Skip to main content

Nutritional Supplements to Enhance Recovery

  • Chapter
  • 2855 Accesses

Abstract

The ability to recover from intense exercise often separates good athletes from great ones. In the past, “recovery” often simply included rest, physical modalities (e.g., massage, hydration therapy) and meeting basic nutritional needs for fluid and energy intake. Today, athletes have a number of additional options to help them recover from high intensity training, one of which includes the judicious use of dietary supplements. This chapter briefly reviews nutritional strategies that have a strong theoretical background for enhancing rehydration/electrolyte balance, replenishing energy reserves, minimizing oxidative damage, and stimulating muscle repair.

Key words

  • Rehydration
  • Electrolyte
  • Antioxidant
  • Essential amino acids
  • l-Carnitine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-59745-231-1_12
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-59745-231-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

References

  1. Montain SJ, EF Coyle. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992;73:1340–1350.

    Google Scholar 

  2. Nose H, T Morimoto, K Ogura. Distribution of water losses among fluid compartments of tissues under thermal dehydration in the rat. Jpn J Physiol 1983;33:1019–1029.

    Google Scholar 

  3. Costill DL, Sparks KE. Rapid fluid replacement after thermal dehydration. J Appl Physiol 1973;34:299–303.

    Google Scholar 

  4. Nose H, Mack GW, Shi X, Nader ER. Role of osmolality and plasma volume during rehydration in humans. J Appl Physiol 1988;65:325–331.

    Google Scholar 

  5. Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ. Post-exercise rehydration in man: effects of volume consumed and sodium content. Med Sci Sports Exerc 1996;28:1260–1271.

    Google Scholar 

  6. Meyer F, Bar-Or O. Fluid and electrolyte loss during exercise. Sports Med 1994;18:4–9.

    Google Scholar 

  7. Convertino, VA, LE Armstrong, Coyle EF, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 1996;28: i–vii.

    Google Scholar 

  8. Casa, DJ, Armstrong LE, Hillman SK, et al. National Athletic Trainers’ Association position statement: fluid replacement for athletes. J Athl Train 2000;35:212–224.

    Google Scholar 

  9. Maughan RJ, Owen JH, Shirrefs SM, Leiper JB. Post-exercise rehydration in man: effects of electrolyte addition to ingested fluids. Eur J Appl Physiol 1994;69:209–215.

    Google Scholar 

  10. Yawata T. Effect of potassium solution on rehydration in rats: comparison with sodium solution and water. Jpn J Physiol 1990;40:369–381.

    Google Scholar 

  11. Maughan RJ. Restoration of water and electrolyte balance after exercise. Int J Sports Med 1998;(Suppl 2):s136–s138.

    Google Scholar 

  12. Shirreffs SM, Maughan RJ. Rehydration and recovery of fluid balance after exercise. Exerc Sport Sci Rev 2000;28:27.

    Google Scholar 

  13. Maughan RJ, JB Leiper. Post-exercise rehydration in man: effects of voluntary intake of four different beverages. Med Sci Sports Exerc 1993;25(Suppl):S2.

    Google Scholar 

  14. Vist GE, RJ Maughan. Gastric emptying of ingested solutions in man: effect of beverage glucose concentration. Med Sci Sports Exerc 1994;26:1269–1273.

    Google Scholar 

  15. Scheett TP, Webster MJ, Wagoner KD. Effectiveness of glycerol as a rehydrating agent. Int J Sport Nutr Exerc Metab 2001;11:63–71.

    Google Scholar 

  16. Montner P, Stark DM, Riedesel ML, et al. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med 1996;17:27–33.

    Google Scholar 

  17. Magal M, Webster MJ, Sistrunk LE, Whitehead MT, Evans RK, Boyd JC. Comparison of glycerol and water hydration regimens on tennis-related performance. Med Sci Sports Exerc 2003;35:150–156.

    Google Scholar 

  18. Kavouras SA, Armstrong LE, Maresh CM, et al. Rehydration with glycerol: endocrine, cardiovascular, and thermoregulatory responses during exercise in the heat. J Appl Physiol 2006;100:442–450.

    Google Scholar 

  19. Wagner DR. Hyperhydrating with glycerol: implications for athletic performance. J Am Diet Assoc 1999;99:207–212.

    Google Scholar 

  20. Godek SF, Bartolozzi AR, Godek JJ. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br J Sports Med 2005;39:205–211.

    Google Scholar 

  21. Shirreffs SM, Maughan RJ. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. J Appl Physiol 1997;82:336–341.

    Google Scholar 

  22. Stofan JR, Zachwiega JJ, Horswill CA, et al. Sweat and sodium losses during practice in professional football players: field studies. Med Sci Sports Exerc 2002;34:S113.

    Google Scholar 

  23. Allan JR, Wilson CG. Influence of heat acclimatization on sweat sodium concentration. J Appl Physiol 1971;30:708–712.

    Google Scholar 

  24. Costill DL, Cote R, Miller E, Miller T, Wynder S. Water and electrolyte replacement during repeated days of work in the heat. Aviat Space Environ Med 1975;46:795–800.

    Google Scholar 

  25. Stofan JR, Zachwieja JJ, Horswill CA, Murray R, Anderson SA, Eichner ER. Sweat and sodium losses in NCAA football players: a precursor to heat cramps? Int J Sport Nutr Exerc Metab 2005;15:641–652.

    Google Scholar 

  26. Institute of Medicine of the National Academies. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academies Press, Washington, DC, 2004.

    Google Scholar 

  27. Godek SF, Godek JJ, Bartolozzi A. Thermal responses in football and cross-country athletes during their respective practices in a hot environment. J Athl Train 2004;39:235–240.

    Google Scholar 

  28. NCAA Membership Service Staff. 2005-2006 NCAA Division I Manual. The National Collegiate Athletic Association, Indianapolis, 2005.

    Google Scholar 

  29. Yeargin SW, Casa DJ, Armstrong LE, et al. Heat acclimatization and hydration status of American football players during initial summer workouts. J Strength Cond Res 2006;20:463–470.

    Google Scholar 

  30. Casa DJ, Clarkson PM, Roberts WO. American College of Sports Medicine roundtable on hydration and physical activity: consensus statements. Curr Sports Med Rep 2005;4:115–127.

    Google Scholar 

  31. Cheuvront SN, Carter III R, Montain SJ, Sawka MN. Fluid balance and endurance exercise performance. Curr Sports Med Rep 2003;2:202–208.

    Google Scholar 

  32. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 2007;39:377–390.

    Google Scholar 

  33. Casa DJ, Armstrong LE, Hillman SK, et al. National Athletic Trainers’ Association position statement: fluid replacment for athletes. J Ath Train 2000;35:212–224.

    Google Scholar 

  34. Noakes D. Fluid replacement during exercise. Exerc Sports Sci Rev 1993;21:297.

    Google Scholar 

  35. Noakes TD, Sharwood K, Collins M, Perkins DR. The dipsomania of great distance: water intoxication in an Ironman triathlete. Br J Sports Med 2004;38:E16.

    Google Scholar 

  36. Speedy DB, Noakes TD, Rogers IR, et al. Hyponatremia in ultradistance triathletes. Med Sci Sports Exerc 1999;31:809–815.

    Google Scholar 

  37. O’Toole M, Douglas PM, Laird RH, et al. Fluid and electrolyte status in athletes receiving medical care at an ultradistance triathalon. Clin J Sport Med 1995;5:116–122.

    Google Scholar 

  38. Hew-Butler T, Almond C, Ayus JC, et al. Consensus Statement of the 1st International Exercise-Associated Hyponatremia Consensus Development Conference, Cape Town, South Africa 2005. Clin J Sport Med 2005;15:208–213.

    Google Scholar 

  39. Zambraski EJ. The renal system. In: Tipton CM,f Tate CA, Terjung RL (eds) ACSM’s Advanced Exercise Physiology (pp 521–532). Lippincott Williams & Wilkins, Philadelphia, 2005.

    Google Scholar 

  40. Garigan TP, Ristedt DE. Death from hyponatremia as a result of acute water intoxication in an Army basic trainee. Mil Med 1999;164:234–238.

    Google Scholar 

  41. Speedy DB, Rogers IR, Noakes TD. Exercise-induced hyponatremia in ultradistance triathletes is caused by inappropriate fluid retention. Clin J Sport Med 2000;10:272–278.

    Google Scholar 

  42. McArdle WD, Katch FI, Katch VL. Exercise Physiology: Energy, Nutrition, and Human Performance. 6th ed. Lippincott Williams & Wilkins, Philadelphia, 2007.

    Google Scholar 

  43. Androgue HJ, Madias NE, Hyponatremia. N Engl J Med 2000;342:1581.

    Google Scholar 

  44. Gardner JW. Death by water intoxication. Mil Med 2002;5:432.

    Google Scholar 

  45. Almond CS, Shin AY, Fortescue EB, et al. Hyponatremia among runners in the Boston marathon. N Engl J Med 2005;352:1550–1556.

    Google Scholar 

  46. Noakes T. Fluid replacement during marathon running. Clin J Sport Med 2003;13:309–318.

    Google Scholar 

  47. Institute of Medicine of the National Academies. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academies Press, Washington, DC, 2004.

    Google Scholar 

  48. Hew-Butler TD, Sharwood K, Collins M, Speedy D, Noakes T. Sodium supplementation is not required to maintain serum sodium concentrations during an Ironman triathalon. Br J Sports Med 2006;40:255–259.

    Google Scholar 

  49. Twerenbold R, Knechtle B, Kakebeeke TH, et al. Effects of different sodium concentrations in replacement fluids during prolonged exercise in women. Br J Sports Med 2003;37:300–303.

    Google Scholar 

  50. Weschler LB. Exercise-associated hyponatremia: a mathematical review. Sports Med 2005;35:899–922.

    Google Scholar 

  51. Barr SI, Costill DL, Fink WJ. Fluid replacement during prolonged exercise: effects of water, saline, or no fluid. Med Sci Sports Exerc 1991;23:811–817.

    Google Scholar 

  52. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc 2007;39:377–390.

    Google Scholar 

  53. Ahlborg B, Bergstrom J, Ekelund LG, Hultman E. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 1967;70:129–142.

    Google Scholar 

  54. Bergstrom J, Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion Acta Med Scand 1967;182:93–107.

    Google Scholar 

  55. Costill DL, Bowers R, Branam G, Sparks K. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol 1971;31:834–838.

    Google Scholar 

  56. Costill DL, Sherman WM, Fink WJ, Maresh C, Witten M, Miller JM. The role of dietary carbohydrate in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 1981;34:183–186.

    Google Scholar 

  57. Maehlum S, Hostmark AT, Hermansen L. Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scand J Clin Lab Invest 1977;37:309–316.

    Google Scholar 

  58. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 1988;64:1480–1485.

    Google Scholar 

  59. Keizer HA, Kuipers H, van Kranenburg G, Geurten P. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med 1987;8:99–104.

    Google Scholar 

  60. Reed MJ, Brozinick JT Jr, Lee MC, Ivy JL. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. J Appl Physiol 1989;66:720–726.

    Google Scholar 

  61. Maehlum S, Hermansen L. Muscle glycogen concentration during recovery after prolonged severe exercise in fasting subjects. Scand J Clin Lab Invest 1978;38:557–560.

    Google Scholar 

  62. Blom PC, Hostmark AT, Vaage O, Kardel KR, Maehlum S. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc 1987;19:491–496.

    Google Scholar 

  63. Bergstrom J, Hermansen L, Hultman E, Saltin B. 1968 Diet, muscle glycogen and physical performance. Acta Physiol Scand 1968;71140–71150.

    Google Scholar 

  64. Villar-Palasi C, Larner J. Uridinediphosphate glucose pyrophosphorylase from skeletal muscle. Arch Biochem Biophys 1960;86:61–66.

    Google Scholar 

  65. Richter EA, Garetto LP, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol 1984;246:E476–E482.

    Google Scholar 

  66. Garetto LP, Richter EA, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise: the two phases. Am J Physiol 1984;246:E471–E475.

    Google Scholar 

  67. Nuttal FQ, Mooradian MC, Gannon C, Billington C, Krezowski P. Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 1984;7:465–470.

    Google Scholar 

  68. Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 1967;210:309–310.

    Google Scholar 

  69. Sherman WM, Doyle JA, Lamb DR, Strauss RH. Dietary carbohydrate, muscle glycogen, and exercise performance during 7 d of training. Am J Clin Nutr 1993;57:27–31.

    Google Scholar 

  70. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol 2002;87:290–295.

    Google Scholar 

  71. Burke LM, Collier GR, Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of glycemic index of carbohydrate feedings. J Appl Physiol 1993;75:1019–1023.

    Google Scholar 

  72. Williams MB, Raven PB, Fogt DL, Ivy JL. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res 2003;17:12–19.

    Google Scholar 

  73. Zawadzki KM, Yaspelkis BB 3rd, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol 1992;72:1854–1859.

    Google Scholar 

  74. Wanke CA, Pleskow D, Degirolami PC, et al. A medium chain triglyceride-based diet in patients with HIV and chronic diarrhea reduces diarrhea and malabsorption: a prospective, controlled trial. Nutrition 1996;12:766–771.

    Google Scholar 

  75. Craig GB, Darnell BE, Weinsier RL, et al. Decreased fat and nitrogen losses in patients with AIDS receiving medium-chain-triglyceride-enriched formula vs. those receiving long-chain-triglyceride-containing formula. J Am Diet Assoc 1997;97:605–611.

    Google Scholar 

  76. Fan, ST. Review: nutritional support for patients with cirrhosis. Gastroenterol Hepatol 1997;12:282–286.

    Google Scholar 

  77. Jiang ZM, Zhang SY, Wang XR, et al. A comparison of medium-chain and long-chain triglycerides in surgical patients. Ann Surg 1993;217:175–184.

    Google Scholar 

  78. Bach AC, Ingenbleek Y, Frey A. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J Lipid Res 1996;37:708–726.

    Google Scholar 

  79. Hawley JA, Brouns F, Jeukendrup A. Strategies to enhance fat utilization during exercise. Sports Med 1998;25:241–257.

    Google Scholar 

  80. Jeukendrup AE, Thielen JJ, Wagenmakers AJ, et al. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr 1998;67:397–404.

    Google Scholar 

  81. West DB, Delany JP, Camet PM, et al. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 1998;275(Pt 2):R667–R672.

    CAS  Google Scholar 

  82. Park Y, Albright KJ, Liu W, et al. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997;32:853–858.

    Google Scholar 

  83. Ostrowski E, Muralitharan M, Cross RF. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 1999;129:2037–2042.

    Google Scholar 

  84. Song HJ, Grant I, Rotondo D, Mohede I, Sattar N, Heys SD, Wahle KW. Effect of CLA supplementation on immune function in young healthy volunteers. Eur J Clin Nutr. 2005;59:508–517

    Google Scholar 

  85. Gavino VC, Gavino G, Leblanc MJ, Tuchweber B. An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr 2000;130:27–29.

    Google Scholar 

  86. Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med. 2000;223:8–13.

    Google Scholar 

  87. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care 2002;25:1516–1521.

    Google Scholar 

  88. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab 2003;13:198–226.

    Google Scholar 

  89. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem 2003;244:89–94.

    Google Scholar 

  90. Rawson ES, Volek JS. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res 2003;17:822–831.

    Google Scholar 

  91. Wyss M, Schulze A. Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 2002;112:243–260.

    Google Scholar 

  92. Kley RA, Vorgerd M, Tarnopolsky MA. Creatine for treating muscle disorders. Exp Physiol 2007;92:323–331.

    Google Scholar 

  93. Priml W, von Arnim T, Stablein A, et al. Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet 1992;340:507–510.

    Google Scholar 

  94. Gross M, Dormann B, Zollner N. Ribose administration during exercise: effects on substrates and products of energy metabolism in healthy subjects and a patient with myoadenylate deaminase deficiency. Klin Wochenschr 1991;69:151–155.

    Google Scholar 

  95. Salerno C, D'Eufermia P, Finocchiaro R, et al. Effect of d-ribose on purine synthesis and neurological symptoms in a patient with adenylsuccinase deficiency. Biochim Biophys Acta 1999;1453:135–140.

    Google Scholar 

  96. Steele IC, Patterson VH, Nicholls DP. A double-blind, placebo-controlled, crossover trial of d-ribose in McArdle's disease. J Neurol Sci 1996;136:174–177.

    Google Scholar 

  97. Berardi JM, Ziegenfuss TN. Effects of ribose supplementation on repeated sprint performance in men. J Strength Cond Res 2003;17:47–52.

    Google Scholar 

  98. Close GL, Ashton T, McArdle A, Maclaren DP. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury. Comp Biochem Physiol A Mol Integr Physiol 2005;42:257–266.

    Google Scholar 

  99. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc 1993;25:218–224.

    Google Scholar 

  100. Davies KJ, Quintaniha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982;107:1198–1205.

    Google Scholar 

  101. Jackson MJ, Edwards RH, Symons MC. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta 1985;847:185–190.

    Google Scholar 

  102. Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic Biol Med 1990;8:9–13.

    Google Scholar 

  103. Quintanilha AT. Effects of physical exercise and/or vitamin E on tissue oxidative metabolism. Biochem Soc Trans 1984;12:403–404.

    Google Scholar 

  104. Ji LL. Exercise, oxidative stress, and antioxidants. Am J Sports Med 1996;24(Suppl):S20–S24.

    CAS  Google Scholar 

  105. Fischer CP, Hiscock NJ, Penkowa M, et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol 2004;558:633–645.

    Google Scholar 

  106. Bloomer RJ, Goldfarb AH, McKenzie MJ. Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc 2006;38:1098–1105.

    Google Scholar 

  107. Goldfarb AH, Bloomer RJ, McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc 2005;37:234–239.

    Google Scholar 

  108. Sumida S, Tanaka K, Kitao H, Nakadomo F. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem 1989;21:835–838.

    Google Scholar 

  109. Evans WJ, Cannon JG. The metabolic effects of exercise-induced muscle damage. Exec Sport Sci Rev 1991;19:99–125.

    Google Scholar 

  110. Thompson D, Williams C, Garcia-Roves P, McGregor SJ, McArdle F, Jackson MJ. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol 2003;89:393–400.

    Google Scholar 

  111. Close GL, Ashton T, Cable T, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr 2006;95:976–981.

    Google Scholar 

  112. Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med 2001;15:745–753.

    Google Scholar 

  113. Bryer SC, Goldfarb AH. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab 2006;16:270–280.

    Google Scholar 

  114. Thompson D, Williams C, McGregor SJ, et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab 2001;11:466–481.

    Google Scholar 

  115. Goldfarb AH, Patrick SW, Bryer S, You T. Vitamin C supplementation affects oxidative-stress blood markers in response to a 30-min run at 75% VO2max. Int J Sport Nutr Exerc Metab 2005;15:279–290.

    Google Scholar 

  116. Hathcock JN, Azzi A, Blumberg J, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr 2005;81:736–745.

    Google Scholar 

  117. Consumers Union. Is E for you? Consumer Rep Health 1996;8:121–124.

    Google Scholar 

  118. Kraemer WJ, Volek JS, French DN, et al. The effects of l-carnitine l-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res 2003;7:455–462.

    Google Scholar 

  119. Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P. l-Carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab 2002;282:E474–E482.

    Google Scholar 

  120. Spiering BA, Kraemer WJ, Vingren JL, et al. Responses of criterion variables to different supplemental doses of l-carnitine l-tartrate. J Strength Cond Res 2007;21:259–264.

    Google Scholar 

  121. Brass EP, Hiatt WR. The role of carnitine and carnitine supplementation during exercise in man and in individuals with special needs. J Am Coll Nutr 1998;17:207–215.

    Google Scholar 

  122. Kraemer WJ, Volek JS. l-Carnitine supplementation for the athlete: a new perspective. Ann Nutr Metab 2000;44:88–89.

    Google Scholar 

  123. Rubin MR, Volek JS, Gomez AL, et al. Safety measures of l-carnitine l-tartrate supplementation in healthy men. J Strength Cond Res 2001;15:486–490.

    Google Scholar 

  124. Antonio J, Street C. Glutamine: a potentially useful supplement for athletes. Can J Appl Physiol 1999;24:1–14.

    Google Scholar 

  125. Newsholme EA, Castell LM. Amino acids, fatigue and immunosuppression in exercise. In: Maughan RJ (ed) Nutrition in Sport, IOC Encyclopedia of Sport (p 153). Blackwell Science, Oxford, 2000.

    Google Scholar 

  126. Ardawi MSM, Newsholme EA. Metabolism in lymphocytes and its importance in the immune response. Essays Biochem 1985;21:1–44.

    Google Scholar 

  127. Elia M, Wood S, Khan K, Pullicino E. Ketone body metabolism in lean male adults during short-term starvation, with particular reference to forearm muscle metabolism. Clin Sci 1990;78:579–584.

    Google Scholar 

  128. Castell LM, Poortmans JR, Newsholme EA. Does glutamine have a role in reducing infections in athletes? Eur J Appl Physiol Occup Physiol 1996;73:488–490.

    Google Scholar 

  129. Kargotich S, Goodman C, Dawson B, Morton AR, Keast D, Joske DJ. Plasma glutamine responses to high-intensity exercise before and after endurance training. Res Sports Med 2005;13:287–300.

    Google Scholar 

  130. Rennie MJ, Edwards RHT, Krywawych S, et al. Effect of protein turnover in man. Clin Sci (Lond) 1981;61:627–639.

    Google Scholar 

  131. Castell LM. Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med 2003;16:323–345.

    Google Scholar 

  132. Castell LM, Newsholme EA. The relation between glutamine and the immunodepression observed in exercise. Amino Acids 2001;20:49–61.

    Google Scholar 

  133. Juretic A, Spagnoli GC, Horig H, et al. Glutamine requirements in the generation of lymphokine activated killer cells. Clin Nutr 1994;13:42–49.

    Google Scholar 

  134. Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T. Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol 2001;86:142–149.

    Google Scholar 

  135. Bassit RA, Sawada LA, Bacurau RFP, Navarro F, Costa Rosa LF. The effect of BCAA supplementation upon the immune response of triathletes. Med Sci Sports Exerc 2000;32:1214–1219.

    Google Scholar 

  136. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab 2006;291:E745–E754.

    Google Scholar 

  137. Biolo G, Fleming RYD, Wolfe RR. Physiologic hyperinsulinemia stimulates protein systhesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest 1995;95:811–819.

    Google Scholar 

  138. Claessens M, Calame W, Siemensma AD, Van Baak MA, Saris WH. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagons and insulin responses in healthy subjects. Eur J Clin Nutr 2007;Sept 12 [Epub ahead of print]

    Google Scholar 

  139. Manders RJ, Wagenmakers AJ, Koopman R, et al. Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. Am J Clin Nutr 2005;82:72–83.

    Google Scholar 

  140. Kreider RB, Miriel V, Bertun E. Amino acid supplementation and exercise performance: analysis of the proposed ergogenic value. Sports Med 1993;16:190–209.

    Google Scholar 

  141. Levenhagen DK, Carr C, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise protein intake enhances whole-body and leg protein accretion in humans. Med Sci Sports Exerc 2002;34:828837.

    Google Scholar 

  142. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab 2001;280:E982–E993.

    Google Scholar 

  143. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 2000;88:386–392.

    Google Scholar 

  144. Koopman R, Pannemans DL, Jeukendrup AE, et al. Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. Am J Physiol Endocrinol Metab 2004;287:E712–E720.

    Google Scholar 

  145. Koopman R, Wagenmakers AJ, Manders RJ, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab 2005;288:E645–E653.

    Google Scholar 

  146. Norton LE, Layman DK. Leucine regulates translation of protein synthesis in skeletal muscle after exercise. J Nutr 2006;136:533S–537S.

    Google Scholar 

  147. Bird SP, Tarpenning KM, Marino FE. Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men. Eur J Appl Physiol 2006;97:225–238.

    CAS  Google Scholar 

  148. Watford M, Wu G. Glutamine metabolism in uricotelic species: variations in skeletal muscle glutamine synthesis, glutaminase, glutamine levels and rates of protein synthesis. Comp Biochem Physical B Biochem Mol Biol 2005;140:607–614.

    Google Scholar 

  149. Jayakumar AR, Rao KV, Murthy CR, Norenberg MD. Glutamine in the mechanisms of ammonia-induced astrocyte swelling. Neurochem Int 2006;48:623–628.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ziegenfuss, T.N., Landis, J., Greenwood, M. (2008). Nutritional Supplements to Enhance Recovery. In: Nutritional Supplements in Sports and Exercise. Humana Press. https://doi.org/10.1007/978-1-59745-231-1_12

Download citation