Skip to main content

Somatic DNA Methylation Changes and Prostatic Carcinogenesis

  • Chapter
Prostate Cancer

Abstract

Prostatic carcinogenesis proceeds via the acquisition of both genetic and epigenetic alterations. The epigenetic changes, principally in DNA methylation patterns and in chromatin structure, are equivalent to genetic changes, and often lead to defects in the functions of critical genes, which contribute to malignant cell behaviors. Epigenetic alterations also tend to appear at the earliest stages of prostate cancer development. As such, analysis of epigenetic genome changes has not only led to a new understanding of how prostate cancers likely arise, but has also provided new translational research opportunities, both for molecular biomarkers likely to aid in prostate cancer detection and diagnosis and for strategies to prevent and treat the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  2. Herman, J. G. and Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054.

    Article  PubMed  CAS  Google Scholar 

  3. Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  4. Feinberg, A. P. and Tycko, B. (2004). The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153.

    Article  PubMed  CAS  Google Scholar 

  5. Gaudet, F., Hodgson, J. G., Eden, A., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492.

    Article  PubMed  CAS  Google Scholar 

  6. Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455.

    Article  PubMed  CAS  Google Scholar 

  7. Vertino, P. M., Yen, R. W., Gao, J., and Baylin, S. B. (1996). De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol. Cell Biol. 16, 4555–4565.

    PubMed  CAS  Google Scholar 

  8. Di Croce, L., Raker, V. A., Corsaro, M., et al. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082.

    Article  PubMed  Google Scholar 

  9. Kawasaki, H. and Taira, K. (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217.

    Article  PubMed  CAS  Google Scholar 

  10. Morris, K. V., Chan, S. W., Jacobsen, S. E., and Looney, D. J. (2004). Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292.

    Article  PubMed  CAS  Google Scholar 

  11. Holst, C. R., Nuovo, G. J., Esteller, M., et al. (2003). Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res. 63, 1596–1601.

    PubMed  CAS  Google Scholar 

  12. David, G. L., Yegnasubramanian, S., Kumar, A., et al. (2004). MDR1 promoter hypermethylation in MCF-7 human breast cancer cells: changes in chromatin structure induced by treatment with 5-Aza-cytidine. Cancer Biol. Ther. 3, 540–548.

    PubMed  CAS  Google Scholar 

  13. Myohanen, S. K., Baylin, S. B., and Herman, J. G. (1998). Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 58, 591–593.

    PubMed  CAS  Google Scholar 

  14. Jeltsch, A. (2002). Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 3, 274–293.

    Article  PubMed  CAS  Google Scholar 

  15. Leonhardt, H., Page, A. W., Weier, H. U., and Bestor, T. H. (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873.

    Article  PubMed  CAS  Google Scholar 

  16. Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  17. Rhee, I., Jair, K. W., Yen, R. W., et al. (2000). CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404, 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  18. Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556.

    Article  PubMed  CAS  Google Scholar 

  19. Graff, J. R., Herman, J. G., Myohanen, S., Baylin, S. B., and Vertino, P. M. (1997). Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J. Biol. Chem. 272, 22,322–22,329.

    Article  PubMed  CAS  Google Scholar 

  20. Feltus, F. A., Lee, E. K., Costello, J. F., Plass, C., and Vertino, P. M. (2003). Predicting aberrant CpG island methylation. Proc. Natl. Acad. Sci. USA 100, 12,253–12,258.

    Article  PubMed  CAS  Google Scholar 

  21. Bakin, A. V. and Curran, T. (1999). Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283, 387–390.

    Article  PubMed  CAS  Google Scholar 

  22. Laird, P. W., Jackson-Grusby, L., Fazeli, A., et al. (1995). Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81, 197–205.

    Article  PubMed  CAS  Google Scholar 

  23. Eads, C. A., Nickel, A. E., and Laird, P. W. (2002). Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic Mice. Cancer Res 62, 1296–1299.

    PubMed  CAS  Google Scholar 

  24. Belinsky, S. A., Klinge, D. M., Stidley, C. A., et al. (2003). Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res. 63, 7089–7093.

    PubMed  CAS  Google Scholar 

  25. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Danenberg, P. V., and Laird, P. W. (1999). CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59, 2302–2306.

    PubMed  CAS  Google Scholar 

  26. Agoston, A. T., Argani, P., Yegnasubramanian, S., et al. (2005). Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J. Biol. Chem. 280, 18,302–18,310.

    Article  PubMed  CAS  Google Scholar 

  27. De Marzo, A. M., Marchi, V. L., Yang, E. S., Veeraswamy, R., Lin, X., and Nelson, W. G. (1999). Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res. 59, 3855–3860.

    PubMed  Google Scholar 

  28. Lee, W. H., Morton, R. A., Epstein, J. I., et al. (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA 91, 11,733–11,737.

    Article  PubMed  CAS  Google Scholar 

  29. Nelson, W. G., De Marzo, A. M., and Isaacs, W. B. (2003). Prostate cancer. N. Engl. J. Med. 349, 366–381.

    Article  PubMed  CAS  Google Scholar 

  30. Nelson, C. P., Kidd, L. C., Sauvageot, J., et al. (2001). Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo[ 4,5-b]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res. 61, 103–109.

    PubMed  CAS  Google Scholar 

  31. Lin, X., Tascilar, M., Lee, W. H., et al. (2001). GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am. J. Pathol. 159, 1815–1826.

    PubMed  CAS  Google Scholar 

  32. Henderson, C. J., Smith, A. G., Ure, J., Brown, K., Bacon, E. J., and Wolf, C. R. (1998). Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc. Natl. Acad. Sci. USA 95, 5275–5280.

    Article  PubMed  CAS  Google Scholar 

  33. Millar, D. S., Paul, C. L., Molloy, P. L., and Clark, S. J. (2000). A distinct sequence (ATAAA)n separates methylated and unmethylated domains at the 5′-end of the GSTP1 CpG island. J. Biol. Chem. 275, 24,893–24,899.

    Article  PubMed  CAS  Google Scholar 

  34. De Marzo, A. M., Marchi, V. L., Epstein, J. I., and Nelson, W. G. (1999). Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol. 155, 1985–1992.

    PubMed  Google Scholar 

  35. DeMarzo, A. M., Nelson, W. G., Isaacs, W. B., and Epstein, J. I. (2003). Pathological and molecular aspects of prostate cancer. Lancet 361, 955–964.

    Article  PubMed  CAS  Google Scholar 

  36. Nakayama, M., Bennett, C. J., Hicks, J. L., et al. (2003). Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol. 163, 923–933.

    PubMed  CAS  Google Scholar 

  37. Brooks, J. D., Weinstein, M., Lin, X., et al. (1998). CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol. Biomarkers Prev. 7, 531–536.

    PubMed  CAS  Google Scholar 

  38. DeWeese, T. L. and Nelson, W. G. (2003). Inadequate “caretaker” gene function and human cancer development. Methods Mol. Biol. 222, 249–268.

    PubMed  CAS  Google Scholar 

  39. Hmadcha, A., Bedoya, F. J., Sobrino, F., and Pintado, E. (1999). Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J. Exp. Med. 190, 1595–1604.

    Article  PubMed  CAS  Google Scholar 

  40. Bastian, P. J., Yegnasubramanian, S., Palapattu, G. S., et al. (2004). Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur. Urol. 46, 698–708.

    Article  PubMed  CAS  Google Scholar 

  41. Yegnasubramanian, S., Kowalski, J., Gonzalgo, M. L., et al. (2004). Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res. 64, 1975–1986.

    Article  PubMed  CAS  Google Scholar 

  42. Bedford, M. T. and van Helden, P. D. (1987). Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 47, 5274–5276.

    PubMed  CAS  Google Scholar 

  43. Santourlidis, S., Florl, A., Ackermann, R., Wirtz, H. C., and Schulz, W. A. (1999). High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39, 166–174.

    Article  PubMed  CAS  Google Scholar 

  44. Florl, A. R., Steinhoff, C., Muller, M., et al. (2004). Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br. J. Cancer 91, 985–994.

    PubMed  CAS  Google Scholar 

  45. Schulz, W. A., Elo, J. P., Florl, A. R., et al. (2002). Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35, 58–65.

    Article  PubMed  CAS  Google Scholar 

  46. Soh, S., Kattan, M. W., Berkman, S., Wheeler, T. M., and Scardino, P. T. (1997). Has there been a recent shift in the pathological features and prognosis of patients treated with radical prostatectomy? J. Urol. 157, 2212–2218.

    Article  PubMed  CAS  Google Scholar 

  47. Thompson, I. M., Pauler, D. K., Goodman, P. J., et al. (2004). Prevalence of prostate cancer among men with a prostatespecific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246.

    Article  PubMed  CAS  Google Scholar 

  48. Thompson, I. M., Goodman, P. J., Tangen, C. M., et al. (2003). The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224.

    Article  PubMed  CAS  Google Scholar 

  49. Makhlouf, A. A., Krupski, T. L., Kunkle, D., and Theodorescu, D. (2004). The effect of sampling more cores on the predictive accuracy of pathological grade and tumour distribution in the prostate biopsy. BJU Int. 93, 271–274.

    Article  PubMed  CAS  Google Scholar 

  50. de la Taille, A., Antiphon, P., Salomon, L., et al. (2003). Prospective evaluation of a 21-sample needle biopsy procedure designed to improve the prostate cancer detection rate. Urology 61, 1181–1186.

    Article  PubMed  Google Scholar 

  51. Sidransky, D. (2002). Emerging molecular markers of cancer. Nat. Rev. Cancer 2, 210–219.

    Article  PubMed  CAS  Google Scholar 

  52. Laird, P. W. (2003). The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266.

    Article  PubMed  CAS  Google Scholar 

  53. Lee, W. H., Isaacs, W. B., Bova, G. S., and Nelson, W. G. (1997). CG island methylation changes near the GSTP1 gene in prostatic carcinoma cells detected using the polymerase chain reaction: a new prostate cancer biomarker. Cancer Epidemiol. Biomarkers Prev. 6, 443–450.

    PubMed  CAS  Google Scholar 

  54. Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994). High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22, 2990–2997.

    Article  PubMed  CAS  Google Scholar 

  55. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.

    Article  PubMed  CAS  Google Scholar 

  56. Harden, S. V., Sanderson, H., Goodman, S. N., et al. (2003). Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. J. Natl. Cancer Inst. 95, 1634–1637.

    PubMed  CAS  Google Scholar 

  57. Gonzalgo, M. L., Nakayama, M., Lee, S. M., De Marzo, A. M., and Nelson, W. G. (2004). Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis. Urology 63, 414–418.

    Article  PubMed  Google Scholar 

  58. Goessl, C., Muller, M., Heicappell, R., Krause, H., and Miller, K. (2001). DNA-based detection of prostate cancer in blood, urine, and ejaculates. Ann. NY Acad. Sci. 945, 51–58.

    Article  PubMed  CAS  Google Scholar 

  59. Gonzalgo, M. L., Pavlovich, C. P., Lee, S. M., and Nelson, W. G. (2003). Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res. 9, 2673–2677.

    PubMed  CAS  Google Scholar 

  60. Jeronimo, C., Henrique, R., Hoque, M. O., et al. (2004). Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin. Cancer Res. 10, 4010–4014.

    Article  PubMed  CAS  Google Scholar 

  61. Liu, L., Yoon, J. H., Dammann, R., and Pfeifer, G. P. (2002). Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene 21, 6835–6840.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang, J., Liu, L., and Pfeifer, G. P. (2004). Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene 23, 2241–2249.

    Article  PubMed  CAS  Google Scholar 

  63. Zhu, X., Leav, I., Leung, Y. K., et al. (2004). Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am. J. Pathol. 164, 2003–2012.

    PubMed  CAS  Google Scholar 

  64. Bastian, P. J., Palapattu, G. S., Lin, X., et al. (2005). Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res. 11, 4037–4043.

    Article  PubMed  CAS  Google Scholar 

  65. Kaminskas, E., Farrell, A., Abraham, S., et al. (2005). Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin. Cancer Res. 11, 3604–3608.

    Article  PubMed  CAS  Google Scholar 

  66. Jones, P. A. and Taylor, S. M. (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93.

    Article  PubMed  CAS  Google Scholar 

  67. Cheng, J. C., Matsen, C. B., Gonzales, F. A., et al. (2003). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer Inst. 95, 399–409.

    Article  PubMed  CAS  Google Scholar 

  68. Lin, X., Asgari, K., Putzi, M. J., et al. (2001). Reversal of GSTP1 CpG island hypermethylation and reactivation of pi-class glutathione S-transferase (GSTP1) expression in human prostate cancer cells by treatment with procainamide. Cancer Res. 61, 8611–8616.

    PubMed  CAS  Google Scholar 

  69. Segura-Pacheco, B., Trejo-Becerril, C., Perez-Cardenas, E., et al. (2003). Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res. 9, 1596–1603.

    PubMed  CAS  Google Scholar 

  70. Kelly, W. K., Richon, V. M., O’Connor, O., et al. (2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 9, 3578–3588.

    PubMed  CAS  Google Scholar 

  71. Carducci, M. A., Gilbert, J., Bowling, M. K., et al. (2001). A phase I clinical and pharmacological evaluation of sodium phenylbutyrate on an 120-h infusion schedule. Clin. Cancer Res. 7, 3047–3055.

    PubMed  CAS  Google Scholar 

  72. Carducci, M. A., Nelson, J. B., Chan-Tack, K. M., et al. (1996). Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. 2, 379–387.

    PubMed  CAS  Google Scholar 

  73. Gilbert, J., Baker, S. D., Bowling, M. K., et al. (2001). A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin. Cancer Res. 7, 2292–2300.

    PubMed  CAS  Google Scholar 

  74. Santini, V., Kantarjian, H. M., and Issa, J. P. (2001). Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med. 134, 573–586.

    PubMed  CAS  Google Scholar 

  75. Thibault, A., Figg, W. D., Bergan, R. C., et al. (1998). A phase II study of 5-aza-2’deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori 84, 87–89.

    PubMed  CAS  Google Scholar 

  76. Jackson-Grusby, L., Laird, P. W., Magge, S. N., Moeller, B. J., and Jaenisch, R. (1997). Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl. Acad. Sci. USA 94, 4681–4685.

    Article  PubMed  CAS  Google Scholar 

  77. Scheinbart, L. S., Johnson, M. A., Gross, L. A., Edelstein, S. R., and Richardson, B. C. (1991). Procainamide inhibits DNA methyltransferase in a human T cell line. J. Rheumatol. 18, 530–534.

    PubMed  CAS  Google Scholar 

  78. Cornacchia, E., Golbus, J., Maybaum, J., Strahler, J., Hanash, S., and Richardson, B. (1988). Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200.

    PubMed  CAS  Google Scholar 

  79. Lee, B. H., Yegnasubramanian, S., and Nelson, W. G. (2005). Procainamide is a specific inhibitor of DNA methyltransferase 1. J. Biol. Chem. 280, 40,749–40,756

    Article  PubMed  CAS  Google Scholar 

  80. Quddus, J., Johnson, K. J., Gavalchin, J., et al. (1993). Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92, 38–53.

    Article  PubMed  CAS  Google Scholar 

  81. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107.

    Article  PubMed  CAS  Google Scholar 

  82. Jones, P. L., Veenstra, G. J., Wade, P. A., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191.

    Article  PubMed  CAS  Google Scholar 

  83. Feng, Q. and Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev. 15, 827–832.

    PubMed  CAS  Google Scholar 

  84. Bakker, J., Lin, X., and Nelson, W. G. (2002). Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J. Biol. Chem. 277, 22,573–22,580.

    Article  PubMed  CAS  Google Scholar 

  85. Lin, X. and Nelson, W. G. (2003). Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells. Cancer Res. 63, 498–504.

    PubMed  CAS  Google Scholar 

  86. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A., and Bird, A. (2001). Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723.

    Article  PubMed  CAS  Google Scholar 

  87. Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., and Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat. Genet. 34, 145–147.

    Article  PubMed  CAS  Google Scholar 

  88. Sansom, O. J., Bishop, S. M., Bird, A., and Clarke, A. R. (2005). MBD2 deficiency does not accelerate p53 mediated lymphomagenesis. Oncogene 24, 2430–2432.

    Article  PubMed  CAS  Google Scholar 

  89. Campbell, P. M., Bovenzi, V., and Szyf, M. (2004). Methylated DNA-binding protein 2 antisense inhibitors suppress tumourigenesis of human cancer cell lines in vitro and in vivo. Carcinogenesis 25, 499–507.

    Article  PubMed  CAS  Google Scholar 

  90. Slack, A., Bovenzi, V., Bigey, P., et al. (2002). Antisense MBD2 gene therapy inhibits tumorigenesis. J. Gene Med. 4, 381–389.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Nelson, W.G., Yegnasubramanian, S., Bastian, P.J., Nakayama, M., De Marzo, A.M. (2007). Somatic DNA Methylation Changes and Prostatic Carcinogenesis. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics