Skip to main content

Bioactive Bioceramics

  • Chapter

Part of the book series: Orthopedic Biology and Medicine ((OBM))

Abstract

Bioactive bioceramics as alternative to autografts and allografts include: bioactive glass, calcium carbonate (natural coral), calcium sulfate and calcium phosphates of biologic (derived from bovine bone, coral and marine algae) or synthetic origin. These bioceramics are available as granules or blocks (dense or porous), specially designed shapes (wedges, cylinders), cements or as coatings on orthopedic or dental implants. Properties of bone that are emulated by bioceramics include: interconnecting porosity, degradation and osteoconductivity. Osteoinductivity is introduced by mixing the bioceramics with osteogenic molecules (e.g., growth factors, demineralized bone matrix). Some calcium phosphate-based bioceramics were observed to have osteoinductive properties attributed to yet-to-be-defi ned critical geometry. Difference in composition and syntheses or processing methods affect the properties of the bioceramics. Applications of these bioceramics are described. The applications are limited to non-load bearing areas because of the poor mechanical strengths of these bioceramics. In addition to their application as bone graft substitutes or autograft extenders, some of these bioceramics are effi cient carriers for growth factors or drugs, and as scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 1. Ring ME. Dentistry: An Illustrated History. New York, Abradale Press 1985;15–36.

    Google Scholar 

  2. 2. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 1995;20:1055–1060.

    PubMed  CAS  Google Scholar 

  3. 3. Younger EM, Chapman MW (1989). Morbidity at bone graft donor sites. J Orthop Trauma 1989;3:192–195.

    PubMed  CAS  Google Scholar 

  4. 4. Hench LL. Bioceramics: From concept to clinics. J Am Ceram Soc 1991;74:1487– 1570.

    CAS  Google Scholar 

  5. 5. Hench LL, Paschall HA. Direct bonding of bioactive glass ceramics to bone and muscle. J Biomed Mater Res 1973;4:25–42.

    Google Scholar 

  6. 6. Hench LL, Wilson JW. Surface active biomaterials. Science 1984;226:251–254.

    Google Scholar 

  7. 7. Osborn JF, Newesely H:The material science of calcium phosphate ceramic. Biomaterials 1980; 1:108–111.

    PubMed  CAS  Google Scholar 

  8. 8. Christel P (1992). Biocompatibility of surgical-grade dense polycrystalline alumina. Clin Orthop 1992;282:210–218.

    Google Scholar 

  9. 9. Hulbert SF. History of Bioceramics. Ceramics Int 1982;8:131–140.

    CAS  Google Scholar 

  10. 10. Alexander H, Parsons JR, Ricci JL, Bajpai PK, Weiss AB. Calcium based ceramics and composites in bone reconstruction. ICRC Critical Reviews in Biocompatibility 1987;4: 43–77.

    CAS  Google Scholar 

  11. Aoki H. Science and Medical Applications of Hydroxyapatite. Tokyo, Takayama Press, 1991.

    Google Scholar 

  12. Boyan B, McMillan J, Lohmann CH, Schwartz Z. Bone graft substitutes; Basic information for successful clinical use with special focus on synthetic graft substitutes. In: Laurencin CT (ed). Bone Graft Substitutes. 2003; 231–259.

    Google Scholar 

  13. 13. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Rel Res 2002;395: 44–52.

    Google Scholar 

  14. 14. Damien E. Revell PA. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. J Appl Biomat Biomech 2004;2:65–75.

    CAS  Google Scholar 

  15. 15. deGroot K. Ceramics of calcium phosphates: Preparation and properties. In: Bioceramics of Calcium Phosphates. Boca Raton, CRC Press, 1983; 100–114.

    Google Scholar 

  16. 16. Demers C. Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L. Natural coral exoskeleton as a bone graft substitute: A review. Biomed Mater Eng 2002;12:15–35.

    PubMed  Google Scholar 

  17. 17. Haggard WO, Richelsoph KC, Parr JE. Calcium sulfate-based bone void substitutes. In: Laurencin CT (ed). Bone Graft Substitutes. ASTM Mono6, 2003; 260–270.

    Google Scholar 

  18. 18. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Rel Res 1981;157: 259–278.

    CAS  Google Scholar 

  19. 19. Larsson S, Bauer TW. Use of injecTablecalcium phosphate cement for fracture fixation: A review. Clin Orhop Rel Res 2002;395: 23–32

    Google Scholar 

  20. 20. LeGeros RZ. Calcium phosphate materials. In: NIH-NIDR State of the Science Conference on Dental Materials, September 1986. Adv Dent Res 1988;3:164–180.

    Google Scholar 

  21. 21. LeGeros RZ. Materials for bone repair, augmentation and implant coatings. In: Niwa S, Perren SM, Hattori T (eds). Biomechanics in Orthopedics. Springer-Verlag, Tokyo, 1992;147–174.

    Google Scholar 

  22. 22. LeGeros RZ. Properties of osteoconductive biomaterials: Calcium phosphates. Clin Orfhop Rel Res 2002;395: 81–98.

    Google Scholar 

  23. 23. Niwa S, LeGeros RZ. InjecTablecalcium phosphate cements for repair of bone defects. In: Lewandrowski K-U, Wise DL, Trantolo DJ, Gresser, JD et al (eds). Tissue Engineering and Biodegradable Equivalents: Scientific and Clinical Applications. (Marcel Dekker Inc, New York) 2002;385–500.

    Google Scholar 

  24. Ricci JL, Alexander H, Nadami P. Biological mechanisms of calcium sulfate replacement by bone. In Davis J (ed) Toronto, emsquared inc. 2001; 332–345.

    Google Scholar 

  25. 25. Beevers CA, McIntyre D. The atomic structure of fluorapatite and its relation to that of tooth and bone mineral. Mineral Mag 1946;27:254–259.

    CAS  Google Scholar 

  26. 26. Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature 1964;294:1050–1053.

    Google Scholar 

  27. 27. LeGeros RZ. Apatites in biological systems. Prog. Crystal Growth Charact 1981;4:1-45.

    CAS  Google Scholar 

  28. LeGeros RZ. Calcium Phosphates in Oral Biology and Medicine. Monographs in Oral Biology. H. Myers (ed). Vol. 15. Karger, Basel,1991.

    Google Scholar 

  29. 29. Rey C, Renugopalakrishnan V, Collins B. Fourier transform infrared spectro-scopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 1991;49:251–258.

    PubMed  CAS  Google Scholar 

  30. 30. McConnell D. The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissue. J Dent Res 1952;31:53–63.

    PubMed  CAS  Google Scholar 

  31. Klawitter JJ. A Basic Investigation of Bone Growth in Porous Materials. PhD Thesis. Clemson, Clemson University 1979.

    Google Scholar 

  32. 32. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxya-patite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 1997;121:317–324,

    PubMed  CAS  Google Scholar 

  33. Hubbard W. Physiological Calcium Phosphates as Orthopedic Biomaterials. PhD thesis, Marquette University, 1974.

    Google Scholar 

  34. 34. Li S, De Wijn JR, Li J, Layrolle P, deGroot K. Macroporous biphasic calcium phosphate scaffold with high permeabiity/porosity ratio. Tissue Eng 2003;9:535–548.

    PubMed  CAS  Google Scholar 

  35. 35. Munar M, Udoh K, Nakagawa M, Matsuya S, Ishikawa K. Three dimensional interconnected pore scaffold as bone defect filler: The effects of sintering temperatures on the physical properties of α-TCP. J Jpn Soc Dent Mat Dev 2003;22:147.

    Google Scholar 

  36. 36. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphates: Preparation and properties. J Mater Sci. Mat Med 2003;14: 201–209.

    CAS  Google Scholar 

  37. 37. Baron R, Neff L, Louvard D. Cell mediated extracellular acidification and bone resorption: Evidence for a low pH in resorbing laculnae and localization of 100kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 1985;101:2210–2222.

    PubMed  CAS  Google Scholar 

  38. 38. Davies JE. In vitro modeling of the bone/implant interface. Anat Rec 1996;245: 426–445.

    PubMed  CAS  Google Scholar 

  39. 39. Heymann D, Guicheux J, Rousselle AV. Ultrastructural evidence in vitro of osteo-clast-induced degradation of calcium phosphate ceramic by simultaneous resorption and phagocytosis mechanisms. Histol Histopathol 2001;16:37–44.

    PubMed  CAS  Google Scholar 

  40. 40. LeGeros RZ (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mat 1993;14:65–88.

    CAS  Google Scholar 

  41. 41. Koerten HK, van der Meulen J. Degradation of calcium phsophate ceramics. J Biomed Mater Res 1999;44:78–86.

    PubMed  CAS  Google Scholar 

  42. 42. LeGeros RZ, Bautista C, Styner D, LeGeros JP,Vijayraghavan TV, Retino M, Valdecanas A. Comparative properties of bioactive bone graft materials. Bioceramics 1995:8: 81–87.

    CAS  Google Scholar 

  43. 43. Oonishi H, Hench LL, Wilson J, Sugihara F. Quantitative comparison of bone growth behavior in granules of BioglassR, A-W glass –ceramic, and hydroxyapatite. J Biomed Mater Res 2000;51:37–46.

    PubMed  CAS  Google Scholar 

  44. LeGeros RZ, Orly I, Gregoire M, Kazimiroff J. Comparative in vitro properties of HA ceramic and coralline HA. Apatite Vol 1. Japanese Association of Apatite Science 1992;229–235.

    Google Scholar 

  45. 45. LeGeros RZ, Daculsi G. In vivo transformation of biphasic calcium phosphate ceramics: Ultrastructural and physico-chemical characterizations. In: Yamamuro T, Hench L, Wilson -Hench J (eds). Handbook of Bioactive Ceramics Vol 11. CRC Press, Boca Raton, 1990;17–28.

    Google Scholar 

  46. 46. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β?-TCP in periodontal osseous defects. J Periodontol 1992;63:729–735.

    PubMed  CAS  Google Scholar 

  47. 47. Ohgushi H, Okumura M, Tamai s, Shors EC and Caplan AI. Marrrow cel induced osteo-genesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990;24:1563–1570.

    PubMed  CAS  Google Scholar 

  48. 48. Frondoza CG, LeGeros RZ, Hungerford DS. Effect of bovine bone-derived materials on human osteoblast-like cells in vitro. Bioceramics 1998;11:289–291.

    Google Scholar 

  49. 49. Fujimori Y, Mishima H, Sugaya K, Sakae T, LeGeros RZ, Koawa Y, Nagura H. In vitro interactions of osteoclast-like cells and hydroxyapatite ceramics. Bioceramics 1998:11:335–338.

    Google Scholar 

  50. LeGeros RZ, Gatti AM, Kijkowska R, Mijares DQ, LeGeros JP. Mg-substituted tricalcium phosphates: formation and properties. Key Engineer Mater 2004; 254-256:127–130.

    Google Scholar 

  51. 51. Porter AE, Buckland T, Hing K, Best SM, Bonfield W. Comparison of in vitro dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 2003;24:4609–4620.

    PubMed  CAS  Google Scholar 

  52. 52. Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxylapatite with substituted magnesium, zinc, cadmium and yttrium II: Mechanisms of osteoblast adhesion. J Biomed Mater Res 2002;59:312–317.

    PubMed  CAS  Google Scholar 

  53. 53. LeGeros RZ, Kim YE, Kijkowska R, Zurita V, Bleiwas C, Huang PY, Edwards B, Dimaano F, LeGeros JP. HA/ACP ratios in calcium phosphate coatings on dental and orthopedic implants: Effect on properties. Bioceramics 1998; 11:181–184.

    CAS  Google Scholar 

  54. 54. LeGeros RZ, LeGeros JP, Kim Y, Kijkowska R, Zheng R, Bautista C, Wong JL. Calcium phosphates in plasma-sprayed HA coatings. Ceramic Transactions 1995;48:173–189.

    CAS  Google Scholar 

  55. 55. Kokubo T. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta 1996;280:479–490.

    Google Scholar 

  56. 56. Heughebaert M, LeGeros RZ, Gineste M, Bonel G. Physico-chemical characterization of deposits associated with HA-ceramics implanted in non-osseous sites. J Biomed Mater Res 1988;23: 257–268.

    Google Scholar 

  57. 57. LeGeros RZ, Daculsi G, Orly I, Gregoire M, Heughebaert, Gineste M, Kijkowska R. Formation of carbonate apatite on calcium phosphate materials: Dissolution/ precipitation processes. In: Ducheyne P, Kokubo T, Van Bitterswijk (eds). Bone-Bonding. Reed Healthcare Communications, The Netherlands, 1992; 201–212.

    Google Scholar 

  58. LeGeros RZ, Nery E, Lynch E, Daculsi G. In vivo transformation of biphasic calcium phosphate of varying βTCP/HA ratios: Ultrastructural characterization. Third World Biomaterials Congress, Japan 1988;35.

    Google Scholar 

  59. LeGeros RZ, Orly l, Gregoire M, Daculsi G. Substrate surface dissolution and interfacial biological mineralization. In: Davies JE (ed). The Bone-Biomaterial Interface. Chapter 7. Univ of Toronto Press,1991; 76–89.

    Google Scholar 

  60. 60. Urist MR, Silverman BF, Buring K, Dubuc Fl, Rosenberg J. The bone induction principle. Clin Orthop 1967;53:243–283.

    PubMed  CAS  Google Scholar 

  61. 61. Chang Y-S, Oka M, Nakamura T, Gu H-O. Bone remodeling around implanted ceramics. J Biomed Mater Res 1996;30:117–124.

    PubMed  CAS  Google Scholar 

  62. 62. Kobuki Y, Takita H, Kobayashi D. BMP-induced osteogenesis on the surface of hydroxyapatitte with geometrically feasible and non-feasible structures: Topology of osteogenesis. J Biomed Mater Res 1998;39:190–199.

    Google Scholar 

  63. 63. Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxya-patite to delivery system induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992;12: 202–212.

    PubMed  CAS  Google Scholar 

  64. 64. Ripamonti, U, Crooks J, Kirbride A. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: Geometric induction of bone formation. South Africa J Science 1999;95:335–343.

    CAS  Google Scholar 

  65. 65. Toth JM, Lynch KL, A HD. Ceramic induced osteogenesis following subcutaneous implantation of calcium phosphates. Bioceramics 1993;6:9–13.

    CAS  Google Scholar 

  66. Reddi AH. Morphgenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells and biomimetic biomaterials. Tissue Eng 200;6:351–359.

    Google Scholar 

  67. 67. LeNihouhanne D, Daculsi G, Gauthier O, Saffarzadeh A, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 2005; 36:1086–1093.

    Google Scholar 

  68. 68. Kokubo T. Novel biomedical materials based on glasses. In: Shackelford JF (ed). Bioceramics. applications of ceramic and glass materials in medicine. Trans Tech Publications:USA,1999;65–81.

    Google Scholar 

  69. 69. Gross UM, Muller-Mai C, Voigt C. CeravitalR bioactive glass ceramics. In: Hench LL, Wilson J (eds). An Introduction to Bioceramics. World Scientific:London, 1993;105–124.

    Google Scholar 

  70. 70. Abe Y, Hosonoo H, Tsutsumi S, Shinya A, Yokozuka S. Bioceramics 1988;1: 181–186.

    Google Scholar 

  71. 71. LeGeros RZ, Lee Y-K. Synthesis of amorphous calcium phosphates for hard tissue repair using conventional melting technique. J Mat Sci 2004;39: 5577–5579.

    CAS  Google Scholar 

  72. 72. Moon H-J, Kim H-N, Kim K-M, Choi S-H, Kim C-K, Kim K-D, LeGeros RZ, Lee Y-K. Bone formation in calvaria defects of Sprague-Dawley Rat by transplantation of calcium phosphate glass. J Biomed Mater Res. 2005;74A:497–502.

    CAS  Google Scholar 

  73. 73. Dressman H. Uber knochenplombierun. Beitr Klin Chir 1892;9:804–810.

    Google Scholar 

  74. 74. Mamidwar SS, Ricci JL, Alexander H. Bone regeneration with calcium sulfate-based bone grafts. Inside Dent 2006;Special issue 2:1–8. Roy DM, Linnehan SK. Hydroxyapatite formed from coral-skeletal carbonate by hydrothermal exchange. Nature 1974; 247:220–222.

    Google Scholar 

  75. 75. Roy DM, Linnehan SK. Hydroxyapatite formed from coral-skeletal carbonate by hydrothermal exchange. Nature 1974; 247:220–222.

    PubMed  CAS  Google Scholar 

  76. Shors EC. The development of coralline porous ceramic bone graft substitutes. In: Laurencin CT (ed). Bone Graft Substitutes. ASTM Mono6, 2003; 271–288.

    Google Scholar 

  77. 77. Valentini P, Abensur D, Wenz B. Sinus grafting with porous bone mineral (Bio-Oss) for implant placement: A 5-year study on 15 patients. In J Peridontol Restor Dent 2000;20:245–254.

    CAS  Google Scholar 

  78. 78. Dard M, Bauer J, Lidendorfer H, Wahlig H, Dingeldein E (1994). Preparation, evaluation, physico-chmiques et biologiques d'une ceramic d'hydroxyapatite issue de l'os bovine. Acta Odont Stomat 1994;185:61–69.

    Google Scholar 

  79. 79. Albee FH, Morrison HF. Studies in bone growth. Triple calcium phosphate as a stimulus to osteogenesis. Ann Surg 1920;71:32–36.

    PubMed  CAS  Google Scholar 

  80. 80. Nery EB, Lynch KL, Hirthe WM, Mueller KH. Bioceramics implants in surgically produced infrabony defecs. J Periodontol 1975;46:328–339.

    PubMed  CAS  Google Scholar 

  81. 81. LeGeros RZ. Variability in βTCP/HA ratios in sintered apatites. J Dent Res 1986;65:292.

    Google Scholar 

  82. 82. Daculsi G, Laboux O, Marad O, Weiss P. Current state of the art of biphasic calcium phosphate ceramics. J Mater Sci Mater Med 2003;14:195–200.

    PubMed  CAS  Google Scholar 

  83. 83. Jegoux F, Goyenvalle E, Bagot D'arc M, Aguado E, Daculsi G. In vivo performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant. Arch Orthop Trauma Surg 2005;125:153–159.

    PubMed  Google Scholar 

  84. 84. Malard O, Guicheux J, Bouler J-M, Gauthier O, de Montreuil CB, Aguado E, Pilet P, LeGeros R, Daculsi G Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone 2005:36:323–330.

    PubMed  CAS  Google Scholar 

  85. 85. Fujibayashi S, Jitsuhiko S, Tanaka C. Matsushita M, Nakamura T. Lumbar posterolateral fusion with biphasic calcium phosphate ceramic. J Spinal Disord 2001;14:214–221.

    PubMed  CAS  Google Scholar 

  86. 86. Schwartz C, Liss P, Jacquemaire B, Lecestre P, Frayssinet P. Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results. J Mat Sci Mat Med 1999;10:821–825.

    CAS  Google Scholar 

  87. 87. Weiss P, Gauthier O, Bouler J-M, Grimaldi G, Daculsi G. InjecTablebone substitute using a hydrophilic polymer. Bone 1999;25:675–705.

    Google Scholar 

  88. Wykrota LL, Garrido Ca. Wykrota FHI. Clinical evaluation of biphasic calcium phosphate ceramic used in orthopedic lesions. In: LeGeros RZ, LeGeros JP (eds). Bioceramics 1998;11: 641–644.

    Google Scholar 

  89. 89. LeGeros RZ, LeGeros JP. Dense hydroxyapatite. In: Hench LL, Wilson J (eds). An Introduction to Bioceramics. Chapter 9. World Scientific, London, 1993;139–180.

    Google Scholar 

  90. Bonfield W. Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement. In: Ducheyne P, Lemons H (eds). Bioceramics: Materials Characteristics vs. In Vivo Behavior. Ann. NY Acad Sci 1998;523:173–177.

    Google Scholar 

  91. 91. Nishikawa T, Masuno K, Tominaga K, Koyama Y. Bone repair analysis in a novel biodegradable hydroxyapatite/collagen composite implanted in bone. Implant Dent 2005;14:252–260.

    PubMed  Google Scholar 

  92. 92. Salgado T, LeGeros JP, Wang J-L. Effect of alumina and apatitic abrasives on Ti alloy substrates. Bioceramics 1998;11:683–686.

    CAS  Google Scholar 

  93. LeGeros JP, Daculsi G, LeGeros RZ. Tissue response to grit blasted Ti alloy. Proc 25th International Society of Biomaterials.1998.

    Google Scholar 

  94. 94. Ishikawa K, Miyamaoto Y, Nagayama M, Asaoka K. Blast coating method: New method of coating titanium surface with hydroxyapatite at room temperature. J Biomed Mater Res (Appl Biomater)1997;38:129–134.

    PubMed  CAS  Google Scholar 

  95. 95. Cornell C, Lane J, Chapman M. Multicenter trial of Collagraft™ as bone graft substitute. J Orthop Trauma 1991;5:1–8

    PubMed  CAS  Google Scholar 

  96. 96. LeGeros RZ, Chohayeb A, Shulman A. Apatitic calcium phosphates: possible restorative materials. J Dent. Res 1982;61: 343.

    Google Scholar 

  97. Brown WE, Chow LC. Dental restorative cement pastes. US patent no. 4518430, 1985.

    Google Scholar 

  98. 98. Constanz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, Van Wagner M. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995;267: 1796–1799.

    Google Scholar 

  99. 99. Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource™ Hydroxyapatite cement. A novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 1998;43:428–432.

    PubMed  CAS  Google Scholar 

  100. 100. Knaack D, Goal MEP. Ailova M, Lee DD. Resorbable calcium phosphate bone substitute. J Biomed Mater Res Appl Biomater 1998;43:399–409.

    CAS  Google Scholar 

  101. 101. Lee DD. Tofighi A, Aiolova M. α-BSMR:A biomimetic bone substitute and drug delivery vehicle. Clin Orthop 1999;367(Suppl)S396–S405.

    PubMed  Google Scholar 

  102. Khairoun I, Gauthier O, LeGeros RZ, Daculsi G, Bouler JM. A novel resorbable and injecTablecalcium phosphate cement for bone repair: Compressive strength, porosity and in vivo studies. Proc 19th Eur Conf Biomat, Sorrento 2005. (abstract).

    Google Scholar 

  103. 103. Geesink RGT. Osteoconductive coatings for total joint arthoplasty. Clin Orhop Rel Res 2002;395:53–65.

    Google Scholar 

  104. 104. LeGeros JP, LeGeros RZ, Burgess A, Edwards B, Zitelli J. X-ray diffraction method for the quantitative characterization of calcium phosphate coatings. In: Horowitz E, Parr JE (eds). Characterization and Performance of Calcium Phosphate Coatings for Implants. ASTM STP 1196 American Society for Testing Materials, Philadelphia, 1994; 33–42.

    Google Scholar 

  105. 105. Livingstone TL, Daculsi G. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J Mater Sci Mat Med 2003;14:211–218.

    Google Scholar 

  106. 106. Mankani MH, Kuznetsov SA, Fowler B, Kingman A, Robey PG. In vivo bone formation by human bone marrow stromal cells: effect of carrier particle size and shape. Biotech Bioeng 2001;72:96–107.

    CAS  Google Scholar 

  107. 107. Mastrogiacomo M, Scalglione S, Marinetti R, Docini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate ceramics. Biomaterials 2006;27:3230–3237.

    PubMed  CAS  Google Scholar 

  108. 108. Muraglia MM, Peyrin KV, Rustichelli F, Crovace A, Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 2005;8:277–284.

    PubMed  Google Scholar 

  109. Texiera C, Karkia C, Neweliksky Y, LeGeros RZ. Biphasic calcium phosphate: A scaffold for growth plate chondrocytes. Tissue Eng M 2006 (in press).

    Google Scholar 

  110. 110. Bagot D'Arc M, Daculsi G. Micro-macroporous biphasic ceramics and fibrin sealant as a moldable material for bone reconstruction in chronic otitis media surgery. A 15 years experience. J Mater Sci Mater Med 2003;14: 229–231.

    PubMed  Google Scholar 

  111. 111. Ono K, Yamamuro T, Nakamura T, Kokubo T. Apatite-wollastonite containing glass-ceramic-fibrin mixtures as bone defect filler. J Biomed Mater Res 1988;22: 869–885.

    PubMed  CAS  Google Scholar 

  112. 112. Dennisen H, van Beck E, Lowik C. Papapoulos S, van dem Hoof A. Ceramic hydroxyapatite implants for the release of bisphosphonate. Bone Miner 1994;25:1223–1234.

    Google Scholar 

  113. 113. Seshima H, Yoshinari M, Takemoto S, Hattori M, Kawada E. Inous T, Oda Y. Control of bisphosphate release using hydroxyapatite granules. J Biomed Mater Res Part B. Appl Biomater 2006; 78B:215–221.

    CAS  Google Scholar 

  114. 114. Korkusuz F, Uchida A, Shinto Y, et al. Experimental implant-related osteomyelitis treated by antibiotic-calcium hydroxyapatite ceramic composites. J Bone Joint Surg 1993;75B: 111–114.

    Google Scholar 

  115. 115. Shirtiff ME, Valhoun JH, Mader JT. Experimental osteomylitis treatment with antibiotic-impregnated hydroxyapatite. Clin Orthop Rel Res 2002;401:239–247.

    Google Scholar 

  116. 116. McKee M, Schemitsch F, Wild I. Bone substitute with tobramycin heals non-infected non-unions. Orthop Today 2000; 20:1–2.

    Google Scholar 

  117. 117. Orsini G, Ricci J, Scarano A, Pecora G, Petrone G, Iezzi G, Piattelli A. Bone-defect healing with calcium sulfate particles and cement: an experimental study in rabbit. J. Biomed Mater Res Part B: Appl Biomater 2004;68B:199–208.

    CAS  Google Scholar 

  118. 118. Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Rel Res 2003;406:228–236.

    Google Scholar 

  119. 119. Ozawa M. Experimental study on bone conductivity and absorbability of the pure β-TCP. J Jpn Soc Biomater 1995;13:67–175.

    Google Scholar 

  120. Zhang W. Basic research and clinical application of augmented screw fixation with calcium phosphate bone cement for the proximal femoral fractures. PhD thesis, Norman Bethune University of Medical Science, China, 2000.

    Google Scholar 

  121. Khairoun I, LeGeros RZ, Daculsi G, et al. Macroporous resorbable and injectible calcium phosphate based cements (MCPC). Provisional patent application no. PCT/US2005/004084 (2005).

    Google Scholar 

  122. 122. Guillemin G, Patat J, Fournie J, Chatail M. The use of coral as a bone graft substitute. J Biomed Mater Res 1987;21:557–567.

    PubMed  CAS  Google Scholar 

  123. 123. Kenesi C, Vopisin MC, Dhem A. Osteotomie tibiale d'addition interne calee par u coin corail. Chirurgie 1997;122:379–382.

    PubMed  CAS  Google Scholar 

  124. 124. Vuola J, Bhling T, Kinnnunen J, Hirvensalo E, Asko-Seljavaara S. Natural coral as bone-defect filling material. J Biomed Mater Res 2000;51:117–122.

    PubMed  CAS  Google Scholar 

  125. 125. Gao TJ, Lindholm TS, Kommonen B. The use of a coral composite implant containing bone morphogenetic protein to repair a segmental tibial defect in sheep. Int Orthop 1997;21:194–200.

    PubMed  CAS  Google Scholar 

  126. 126. Wilson J, Yii-Urpo A, Risto-Pekka H. Bioactive glasses: clinical applications. In: Hench LL, Wilson J (eds). An Introduction to Bioceramics. World Scientific: London, 1993;63–74.

    Google Scholar 

  127. 127. Yamamuro T. A/W glass-ceramic: Clinical applications. In: Hench LL, Wilson J (eds). An Introduction to Bioceramics. World Scientific:London, 1993;89–104.

    Google Scholar 

  128. 128. Peltier L. The use of plaster of Paris to fill large defects in bones. Am J. Surg 1959;97:311–315.

    PubMed  CAS  Google Scholar 

  129. 129. Kelly CM, Wilkins RM, Biteliis S. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clin Orthop 2000;381: 42–50.

    Google Scholar 

  130. 130. Metzger DS, Driskell TD, Paulstrud JR. Tricalcium phosphate ceramic: a resorbable bone implant: Review and current status. J Am Dent Assoc 1982;105:1035–1048.

    Google Scholar 

  131. 131. Yamamoto H, Shibata T, Ikeuti M. Calcium phosphate cement injection for oste-oporotic vertebral fracture. Clin Orthop Surg 1999;34:435–442.

    CAS  Google Scholar 

  132. 132. Capello WN, D'Antonio JA, Feinberg JR, Manley MT. Hydroxyapatite coated ítems in younger and older pateints with hip artritis. Clin Orthop Rel Res 2002;405:92–100.

    Google Scholar 

  133. 133. Linton JL, Sohn B-VII, Yook J-I, LeGeros RZ. Effects of calcium phosphate ceramic bone graft materials on permanent teeth eruption in beagles. Cleft Palate-Craniofacial J 2002;39:197–207.

    Google Scholar 

  134. Sakae T, Ookubo T, LeGeros RZ. Bone formation induced by several carbonate-and fluoride-containing apatite implanted in dog mandibles. Key Engineer Mater 2003;240–242: 395–398.

    Google Scholar 

  135. LeGeros JP, Lin S, Mijares D, Dimaano F, LeGeros RZ. Electrochemically deposited calcium phosphate coatings on titanium alloy substrates. Key Engineer Mat 2005;284–286:247–250.

    Google Scholar 

  136. 136. Lin S, LeGeros RZ, LeGeros JP. Adherent octacalciumphosphate coating on titanium alloy using a modulated electrochemical deposition method. J Biomed Mater Res 2003;66A:810–828.

    Google Scholar 

  137. 137. Rohanizadeh R, LeGeros RZ, Harsono M, Benavid A. Adherent apatite coating on titanium substrate using chemical deposition. J Biomed Mater Res 2005; 72A: 428–438

    CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to acknowledge the professional collaboration of the following colleagues for some of the work cited in this chapter: Drs. R. Rohanizadeh, D. Mijares, S. Lin, and Prof. C. Teixeira (New York University College of Dentistry); Prof. T Sakae (Nihon University School of Dentistry at Matsudo), Dr. T. Ookubo (Japan Institute for Advanced Dentistry, Nagasaki), Prof. A. Gatti (University of Modena, Italy), Prof. R. Kijkowka (Technological University of Krakow) and the technical assistance of Ms. F. Yao and Ms. Q. Xi in the preparation of some of the figures for this chapter. The support of research grants from NIDCR/NIH, Calcium Phosphate Research Funds and L. Linkow Professorship Research Funds for some of our work cited in this chapter is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

LeGeros, R.Z., Daculsi, G., LeGeros, J.P. (2008). Bioactive Bioceramics. In: Pietrzak, W.S. (eds) Musculoskeletal Tissue Regeneration. Orthopedic Biology and Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-239-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-239-7_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-909-3

  • Online ISBN: 978-1-59745-239-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics