 1990PubMedGoogle Scholar
  263. 263.
    Ito KMH, Hirose H, Kido K, Koyama K, Kataoka K, Saruta T.: Exogenous insulin dose-dependently suppresses glucopenia-induced glucagon secretion from perfused rat pancreas. Metabolism 44:358–362, 1995PubMedGoogle Scholar
  264. 264.
    Obici S, Feng Z, Karkanias G, Baskin D, Rossetti L: Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566, 2002Google Scholar
  265. 265.
    Sindelar DK, Chu CA, Rohlie M, Neal DW, Swift LL, Cherrington AD: The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 46:187–196, 1997PubMedGoogle Scholar
  266. 266.
    Bergman RN: Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein? Diabetologia 43:946–952, 2000PubMedGoogle Scholar
  267. 267.
    Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, Chu CA, Cherrington AD: Insulin's direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest 116:521–527, 2006PubMedGoogle Scholar
  268. 268.
    Boden G, She P, Mozzoli M: Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kB pathway in rat liver. Diabetes 54:3458–3465, 2005PubMedGoogle Scholar
  269. 269.
    Boden G: Fatty acid-induced inflammation and insulin resistance in skeletal muscle and liver. Curr Diabetes Rep 6:177–181, 2006Google Scholar
  270. 270.
    Anderwald C, Brunmair B, Stadlbauer K, Krebs M, Furnsinn C, Roden M: Effects of free fatty acids on carbohydrate metabolism and insulin signalling in perfused rat liver. Eur J Clin Invest 37:774–782, 2007PubMedGoogle Scholar
  271. 271.
    Moore MC, Satake S, Lautz M, Soleimanpour SA, Neal DW, Smith M, Cherrington AD: Nonesterified fatty acids and hepatic glucose metabolism in the conscious dog. Diabetes 53:32–40, 2004PubMedGoogle Scholar
  272. 272.
    Roden M, Stingl H, Chandramouli V, Schumann WC, Hofer A, Landau BR, Nowotny P, Waldhausl W, Shulman GI: Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49:701–707, 2000PubMedGoogle Scholar
  273. 273.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351, 2005PubMedGoogle Scholar
  274. 274.
    Barrows BR, Parks EJ: Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J Clin Endocrinol Metab 91:1446–1452, 2006PubMedGoogle Scholar
  275. 275.
    Moore MC, Cherrington AD, Wasserman DH: Regulation of hepatic and peripheral glucose disposal. Best Pract Res Clin Endocrinol Metab 17:343–364, 2003PubMedGoogle Scholar
  276. 276.
    McGarry J: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18, 2002PubMedGoogle Scholar
  277. 277.
    Sanyal AJ, Colin B, Carol S, Velimir AL, Richard KS, Richard TS: Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43:682–689, 2006PubMedGoogle Scholar
  278. 278.
    Angulo P: GI epidemiology: nonalcoholic fatty liver disease. Aliment Pharmacol Ther 25:883–889, 2007PubMedGoogle Scholar
  279. 279.
    Wieckowska A, McCullough A, Feldstein A: Noninvasive diagnosis and monitoring of nonalcoholic steatohepatitis: present and future. Hepatology 46:582–589, 2007PubMedGoogle Scholar
  280. 280.
    Powell E, Cooksley W, Hanson R: The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology 11:74–80, 1990PubMedGoogle Scholar
  281. 281.
    Harrison S, Torgerson S, Hayashi P: The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am J Gastroenterol 98:2042–2047, 2003PubMedGoogle Scholar
  282. 282.
    Fassio E, Estela A, Nora DN, Graciela L, Cristina L: Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology 40:820–826, 2004PubMedGoogle Scholar
  283. 283.
    Adams LA: The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129:113–121, 2005PubMedGoogle Scholar
  284. 284.
    Ekstedt M, Franzén L, Mathiesen U, Thorelius L, Holmqvist M, Bodemar G, Kechagias S: Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44:865–873, 2006PubMedGoogle Scholar
  285. 285.
    Targher G, Lorenzo B, Roberto P, Stefano R, Roberto T, Luciano Z: Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–1218, 2007PubMedGoogle Scholar
  286. 286.
    Hamaguchi M: Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease. World J Gastroenterol 13:1579–1584, 2007PubMedGoogle Scholar
  287. 287.
    Kowdley K, Caldwell S: Nonalcoholic steatohepatitis: a twenty-first century epidemic? J Clin Gastroenterol 40:S2–S4, 2006PubMedGoogle Scholar
  288. 288.
    Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH: Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387–1395, 2004PubMedGoogle Scholar
  289. 289.
    Zelber-Sagi S: Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int 26:856–863, 2006PubMedGoogle Scholar
  290. 290.
    Adams L, Talwalkar J: Diagnostic evaluation of nonalcoholic fatty liver disease. J Clin Gastroenterol 40:S34–S38, 2006PubMedGoogle Scholar
  291. 291.
    Patton HM: Pediatric nonalcoholic fatty liver disease: a critical appraisal of current data and implications for future research. J Pediatr Gastroenterol Nutr 43:413–427, 2006PubMedGoogle Scholar
  292. 292.
    Quiros-Tejeira RE, Rivera CA, Ziba TT, Mehta N, Smith CW, Butte NF: Risk for nonalcoholic fatty liver disease in Hispanic youth with BMI > or = 95th percentile. J Pediatr Gastroenterol Nutrtr 44:228–236, 2007PubMedGoogle Scholar
  293. 293.
    Roberts EA: Pediatric nonalcoholic fatty liver disease (NAFLD): a “growing” problem? J Hepatology 46:1133–1141, 2008Google Scholar
  294. 294.
    Aslander-van Vliet E, Smart C, Waldron S: Nutritional management in childhood and adolescent diabetes. Pediatr Diabetes 8:323–339, 2007PubMedGoogle Scholar
  295. 295.
    Mofrad P: Clinical and histologic spectrum of nonalcoholic fatty liver disease associated with normal ALT values. Hepatology 37:1286–1292, 2003PubMedGoogle Scholar
  296. 296.
    Sorrentino P: Silent non-alcoholic fatty liver disease-a clinical-histological study. J Hepatol 41:751–757, 2004PubMedGoogle Scholar
  297. 297.
    Amarapurkar D, Patel N: Clinical spectrum and natural history of non-alcoholic steatohepatitis with normal alanine aminotransferase values. Trop Gastroenterol 25:130–134, 2004PubMedGoogle Scholar
  298. 298.
    Kunde S, Larenzby A, Clements R, Abrams G: Spectrum of NAFLD and diagnostic implications of the proposed new normal range for serum ALT in obese women. Hepatology 42:650–656, 2005PubMedGoogle Scholar
  299. 299.
    Maheshwari A, Paul JT: Cryptogenic cirrhosis and NAFLD: are they related? Am J Gastroenterol 101:664–668, 2006PubMedGoogle Scholar
  300. 300.
    Angulo P, Keach J, Batts K, Lindor K: Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology 30:1356–1362, 1999PubMedGoogle Scholar
  301. 301.
    Younossi ZM: Nonalcoholic fatty liver disease in patients with type 2 diabetes. Clin Gastroenterol Hepatol 2:262–265, 2004PubMedGoogle Scholar
  302. 302.
    Dixon J, Bhathal P, O'Brien P: Nonalcoholic fatty liver disease: predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121:91–100, 2001PubMedGoogle Scholar
  303. 303.
    Marceau P, Biro S, Hould F: Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 84:1513–1517, 1999PubMedGoogle Scholar
  304. 304.
    Luyckx FH, Desaive C, Thiry A, Dewe W, Scheen AJ, Gielsen JE, Lefevre PJ: Liver abnormalities in severely obese subjects: effects of drastic weight loss after gastroplasty. Int J Obes Relat Metab Disord 22:222–226, 1998PubMedGoogle Scholar
  305. 305.
    Haukeland JW: Abnormal glucose tolerance is a predictor of steatohepatitis and fibrosis in patients with non-alcoholic fatty liver disease. Scand J Gastroenterol 40:1469–1477, 2005PubMedGoogle Scholar
  306. 306.
    Gupte P: Non-alcoholic steatohepatitis in type 2 diabetes mellitus. J Gastroenterol Hepatol 19:854–858, 2004PubMedGoogle Scholar
  307. 307.
    Targher G: Relations between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease. Diabetes Care 29:1325–1330, 2006PubMedGoogle Scholar
  308. 308.
    Goland S, Goland S, Shimoni S, Zornitzki T, Knobler H, Azoulai O, Lutaty G: Cardiac abnormalities as a new manifestation of nonalcoholic fatty liver disease: echocardiographic and tissue Doppler imaging assessment. J Clin Gastroenterol 40:949–955, 2006PubMedGoogle Scholar
  309. 309.
    Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW: The evolving diabetes burden in the United States. Ann Intern Med 140:945–950, 2004PubMedGoogle Scholar
  310. 310.
    DeFronzo R, Ferrannini E: Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and ASCVD. Diabetes Care-Rev 14:173–194, 1991Google Scholar
  311. 311.
    Ginsberg HN: Insulin resistance and cardiovascular disease. JCI 106:453–458, 2000PubMedGoogle Scholar
  312. 312.
    Seppala-Lindroos A, Vehkavaara S, Hakkinen A-M, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H: Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028, 2002PubMedGoogle Scholar
  313. 313.
    Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K: Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. J Biol Chem 275:8416–8425, 2000PubMedGoogle Scholar
  314. 314.
    Zambon A, Cusi K: The role of fenofibrate in clinical practice. Diab Vasc Dis Res 4 (Suppl. 3):S15–S20, 2007PubMedGoogle Scholar
  315. 315.
    Kotronen A, Westerbacka J, Bergholm R, Pietilainen K, Yki-Jarvinen H: Liver fat in the metabolic syndrome. J Clin Endocrinol 92:3490–3497, 2007Google Scholar
  316. 316.
    Cheung O, Kapoor A, Puri P, Sistrun S, Luketic V, Sargeant C, Contos M, Shiffman M, Stravitz R, Sterling R, Sanyal A: The impact of fat distribution on the severity of nonalcoholic fatty liver disease and metabolic syndrome. Hepatology. 2007 July 3 [Epub ahead of print], 2007Google Scholar
  317. 317.
    Gholam PM, Flancbaum L, Machan JT, Charney DA, Kotler DP: Nonalcoholic fatty liver disease in severely obese subjects. Am J Gastroenterol 102:399–408, 2007PubMedGoogle Scholar
  318. 318.
    Ratziu V: Liver fibrosis in overweight patients. Gastroenterology 118:1117–1123, 2000PubMedGoogle Scholar
  319. 319.
    Hamaguchi M: The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 143:722–728, 2005PubMedGoogle Scholar
  320. 320.
    Caldwell S, Chang Y, Nakamoto R, Krugner-Higby L: Mitochondria in nonalcoholic fatty liver disease. Clin Liver Dis 8:595–617, 2004PubMedGoogle Scholar
  321. 321.
    Pessayre D, Fromenty B: NASH: a mitochondrial disease. J Hepatol 42:928–940, 2005PubMedGoogle Scholar
  322. 322.
    Delarue J, Magnan C: Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 10:142–148, 2007PubMedGoogle Scholar
  323. 323.
    Puri P, Baillie R, Wiest M, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos M, Sanyal A: A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46:1081–1090, 2007PubMedGoogle Scholar
  324. 324.
    Elsharkawy A, Mann D: Nuclear factor-kappa-B and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46:590–597, 2007PubMedGoogle Scholar
  325. 325.
    Park E, Wong V, Guan X, Oprescu AI, Giacca A: Salicylate prevents hepatic insulin resistance caused by short-term elevation of free fatty acids in vivo. J Endocrinol 195:323–331, 2007PubMedGoogle Scholar
  326. 326.
    Savage DB, Choi CS, Samuel VT, Liu Z-X, Zhang D, Wang A, Zhang X-M, Cline GW, Yu XX, Geisler JG, Bhanot S, Monia BP, Shulman GI: Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 116:817–824, 2006PubMedGoogle Scholar
  327. 327.
    Samuel VT, Liu Z-X, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang X-m, Monia BP, Bhanot S, Shulman GI: Inhibition of protein kinase Ce prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745, 2007PubMedGoogle Scholar
  328. 328.
    Choi CS, Savage DB, Kulkarni A, Yu XX, Liu Z-X, Morino K, Kim S, Distefano A, Samuel VT, Neschen S, Zhang D, Wang A, Zhang X-M, Kahn M, Cline GW, Pandey SK, Geisler JG, Bhanot S, Monia BP, Shulman GI: Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282:22678–22688, 2007PubMedGoogle Scholar
  329. 329.
    Chakravarthy M, Pan Z, Zhu Y, Tordjman K, Schneider J, Coleman T, Turk J, Semenkovich C: “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1:309–322, 2005Google Scholar
  330. 330.
    Belfort R, Berria R, DeFronzo R, Cusi K: Effect of fenofibrate on glucose metabolism and insulin sensitivity in hypertriglyceridemic subjects with the metabolic syndrome. Diabetes 53 (Suppl. 1):A2183, 2004Google Scholar
  331. 331.
    Bajaj M, Suraamornkul S, Hardies J, Glass L, Musi N, Defronzo R: Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 50:1723–1731, 2007PubMedGoogle Scholar
  332. 332.
    Neuschwander-Tetri BA, Brunt EM, Kent R, Wehmeier D, Oliver B, Bacon R: Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-g ligand rosiglitazone. Hepatology 38:1008–1017, 2003PubMedGoogle Scholar
  333. 333.
    Ratziu V, Giral P, Jacqueminet S, Bernhardt C, Grimaldi A, Bruckert E, Poynard T, Group TLS: A one-year randomized, placebo-controlled, double-blind trial of rosiglitazone in non alcoholic steatohepatitis: results of the Flirt pilot trial. Diabetes Annual Meeting 2006 Abstract 8-LB (available online at http://www.diabetes.org), 2006
  334. 334.
    García-Ruiz I, Rodríguez-Juan C, Díaz-Sanjuán T, Martínez M, Muñoz-Yagüe T, Solís-Herruzo J: Effects of rosiglitazone on the liver histology and mitochondrial function in ob/ob mice. Hepatology 46:414–423, 2007PubMedGoogle Scholar
  335. 335.
    Browning JD, Horton JD: Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114:147–152, 2004PubMedGoogle Scholar
  336. 336.
    Heilbronn L, Smith S, Ravussin E: The insulin-sensitizing role of the fat derived hormone adiponectin. Curr Pharm Des 9:1411–1418, 2003PubMedGoogle Scholar
  337. 337.
    Xu A, Wang Y, Keshaw H, Xu LY, Lam KSL, Cooper GJS: The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112:91–100, 2003PubMedGoogle Scholar
  338. 338.
    Hui J, Hodge A, Farrell G, Kench J, Kriketos A, George J: Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology 40:46, 2004Google Scholar
  339. 339.
    Towler M, Hardie D: AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341, 2007PubMedGoogle Scholar
  340. 340.
    Yang G, Li L, Tang Y, Boden G: Short-term pioglitazone treatment prevents free fatty acid-induced hepatic insulin resistance in normal rats: possible role of the resistin and adiponectin. Biochem Biophys Res Commun 339:1190–1196, 2006PubMedGoogle Scholar
  341. 341.
    Ouchi NKS, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476, 1999PubMedGoogle Scholar
  342. 342.
    Chen HMM, Funahashi T, Shimomura I, Quon M Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026, 2003PubMedGoogle Scholar
  343. 343.
    Civitarese A, Jenkinson C, Richardson D, Bajaj M, Cusi K, Kashyap S, Berria R, Belfort R, DeFronzo R, Mandarino L, Ravussin E: Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of type 2 diabetes Diabetologia 47:816, 2004Google Scholar
  344. 344.
    Lihn AS, Ostergard T, Nyholm B, Pedersen SB, Richelsen B, Schmitz O: Adiponectin expression in adipose tissue is reduced in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 284:E443–E448, 2003PubMedGoogle Scholar
  345. 345.
    Tiikkainen M, Hakkinen A-M, Korsheninnikova E, Nyman T, Makimattila S, Yki-Jarvinen H: Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 53:2169–2176, 2004PubMedGoogle Scholar
  346. 346.
    Baranova A, Gowder SJ, Schlauch K, Elariny H, Collantes R, Afendy A, Ong JP, Goodman Z, Chandhoke V, Younossi ZM: Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance. Obes Surg 16:1118–1125, 2006PubMedGoogle Scholar
  347. 347.
    Bajaj M, Suraamornkul S, Piper P, Hardies LJ, Glass L, Cersosimo E, Pratipanawatr T, Miyazaki Y, DeFronzo RA: Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients. J Clin Endocrinol Metab 89:200–206, 2004PubMedGoogle Scholar
  348. 348.
    Lutchman G, Promrat K, Kleiner DE, Heller T, Ghany MG, Yanovski JA, Liang TJ, Hoofnagle JH: Changes in serum adipokine levels during pioglitazone treatment for nonalcoholic steatohepatitis: relationship to histological improvement. Clin Gastroenterol Hepatol 4:1048–1052, 2006PubMedGoogle Scholar
  349. 349.
    Wang RT, Koretz RL, Yee HF: Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med 115:554–559, 2003PubMedGoogle Scholar
  350. 350.
    Zivkovic AM, German JB, Sanyal AJ: Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 86:285–300, 2007PubMedGoogle Scholar
  351. 351.
    Harrison S, Day C: Benefits of lifestyle modification in NAFLD. Gut 56:1760–1769, 2007PubMedGoogle Scholar
  352. 352.
    Palmer M, Schaffner F: Effect of weight reduction on hepatic abnormalities in overweight subjects. Gastroenterology 99:1408–1413, 1990PubMedGoogle Scholar
  353. 353.
    Park H, Kim M, Shin E: Effect of weight control on hepatic abnormalities in obese patients with fatty liver. J Korean Med Sci 10:414–421, 1995PubMedGoogle Scholar
  354. 354.
    Ueno T, Sugawara H, Sujaku K, Hashimoto O, Tsuji R, Tamaki S, Torimura T, Inuzuka S, Sata M, Tanikawa K: Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J Hepatol 27:103–107, 1997PubMedGoogle Scholar
  355. 355.
    Kugelmas M, Hill D, Vivian B, Marsano L, McClain C: Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 38:413, 2003Google Scholar
  356. 356.
    Baba CS, Alexander G, Kalyani B, Pandey R, Rastogi S, Pandey A, Choudhuri G: Effect of exercise and dietary modification on serum aminotransferase levels in patients with nonalcoholic steatohepatitis. J Gastroenterol Hepatol 21:191–198, 2006Google Scholar
  357. 357.
    Tamura Y, Tanaka Y, Sato F, et al.: Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endo Metab 90:3191–3196, 2005Google Scholar
  358. 358.
    Huang MA, Greenson JK, Chao C, Anderson L, Peterman D, Jacobson J, Emick D, Lok AS, Conjeevaram HS: One-year intense nutritional counseling results in histological improvement in patients with non-alcoholic steatohepatitis: a pilot study. Am J Gastroenterol 100:1072–1081, 2005PubMedGoogle Scholar
  359. 359.
    Westerbacka J, Lammi K, Hakkinen A-M, Rissanen A, Salminen I, Aro A, Yki-Jarvinen H: Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab 90:2804–2809, 2005PubMedGoogle Scholar
  360. 360.
    Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI: Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes 54:603–608, 2005PubMedGoogle Scholar
  361. 361.
    Browning J, Davis J, Saboorian M, Burgess S: A low-carbohydrate diet rapidly and dramatically reduces intrahepatic triglyceride content. Hepatology 44:487–488, 2006PubMedGoogle Scholar
  362. 362.
    Tendler D, Lin S, Yancy WS, Jr., Mavropoulos J, Sylvestre P, Rockey DC, Westman EC: The effect of a low-carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci 52:589–593, 2007PubMedGoogle Scholar
  363. 363.
    Ryan MC, Abbasi F, Lamendola C, Carter S, McLaughlin TL: Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care 30:1075–1080, 2007PubMedGoogle Scholar
  364. 364.
    Andersen T, Gluud C, Franzmann MB, Christoffersen P: Hepatic-effects of dietary weight-loss in morbidly obese subjects. J Hepatol 12:224–229, 1991PubMedGoogle Scholar
  365. 365.
    Shaffer E: Bariatric surgery. A promising solution for nonalcoholic steatohepatitis in the very obese. J Clin Gastroenterol 40:S44–S50, 2006PubMedGoogle Scholar
  366. 366.
    Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B, Bengtsson C, Dahlgren S, Gummesson A, Jacobson P, Karlsson J, Lindroos A-K, Lonroth H, Naslund I, Olbers T, Stenlof K, Torgerson J, Agren G, Carlsson LMS: Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357:741–752, 2007PubMedGoogle Scholar
  367. 367.
    Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, LaMonte MJ, Stroup AM, Hunt SC: Long-term mortality after gastric bypass surgery. N Engl J Med 357:753–761, 2007PubMedGoogle Scholar
  368. 368.
    Bugianesi E, Marzocchi R, Villanova N, Marchesini G: Non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH): treatment. Best Pract Res Clin Gastroenterol 18:1105–1116, 2004PubMedGoogle Scholar
  369. 369.
    Bugianesi E, Gentilcore E, Manini R, Natale S, Vanni E, Villanova N: A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol 100:1082–1090, 2005PubMedGoogle Scholar
  370. 370.
    Caldwell SH, Hespenheide EE, Redick JA, Iezzoni JC, Battle EH, Sheppard BL: A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol 96:519–525, 2001PubMedGoogle Scholar
  371. 371.
    Promrat K, Lutchman G, Uwaifo GI, Freedman RJ, Soza A, Heller T: A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology 39:188–196, 2004PubMedGoogle Scholar
  372. 372.
    Yaney G, Corkey B: Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 46:1297–1312, 2003PubMedGoogle Scholar
  373. 373.
    Robertson R, Harmon J, Tran P, Poitout V: b-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53 (Suppl. 1):S119–S124, 2004PubMedGoogle Scholar
  374. 374.
    Wiederkehr A, Wollheim C: Minireview: Implication of mitochondria in insulin secretion and action. Endocrinology 147:2643–2649, 2006PubMedGoogle Scholar
  375. 375.
    Nolan CJ, Madiraju MSR, Delghingaro-Augusto V, Peyot M-L, Prentki M: Fatty acid signaling in the b-cell and insulin secretion. Diabetes 55 (Suppl. 2):S16–S23, 2006PubMedGoogle Scholar
  376. 376.
    Maedler K: Beta cells in type 2 diabetes – a crucial contribution to pathogenesis. Diabetes Obes Metab 10:408–420, 2008Google Scholar
  377. 377.
    Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B, Viberti G: Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443, 2006PubMedGoogle Scholar
  378. 378.
    Malaisse WJ, Best L, Kawazu S, Malaisse-Lagae F, Sener A: The stimulus-secretion coupling of glucose-induced insulin release: fuel metabolism in islets deprived of exogenous nutrient. Arch Biochem Biophys 224:102–110, 1983PubMedGoogle Scholar
  379. 379.
    Matschinsky F: Banting Lecture 1995: a lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45:223–241, 1996PubMedGoogle Scholar
  380. 380.
    Stein D, Esser V, Stevenson B: Essentially of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 97:2728–2735, 1996PubMedGoogle Scholar
  381. 381.
    Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD: The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100:398–403, 1997PubMedGoogle Scholar
  382. 382.
    Dobbins RL, Szczepaniak LS, Myhill J, Tamura Y, Uchino H, Giacca A, McGarry JD: The composition of dietary fat directly influences glucose-stimulated insulin secretion in rats. Diabetes 51:1825–1833, 2002PubMedGoogle Scholar
  383. 383.
    Zhou Y, Grill V: Long term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest 1994:870–876, 1994Google Scholar
  384. 384.
    Sako Y, Grill V: A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127:1580–1589, 1990PubMedGoogle Scholar
  385. 385.
    Bollheimer L, Skelly R, Chester M, McGarry J, Rhodes C: Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest 101:1094–1101, 1998PubMedGoogle Scholar
  386. 386.
    Oprescu AI, Bikopoulos G, Naassan A, Allister EM, Tang C, Park E, Uchino H, Lewis GF, Fantus IG, Rozakis-Adcock M, Wheeler MB, Giacca A: Free fatty acid induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes 56:2927–2937, 2007PubMedGoogle Scholar
  387. 387.
    Amery CM, Round RA, Smith JM, Nattrass M: Elevation of plasma fatty acids by ten-hour intralipid infusion has no effect on basal or glucose-stimulated insulin secretion in normal man. Metabolism 49:450–454, 2000PubMedGoogle Scholar
  388. 388.
    Balent B, Goswami G, Goodloe G, Rogatsky E, Rauta O, Nezami R, Mints L, Angeletti RH, Stein DT: Acute elevation of NEFA causes hyperinsulinemia without effect on insulin secretion rate in healthy human subjects. Ann NY Acad Sci 967:535–543, 2002PubMedGoogle Scholar
  389. 389.
    Paolisso G, Gambardella A, Amato L, Tortoriello R, D'Amore A, Varricchio M: Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 38:1295–1299, 1995PubMedGoogle Scholar
  390. 390.
    Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF: Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol Endocrinol Metab 276:E1055–E1066, 1999Google Scholar
  391. 391.
    Boden G, Chen X, Rosner J, Barton M: Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes 44:1239–1242, 1995PubMedGoogle Scholar
  392. 392.
    Magnan C, Collins S, Berthault M-F, Kassis N, Vincent M, Gilbert M, Penicaud L, Ktorza A, Assimacopoulos-Jeannet F: Lipid infusion lowers sympathetic nervous activity and leads to increased β-cell responsiveness to glucose. J Clin Invest 103:413–419, 1999PubMedGoogle Scholar
  393. 393.
    Magnan C, Cruciani C, Clement L, Adnot P, Vincent M, Kergoat M, Girard A, Elghozi J-L, Velho G, Beressi N, Bresson J-L, Ktorza A: Glucose-induced insulin hypersecretion in lipid-infused healthy subjects is associated with a decrease in plasma norepinephrine concentration and urinary excretion. J Clin Endocrinol Metab 86:4901–4907, 2001PubMedGoogle Scholar
  394. 394.
    Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF: Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes. Diabetes 49:399–408, 2000PubMedGoogle Scholar
  395. 395.
    Edelstein SL, Knowler WC, Bain RP, Andres R, Barrett-Connor EL, Dowse GK, Haffner SM, Pettitt DJ, Sorkin JD, Muller DC, Collins VR, Hamman RF: Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes 46:701–710, 1997PubMedGoogle Scholar
  396. 396.
    Norris SL, Zhang X, Avenell A, Gregg E, Bowman B, Schmid CH, Lau J: Long-term effectiveness of weight-loss interventions in adults with pre-diabetes: a review. Am J Prev Med 28:126–139, 2005PubMedGoogle Scholar
  397. 397.
    Paolisso G, Tataranni P, Foley J, Bogardus C, Howard B, Ravussin E: A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213–1217, 1995PubMedGoogle Scholar
  398. 398.
    Mathew M, Tay C, Belfort R, Gastaldelli A, Wang S, Cusi K: A 48-hour elevation in plasma FFA, but not hyperglycemia, Iimpairs insulin secretion in lean Mexican-American subjects genetically predisposed to type 2 diabetes. Diabetes 56 (s1):A674, 2007Google Scholar
  399. 399.
    Chiasson JL, Rabasa-Lhoret R: Prevention of type 2 diabetes: insulin resistance and beta-cell function. Diabetes 53 (Suppl. 3):S34–38, 2004PubMedGoogle Scholar
  400. 400.
    Pan X-R, Li G-W, Hu Y-H, et al.: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 20:537–544, 1997PubMedGoogle Scholar
  401. 401.
    Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Aunola S, Cepaitis Z, Moltchanov V, Hakumaki M, Mannelin M, Martikkala V, Sundvall J, Uusitupa M: the Finnish Diabetes Prevention Study G: prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350, 2001PubMedGoogle Scholar
  402. 402.
    Group DPPR: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403, 2002Google Scholar
  403. 403.
    Laaksonen DE, Lindstrom J, Lakka TA, Eriksson JG, Niskanen L, Wikstrom K, Aunola S, Keinanen-Kiukaanniemi S, Laakso M, Valle TT, Ilanne-Parikka P, Louheranta A, Hamalainen H, Rastas M, Salminen V, Cepaitis Z, Hakumaki M, Kaikkonen H, Harkonen P, Sundvall J, Tuomilehto J, Uusitupa M: physical activity in the prevention of type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 54:158–165, 2005PubMedGoogle Scholar
  404. 404.
    Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, Stave CD, Olkin I, Sirard JR: Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298:2296–2304, 2007PubMedGoogle Scholar
  405. 405.
    Torgerson J, Hauptman J, Boldrin M, Sjostrom L: XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27:155–161, 2004PubMedGoogle Scholar
  406. 406.
    Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, Group. ftS-NTR: acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077, 2002PubMedGoogle Scholar
  407. 407.
    The Diabetes Prevention Program Research Group: Effects of withdrawal from metformin on the development of diabetes in the Diabetes Prevention Program. Diabetes Care 26:977–980, 2003Google Scholar
  408. 408.
    Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, Azen SP: Preservation of pancreatic b-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 51:2796–2803, 2002PubMedGoogle Scholar
  409. 409.
    Group TDPPR: Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 54:1150–1156, 2005Google Scholar
  410. 410.
    Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Kawakubo M, Buchanan TA: Effect of pioglitazone on pancreatic b-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes 55:517–522, 2006PubMedGoogle Scholar
  411. 411.
    The DREAM (Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication) Trial Investigators: Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105, 2006Google Scholar
  412. 412.
    DeFronzo RA et al. ACTos NOW for the prevention of diabetes (ACTNOW) study. American diabetes Assoc. Meeting 2008Google Scholar
  413. 413.
    Lachin J, Christophi C, Edelstein S, Ehrmann DA, Hamman R, Kahn S, Knowler W, Nathan D, on behalf of the DPP Research Group: Factors associated with diabetes onset during metformin versus placebo therapy in the Diabetes Prevention Program. Diabetes 56:1153–1159, 2007PubMedGoogle Scholar
  414. 414.
    Bogacka I, Xie H, Bray GA, Smith SR: The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care 27:1660–1667, 2004PubMedGoogle Scholar
  415. 415.
    Targher G: Associations between plasma adiponectin concentrations and liver histology in patients with nonalcoholic fatty liver disease. Clin Endocrinol 64:679–683, 2006Google Scholar
  416. 416.
    Brown J, Plutzky J: Peroxisome proliferator activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115:518–533, 2007PubMedGoogle Scholar
  417. 417.
    Brettenthaler N, De Geyter C, Huber PR, Keller U: Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 89:3835–3840, 2004PubMedGoogle Scholar
  418. 418.
    Hanefeld M, Marx N, Pfutzner A, Baurecht W, Lubben G, Karagiannis E, Stier U, Forst T: Anti-inflammatory effects of pioglitazone and/or simvastatin in high cardiovascular risk patients with elevated high sensitivity C-reactive protein: the PIOSTAT study. J Am Coll Cardiol 49:290–297, 2007PubMedGoogle Scholar
  419. 419.
    Xiang AH, Hodis HN, Kawakubo M, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Liu C-R, Liu C-H, Buchanan TA: Effect of pioglitazone on progression of subclinical atherosclerosis in non-diabetic premenopausal Hispanic women with prior gestational diabetes. Atherosclerosis, in Press; corrected proof, 2007Google Scholar
  420. 420.
    Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Standl E, Murray GD, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland KR, Golay A, Heine RJ, Koranyi L, Laakso M, Moka ÅM: Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in MacroVascular Events): a randomised controlled trial. Lancet 366:1279–1289, 2005PubMedGoogle Scholar
  421. 421.
    Wilcox R, Bousser M-G, Betteridge DJ, Schernthaner G, Pirags V, Kupfer S, Dormandy J, for the PI: Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective PioglitAzone Clinical Trial in MacroVascular Events 04). Stroke 38:865–873, 2007PubMedGoogle Scholar
  422. 422.
    Erdmann E, Dormandy JA, Charbonnel B, Massi-Benedetti M, Moules IK: The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study. J Am Coll Cardiol 49:1772–1780, 2007PubMedGoogle Scholar
  423. 423.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE: Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298:1180–1188, 2007PubMedGoogle Scholar
  424. 424.
    Nissen SE, Wolski K: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471, 2007PubMedGoogle Scholar
  425. 425.
    Singh S, Loke YK, Furberg CD: Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298:1189–1195, 2007PubMedGoogle Scholar
  426. 426.
    Mathew M, Kumar P, Ali R, Wang S, Cusi K: Insulin secretion in subjects genetically predisposed to T2DM and impaired glucose tolerance (IGT) is readily susceptible to FFA-induced lipotoxicity Diabetes 57 (Suppl. 1) (abstract), 2008Google Scholar
  427. 427.
    The Diabetes Prevention Program Research Group: Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the Diabetes Prevention Program: effects of lifestyle intervention and metformin. Diabetes 54:2404–2414, 2005Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kenneth Cusi
    • 1
  1. 1.Diabetes DivisionDepartment of Medicine, The University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations