Skip to main content

Co-Targeting Therapeutics for Hormone Refractory Prostate Cancer

  • Chapter
Prostate Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1042 Accesses

Abstract

For many decades therapeutic strategies for advanced solid tumors have focused almost exclusively on the cancer cell itself. This approach fails to address the symbiotic relationship of the malignant cell and its surrounding stroma. An emerging line of evidence supports the notion that benign stroma may be not an innocent bystander, but rather, a facilitator of invasion, metastasis, and growth of a malignant cell from a distant tissue of origin. Although the exact mechanisms vary greatly among different tumor types, is it safe to say that more than one mechanisms/pathways are in play in this complex process. As it pertains to prostate cancer and its known predilection for bone as its primary landing zone, efforts to therapeutically manipulate the tumor—stroma relationship have focused on ways to hinder local invasion and early metastasis, angiogenesis, and deprivation of key local growth factors/cytokines that mediate homing, attachment, and growth of the prostate cancer cell in the metastatic echelon. This chapter will review some basic strategies of co-targeting cancer and stroma in advanced prostate cancer that have been tested in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fidler, I. J. and Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 19, 893–895.

    Article  Google Scholar 

  2. DeWever, O. and Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. J. Pathol. 200, 429–444.

    Article  CAS  Google Scholar 

  3. Liotta, L. A. and Kohn, E. C. (2001). The microenvironment of the tumor-host interface. Nature 411, 375–379.

    Article  PubMed  CAS  Google Scholar 

  4. Mueller, M. M. and Fusenig, N. E. (2004). Friends or foe-Bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849.

    Article  PubMed  CAS  Google Scholar 

  5. Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tlsty, T. D., and Cunha, G. R. (1999). Carcinomaassociated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59(19), 5002–5011.

    PubMed  CAS  Google Scholar 

  6. Cunha, G. R., Hayward, S. W., Wang, Y. Z., and Ricke, W. A. (2003). Role of the stromal microenvironment in carcinogenesis of the prostate. Int. J. Cancer 107(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Paget S. (1889). The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573.

    Article  Google Scholar 

  8. Muller, A., Homey, B., Soto, H., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824), 50–56.

    Article  PubMed  CAS  Google Scholar 

  9. Taichman, R.S., Cooper, C., Keller, E.T., Pienta, K.J., Taichman, N.S., and McCauley, L.K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62(6), 1832–1837.

    PubMed  CAS  Google Scholar 

  10. Arap, W., Haedicke, W., Bernasconi, M., et al. (2002). Targeting the prostate for destruction through a vascular address. Proc. Natl. Acad. Sci. USA 99(3), 1527–1531.

    Article  PubMed  CAS  Google Scholar 

  11. Ruoslahti, E. (2002).Specialization of tumour vasculature. Nat. Rev. Cancer 2(2), 83–90.

    Article  PubMed  Google Scholar 

  12. Koeneman, K. S., Yeung, F., and Chung, L. W. K. (1999). Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39(4), 246–261.

    Article  PubMed  CAS  Google Scholar 

  13. Sikes, R. A., Nicholson, B. E., Koeneman, K. S., et al. (2004). Cellular interactions in the tropism of prostate cancer to bone. Int. J. Cancer 110(4), 497–503.

    Article  PubMed  CAS  Google Scholar 

  14. Bogdanos, J., Karamanolakis, D., Tenta, R., et al. (2003). Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton. Endocr. Relat. Cancer 10(2), 279–289.

    Article  PubMed  CAS  Google Scholar 

  15. Chung, L. W. K. (2003). Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer 97(3 Suppl), 772–778.

    Article  PubMed  Google Scholar 

  16. Chung, L. W. K., Gleave, M. E., Hsieh, J. T., and Zhau, H. E. (1991). Reciprocal mesenchymal-epithelial interaction affecting prostate tumor growth and hormonal responsiveness. Cancer Surv. 11, 91–121.

    PubMed  CAS  Google Scholar 

  17. Cunha, G. R., Chung, L. W., Shannon, J. M., Taguchi, O., and Fujii, H. (1983). Hormone-induced morphogenesis and growth: role of mesenchymal-epithelial interactions. Recent Prog. Horm. Res. 39, 559–598.

    PubMed  CAS  Google Scholar 

  18. Camps, J. L., Chang S. M., Hsu, T. C., et al. (1990). Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA 87(1), 75–79.

    Article  PubMed  CAS  Google Scholar 

  19. Chung, L. W. K. and Davis, R. (1996). Prostate epithelial differentiation is dictated by its surrounding stroma. Mol. Biol. Rep. 23, 13–19.

    Article  PubMed  CAS  Google Scholar 

  20. Thalmann, G., Anezinis, P., Chang, S. M., et al. (1994). The LNCaP mouse model of human prostate cancer: Androgen independent cancer progression and osseous metastasis. Cancer Res. 54, 2577–2581.

    PubMed  CAS  Google Scholar 

  21. Tlsty, T. D. (1998). Cell-adhesion dependent influences on genomic instability and carcinogenesis. Curr. Opin. Cell Biol. 10, 647–653.

    Article  PubMed  CAS  Google Scholar 

  22. Thalmann, G. N., Sikes, R. A., Wu, T. T., et al. (2000). The LNCaP progression model of human prostate cancer: androgen independence and osseous metastasis. Prostate 44, 91–103.

    Article  PubMed  CAS  Google Scholar 

  23. Gleave, M. E., Hsieh, J. T., von Eschenbach, A. C., and Chung, L. W. K. (1992). Prostate and bone fibroblasts induce human prostate cancer growth in vivo: implications for bidirectional tumor-stromal cell interaction in prostate carcinoma growth and metastasis. J. Urol. 147, 1151–1159.

    PubMed  CAS  Google Scholar 

  24. Hay, E. D. (1995). An overview of epithelio-mesenchymal transformation. Acta Anat. 154, 8–20.

    PubMed  CAS  Google Scholar 

  25. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454.

    Article  PubMed  CAS  Google Scholar 

  26. Tlsty, T. D. (2001). Stromal cells can contribute oncogenic signals. Semin. Cancer Biol. 11, 97–104.

    Article  PubMed  CAS  Google Scholar 

  27. Phillips, J. L., Hayward, S. W., Wang, Y., et al. (2001). The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis. Cancer Res. 61, 8143–8149.

    PubMed  CAS  Google Scholar 

  28. Dedhar S., Saulnier R., Nagel R., and Overall C. M. (1993). Specific alterations in the expression of ?3?1 and ?6?4 integrins in highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clin. Exp. Metastasis. 11, 391–400.

    Article  PubMed  CAS  Google Scholar 

  29. Edlund, M., Miyamoto, T., Sikes, R. A., et al. (2001). Integrin expression and usage by prostate cancer cell lines on laminin substrata. Cell Growth Differ. 12(2), 99–107.

    PubMed  CAS  Google Scholar 

  30. Edlund, M., Sung, S. Y., and Chung, L. W. (2004). Modulation of prostate cancer growth in bone microenvironments. J. Cell Biochem. 91(4), 686–705.

    Article  PubMed  CAS  Google Scholar 

  31. Witkowski, C. M., Rabinovitz, I., Nagle, R. B., Affinito, K-S. D., and Cress, A. E. (1993). Characterization of integrin subunits, cellular adhesion and tumorigenicity of four human prostate cell lines. J. Cancer Res. Clin. Oncol. 119, 637–644.

    Article  PubMed  CAS  Google Scholar 

  32. Nemeth, J. A., Cher, M. L., Zhou, Z., Mullins, C., Bhagat, S., and Trikha, M. (2003). Inhibition of alpha(v)beta3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin. Exp. Metastasis 20(5), 413–420.

    Article  PubMed  CAS  Google Scholar 

  33. Janssen, M.L., Oyen, W.J., Dijkgraaf, I., et al. (2002). Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res. 62(21), 6146–6151.

    PubMed  CAS  Google Scholar 

  34. Bergers, G. and Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  35. Coussens, L. M. and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860–867.

    Article  PubMed  CAS  Google Scholar 

  36. Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  37. Di Lorenzo, G., Tortor, G., D’Armiento, F. P., et al. (2002). Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res. 8, 3438–3444.

    PubMed  Google Scholar 

  38. Sirotna, F. M., She, Y., Lee, F., Chen, J., and Scher, H. I. (2002). Studies with CWR22 xenografts in nude mice suggest that ZD1839 may have a role in the treatment of both androgen-dependent and androgen-independent human prostate cancer. Clin. Cancer Res. 8, 3870–3876.

    Google Scholar 

  39. Canil, C. M., Moore, M. J., Winquist, E., et al. (2005). Randomized phase II study of two doses of gefitinib in hormonerefractory prostate cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J. Clin. Oncol. 23(3), 455–460.

    Article  PubMed  CAS  Google Scholar 

  40. Sanchez, K. M., Sweeney, C. J., Mass, R., et al. (2002). Evaluation of HER-2/neu expression in prostatic adenocarcinoma: a requested for a standardized, organ specific methodology. Cancer 95, 1650–1655.

    Article  PubMed  Google Scholar 

  41. Calvo, B., Levine, A., Marcos, M., et al. (2003). Human epidermal receptor-2 expression in prostate cancer. Clin. Cancer Res. 9, 1087–1097.

    PubMed  CAS  Google Scholar 

  42. Ziada, A., Barqawi, A., Glode, L. M., et al. (2004). The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate 60(4), 332–337.

    Article  PubMed  CAS  Google Scholar 

  43. Agus, D. B., Akita, R. W., Fox, W. D., et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2(2), 127–137.

    Article  PubMed  CAS  Google Scholar 

  44. Agus, D. B., Gordon, M., Taylor, C., et al. (2003). Clinical activity in a phase I trial of HER-2-targeted rhuMAb 2C4 (pertuzumab) in patients with advanced solid malignancies (AST). Proc. Am. Soc. Clin. Oncol. (abstr 771).

    Google Scholar 

  45. You, X., Yu, H. M., Cohen-Gould, L., et al. (2003). Regulation of migration of primary prostate epithelial cells by secreted factors from prostate stromal cells. Exp. Cell Res. 288(2), 246–256.

    Article  PubMed  CAS  Google Scholar 

  46. Davies, G., Watkins, G., Mason, M. D., and Jiang, W. G. (2004). Targeting the HGF/SF receptor c-met using a hammerhead ribozyme transgene reduces in vitro invasion and migration in prostate cancer cells. Prostate 60(4), 317–324.

    Article  PubMed  CAS  Google Scholar 

  47. Foster, B. A., Kaplan, P. J., and Greenberg, N. M. (1999). Characterization of the FGF axis and identification of a novel FGFR1iiic isoform during prostate cancer progression in the TRAMP model. Prostate Cancer Prostatic Dis. 2(2), 76–82.

    Article  PubMed  CAS  Google Scholar 

  48. Kwabi-Addo, B., Ozen, M., and Ittmann, M. (2004). The role of fibroblast growth factors and their receptors in prostate cancer. Endocr. Relat. Cancer 11(4), 709–724.

    Article  PubMed  CAS  Google Scholar 

  49. San Francisco, I. F., DeWolf, W. C., Peehl, D. M., and Olumi, A. F. (2004). Expression of transforming growth factorbeta 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. Int. J. Cancer 112(2), 213–218.

    Article  PubMed  CAS  Google Scholar 

  50. Gerdes, M. J., Larsen, M., Dang, T. D., Ressler, S. J., Tuxhorn, J. A., and Rowley, D. R. (2004). Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-beta1. Prostate 58(3), 299–307.

    Article  PubMed  CAS  Google Scholar 

  51. Tuxhorn, J. A., McAlhany, S. J., Yang, F., Dang, T. D., and Rowley, D. R. (2002). Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res. 62(21), 6021–6025.

    PubMed  CAS  Google Scholar 

  52. Krueckl, S. L., Sikes, R. A., Edlund, N. M., et al. (2004). Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res. 64(23), 8620–8629.

    Article  PubMed  CAS  Google Scholar 

  53. Nickerson, T., Chang, F., Lorimer, D., Smeekens, S. P., Sawyers, C. L., and Pollak, M. (2001). In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res. 61(16), 6276–6280.

    PubMed  CAS  Google Scholar 

  54. Zhang, H. and Yee, D. (2004). The therapeutic potential of agents targeting the type I insulin-like growth factor receptor. Expert Opin. Investig. Drugs 13(12), 1569–1577.

    Article  PubMed  CAS  Google Scholar 

  55. Mitsiade, C. S., Mitsiades, N. S., McMullan, C. J., et al. (2004). Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 5(3), 221–230.

    Article  Google Scholar 

  56. Majumder, P. K., Febbo, P. G., Bikoff, R., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10(6), 594–601.

    Article  PubMed  CAS  Google Scholar 

  57. Tolcher, A. W. (2004). Novel therapeutic molecular targets for prostate cancer: the mTOR signaling pathway and epidermal growth factor receptor. J. Urol. 171, S41–43.

    Article  CAS  Google Scholar 

  58. Su, J. D., Mayo, L. D., Donner, D. B., and Durden, D. L. (2003). PTEN and phosphatidylinositol 3’-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res. 63(13), 3585–3592.

    PubMed  CAS  Google Scholar 

  59. George, D. J., Halabi, S., Shepard, T. F., et al. (2005). The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin. Cancer Res. 11(5), 1815–1820.

    Article  PubMed  CAS  Google Scholar 

  60. Culig, Z., Steiner, H., Bartsch, G., and Hobisch, A. (2005). Interleukin-6 regulation of prostate cancer cell growth. J. Cell Biochem. 95(3), 497–505.

    Article  PubMed  CAS  Google Scholar 

  61. Pfitzenmaier, J., Vessella, R., Higano, C. S., Noteboom, J. L., Wallace, D., Jr, and Corey E. (2003). Elevation of cytokine levels in cachectic patients with prostate carcinoma. Cancer 97(5), 1211–1216.

    Article  PubMed  CAS  Google Scholar 

  62. Nemeth, J. A., Yousif, R., Herzog, M., et al. (2002). Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J. Natl. Cancer Inst. 94(1), 17–25.

    PubMed  CAS  Google Scholar 

  63. Lokeshwar, B. L. (1999). MMP inhibition in prostate cancer. Ann. NY Acad. Sci. 878, 271–289.

    Article  PubMed  CAS  Google Scholar 

  64. Shepherd, F. A., Giaccone, G., Seymour, L., et al. (2002). Prospective, randomized, double-blind, placebo-controlled trial of marimastat after response to first-line chemotherapy in patients with small-cell lung cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group and the European Organization for Research and Treatment of Cancer. J. Clin. Oncol. 20(22), 4434–4439.

    Article  PubMed  CAS  Google Scholar 

  65. Moore, M., Hamm, J., Dancey, J., et al. (2003). Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12-9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 21(17), 3296–3302.

    Article  PubMed  CAS  Google Scholar 

  66. Lara, P. N., Longmate, J., Stadler, W., et al. (2004). Angiogenesis inhibition in metastatic hormone refractory prostate cancer (HRPC): a randomized phase II trial of two doses of the matrix metalloproteinase inhibitor (MMPI) BMS-275291. J. Clin. Oncol. 22, 4647.

    Google Scholar 

  67. Hess, K. R. and Abbruzzese, J. L. (2001). Matrix metalloproteinase inhibition of pancreatic cancer: matching mechanism of action to clinical trial design. J. Clin. Oncol. 19(15), 3445–3446.

    PubMed  CAS  Google Scholar 

  68. Soff, G. A., Sanderowitz, J., Gately, S., et al. (1995). Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J. Clin. Invest. 96(6), 2593–2600.

    Article  PubMed  CAS  Google Scholar 

  69. Jankun, J., Keck, R. W., Skrzypczak-Jankun, E., and Swiercz, R. (1997). Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res. 57(4), 559–563.

    PubMed  CAS  Google Scholar 

  70. Karan D., Lin, F. C., Bryan, M., et al. (2003). Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int. J. Oncol. 23(5), 1365–1371.

    PubMed  CAS  Google Scholar 

  71. McCulloch, D. R., Akl, P., Samaratunga, H., Herington, A. C., and Odorico, D. M. (2004). Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin. Cancer Res. 10(1 Pt 1), 314–323.

    Article  PubMed  CAS  Google Scholar 

  72. Reese, D., Frohlich, M., Bok, R., et al. (1999). Phase II trial of humanized monoclonal anti-vascular endothelial growth factor antibody (rhuMAbVEGF) in hormone refractory prostate cancer. Proc. Am. Soc. Clin. Oncol. (abstr 1355). Atlanta, GA.

    Google Scholar 

  73. Picus, J., Halab, S. I., Rini, B., et al. (2003). Small E. The use of bevacizumab (B) with docetaxel (D) and estramustine (E) in hormone refractory prostate cancer (HRPC): initial results of CALGB 90006. Proc. Am. Soc. Clin. Oncol. (abstr 1578). Chicago, IL.

    Google Scholar 

  74. Rini, B., Weinberg, V., Fong, L., and Small, E. (2005). A phase 2 study of prostatic acid phosphatase-pulsed dendritic cells (APC8015; Provenge) in combination with bevacizumab in patients with serologic progression of prostate cancer after local therapy. ASCO Prostate Cancer Symposium (abstr 251). Orlando, FL.

    Google Scholar 

  75. Pietras, K. and Hanahan, D. (2005). A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23(5), 939–952.

    Article  PubMed  CAS  Google Scholar 

  76. Mathew, P., Thall, P. F., Jones, D., et al. (2004). Logothetis C. Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J. Clin. Oncol. 22(16), 3323–3329.

    Article  PubMed  CAS  Google Scholar 

  77. Figg, W. D., Dahut, W., Duray, P., et al. (2001). A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin. Cancer Res. 7(7), 1888–1893.

    PubMed  CAS  Google Scholar 

  78. Dahut, W. L., Gulley, J. L., Arlen, P. M., et al. (2004). Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J. Clin. Oncol. 22(13), 2532–2539.

    Article  PubMed  CAS  Google Scholar 

  79. Arap, M. A., Lahdenranta, J., Mintz, P. J., et al. (2004). Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell. 6(3), 275–284.

    Article  PubMed  CAS  Google Scholar 

  80. Pasqualini, R. and Arap, W. 2002. Translation of vascular diversity into targeted therapeutics. Ann. Hematol. 81(Suppl. 2), S66–67.

    Google Scholar 

  81. Zurita, A. J., Troncoso, P., Cardo-Vila, M., Logothetis, C. J., Pasqualini, R., and Arap, W. (2004). Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. Cancer Res. 64(2), 435–439.

    Article  PubMed  CAS  Google Scholar 

  82. Small, E., Higano, C., Smith, D., et al. (2004). A phase 2 study of an allogeneic GM-CSF gene-transduced prostate cancer cell line vaccine in patients with metastatic hormone-refractory prostate cancer. J. Clin. Oncol. 22, 4565.

    Google Scholar 

  83. Smith, M. R., Eastham, J., Gleason, D. M., et al. (2003). Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J. Urol. 169(6), 2008–2012.

    Article  PubMed  CAS  Google Scholar 

  84. Saad, F., Gleason, D. M., Murray, R., et al. (2002). Zoledronic Acid Prostate Cancer Study Group. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl. Cancer Inst. 94(19), 1458–1468.

    PubMed  CAS  Google Scholar 

  85. Montague, R., Hart, C. A., George, N. J., Ramani, V. A., Brown, M. D., and Clarke, N. W. (2004). Differential inhibition of invasion and proliferation by bisphosphonates: anti-metastatic potential of Zoledronic acid in prostate cancer. Eur. Urol. 46(3), 389–401.

    Article  PubMed  CAS  Google Scholar 

  86. Lee, Y. P., Schwarz, E. M., Davies, M., et al. (2002). Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res. 62(19), 5564–5570.

    PubMed  CAS  Google Scholar 

  87. Lee, M. V., Fong, E. M., Singer, F. R., and Guenette, R. S. (2001). Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res. 61(6), 2602–2608.

    PubMed  CAS  Google Scholar 

  88. Lewington, V. J., McEwan, A. J., Ackery, D. M., et al. (1991). A prospective, randomised double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur. J. Cancer 27(8), 954–958.

    Article  PubMed  CAS  Google Scholar 

  89. Sartor, O., Reid, R. H., Hoskin, P. J., et al. (2004). Quadramet 424Sm10/11 Study Group Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 63(5), 940–945.

    Article  PubMed  Google Scholar 

  90. Tu, S. M., Millikan, R. E., Mengistu, B., et al. (2001). Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 357(9253), 336–341.

    Article  PubMed  CAS  Google Scholar 

  91. Wu-Wong, J. R., Dixon, D. B., Chiou, W. J., et al. (1999). Pharmacology of A-216546: a highly selective antagonist for endothelin ET(A) receptor. Eur. J. Pharmacol. 366(2-3), 189–201.

    Article  PubMed  CAS  Google Scholar 

  92. Nelson, J. B., Nguyen, S. H., Wu-Wong, J. R., et al. (1999). New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology 53(5), 1063–1069.

    Article  PubMed  CAS  Google Scholar 

  93. Carducci, M. A., Padley, R. J., Breul, J., et al. (2003). Effect of endothelin-A receptor blockade with atrasentan on tumor progression in men with hormone-refractory prostate cancer: a randomized, phase II, placebo-controlled trial. J. Clin. Oncol. 21(4), 679–689.

    Article  PubMed  CAS  Google Scholar 

  94. Carducci, M., Nelson, J. B., Saad, F., et al. (2004). Effects of atrasentan on disease progression and biological markers in men with metastatic hormone-refractory prostate cancer: Phase 3 study. J. Clin. Oncol. 22, 4508.

    Google Scholar 

  95. Gardner, T. A., Ko, S. C., Kao, C., Shirakawa, T., Cheon, J., and Gotoh A. (1998). Exploiting stromal-epithelial interaction for model development and new strategies of gene therapy for prostate cancer and osteosarcoma metastases. Gene Ther. Mol. Biol. 2, 41–58.

    Google Scholar 

  96. Ko, S. C., Cheon, J., Kao, C., et al. (1996). Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res. 56, 4614–4619.

    PubMed  CAS  Google Scholar 

  97. Waltregny, D., Bellahcene, A., Van Riet, I., et al. (1998). Prognostic value of bone sialoprotein expression in clinically localized human prostate cancer. J. Natl. Cancer Inst. 90, 1000–1007.

    Article  PubMed  CAS  Google Scholar 

  98. Koeneman, K. S., Kao, C., Ko, S. C., et al. (2000). Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J. Urol. 18(2), 102–110.

    Article  PubMed  CAS  Google Scholar 

  99. Kubo, H., Gardner, T. A., Wada, Y., et al. (2003). Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum. Gene Ther. 14(3), 227–241.

    Article  PubMed  CAS  Google Scholar 

  100. Jin, F., Xie, Z., Kuo, C. J., Chung, L. W., and Hsieh, C. L. (2005). Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy. Cancer Gene Ther. 12(3), 257–267.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Assikis, V. (2007). Co-Targeting Therapeutics for Hormone Refractory Prostate Cancer. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics