Skip to main content

Expression Profiling of Prostate Cancer Progression

  • Chapter
Prostate Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1064 Accesses

Abstract

DNA microarray technology has revolutionized cancer research through the ability to obtain a genomewide perspective of gene expression. More than 25 published studies have profiled human prostate tissues, and the number of dysregulated genes identified through microarray studies is still expanding. However, although we have gained tremendous insight into expression differences between benign and cancerous prostate tissue, much remains to be understood regarding gene expression in the context of progression from benign to clinically localized prostate cancer to metastatic disease. In this review, after briefly introducing DNA microarrays and the current state of expression profiling in prostate cancer (CaP), we focus on how profiling studies have contributed to our knowledge of gene expression in CaP progression, particularly in advanced disease. Studies attempting to identify expression signatures correlating with Gleason grade are discussed. In addition, studies characterizing expression in aggressive tumors, either by profiling metastatic samples directly or identifying gene signatures characteristic of localized tumors likely to recur after surgical resection, are analyzed. Results from these studies will be synthesized to characterize CaP progression and identify focused areas of future analysis. The limitations of current approaches are also addressed, particularly in translating conclusions from these studies to clinical practice. We conclude with a discussion of important advances and future areas for expression profiling in the context of understanding CaP progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gleason, D. F. and Mellinger, G. T. (1974). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 111, 58–64.

    PubMed  CAS  Google Scholar 

  2. Kattan, M. W. (2003). Judging new markers by their ability to improve predictive accuracy. J. Natl. Cancer Inst. 95, 634–635.

    Article  PubMed  CAS  Google Scholar 

  3. Nakayama, M., Gonzalgo, M. L., Yegnasubramanian, S., Lin, X., De Marzo, A. M., and Nelson, W. G. (2004). GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J. Cell. Biochem. 91, 540–552.

    Article  PubMed  CAS  Google Scholar 

  4. Sansal, I. and Sellers, W.R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963.

    Article  PubMed  CAS  Google Scholar 

  5. Bhatia-Gaur, R., Donjacour, A. A., Sciavolino, P. J., et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966–977.

    PubMed  CAS  Google Scholar 

  6. Linja, M. J. and Visakorpi, T. (2004). Alterations of androgen receptor in prostate cancer. J. Steroid Biochem. Mol. Biol. 92, 255–264.

    Article  PubMed  CAS  Google Scholar 

  7. Feldman, B. J. and Feldman, D. (2001). The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45.

    Article  PubMed  CAS  Google Scholar 

  8. Nupponen, N. N., Kakkola, L., Koivisto, P., and Visakorpi, T. (1998). Genetic alterations in hormone-refractory recur-rent prostate carcinomas. Am. J. Pathol. 153, 141–148.

    PubMed  CAS  Google Scholar 

  9. Ellwood-Yen, K., Graeber, T. G., Wongvipat, J., et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238.

    Article  PubMed  CAS  Google Scholar 

  10. Karhadkar, S. S., Bova, G. S., Abdallah, N., et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712.

    Article  PubMed  CAS  Google Scholar 

  11. Nelson, W. G., De Marzo, A. M., and Isaacs, W. B. (2003). Prostate cancer. N. Engl. J. Med. 349, 366–381.

    Article  PubMed  CAS  Google Scholar 

  12. Rubin, M. A. and De Marzo, A. M. (2004) Molecular genetics of human prostate cancer. Mod. Pathol. 17, 380–388.

    Article  PubMed  CAS  Google Scholar 

  13. Slonim, D. K. (2002). From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32(Suppl.), 502–508.

    Article  PubMed  CAS  Google Scholar 

  14. Quackenbush, J. (2002). Microarray data normalization and transformation. Nat. Genet. 32(Suppl.), 496–501.

    Article  PubMed  CAS  Google Scholar 

  15. Churchill, G. A. (2002). Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(Suppl.), 490–495.

    Article  PubMed  CAS  Google Scholar 

  16. DeRisi, J., Penland, L., Brown, P. O., et al. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14, 457–460.

    Article  PubMed  CAS  Google Scholar 

  17. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  18. Wodicka, L., Dong, H., Mittmann, M., Ho, M. H., and Lockhart, D. J. (1997). Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  19. Chee, M., Yang, R., Hubbell, E., et al. (1996). Accessing genetic information with high-density DNA arrays. Science 274, 610–614.

    Article  PubMed  CAS  Google Scholar 

  20. Gershon, D. (2004). Microarrays go mainstream. Nat. Meth. 1, 263–270.

    Article  CAS  Google Scholar 

  21. Hughes, T. R., Mao, M., Jones, A. R., et al. (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347.

    Article  PubMed  CAS  Google Scholar 

  22. Rhodes, D. R. and Chinnaiyan, A. M. (2004). Bioinformatics strategies for translating genome-wide expression analy-ses into clinically useful cancer markers. Ann. NY Acad. Sci. 1020, 32–40.

    Article  PubMed  CAS  Google Scholar 

  23. Rhodes, D. R., Barrette, T. R., Rubin, M. A., Ghosh, D., and Chinnaiyan, A. M. (2002). Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer. Res. 62, 4427–4433.

    PubMed  CAS  Google Scholar 

  24. Rhodes, D. R., Yu, J., Shanker, K., et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6.

    PubMed  CAS  Google Scholar 

  25. Bull, J. H., Ellison, G., Patel, A., et al. (2001). Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br. J. Cancer 84, 1512–1519.

    Article  PubMed  CAS  Google Scholar 

  26. Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826.

    Article  PubMed  CAS  Google Scholar 

  27. Magee, J. A., Araki, T., Patil, S., et al. (2001). Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 61, 5692–5696.

    PubMed  CAS  Google Scholar 

  28. Welsh, J. B., Sapinoso, L. M., Su, A. I., et al. (2001). Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61, 5974–5978.

    PubMed  CAS  Google Scholar 

  29. Luo, J., Duggan, D. J., Chen, Y., et al. (2001). Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688.

    PubMed  CAS  Google Scholar 

  30. Stamey, T. A., Warrington, J. A., Caldwell, M. C., et al. (2001). Molecular genetic profiling of Gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J. Urol. 166, 2171–2177.

    Article  PubMed  CAS  Google Scholar 

  31. Ashida, S., Nakagawa, H., Katagiri, T., et al. (2004). Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 64, 5963–5972.

    Article  PubMed  CAS  Google Scholar 

  32. Best, C. J., Leiva, I. M., Chuaqui, R. F., et al. (2003). Molecular differentiation of high-and moderate-grade human prostate cancer by cDNA microarray analysis. Diagn. Mol. Pathol. 12, 63–70.

    Article  PubMed  CAS  Google Scholar 

  33. Chen, Z., Fan, Z., McNeal, J. E., et al. (2003). Hepsin and maspin are inversely expressed in laser capture micro-dissectioned prostate cancer. J. Urol. 169, 1316–1319.

    Article  PubMed  CAS  Google Scholar 

  34. Varambally, S., Dhanasekaran, S. M., Zhou, M., et al. (2002). The polycomb group protein EZH2 is involved in pro-gression of prostate cancer. Nature 419, 624–629.

    Article  PubMed  CAS  Google Scholar 

  35. Ernst, T., Hergenhahn, M., Kenzelmann, M., et al. (2002). Decrease and gain of gene expression are equally discrimi-natory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am. J. Pathol. 160, 2169–2180.

    PubMed  CAS  Google Scholar 

  36. Glinsky, G. V., Glinskii, A. B., Stephenson, A. J., Hoffman, R. M., and Gerald, W. L. (2004). Gene expression profiling predicts clinical outcome of prostate cancer. J. Clin. Invest. 113, 913–923.

    Article  PubMed  CAS  Google Scholar 

  37. Henshall, S. M., Afar, D. E., Hiller, J., et al. (2003). Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse. Cancer Res. 63, 4196–4203.

    PubMed  CAS  Google Scholar 

  38. Henshall, S. M., Afar, D. E., Rasiah, K. K., et al. (2003). Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 22, 6005–6012.

    Article  PubMed  CAS  Google Scholar 

  39. Kristiansen, G., Pilarsky, C., Wissmann, C., et al. (2005). Expression profiling of microdissected matched prostate cancer samples reveals CD166/MEMD and CD24 as new prognostic markers for patient survival. J. Pathol. 205, 359–376.

    Article  PubMed  CAS  Google Scholar 

  40. Lapointe, J., Li, C., Higgins, J. P., et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA 101, 811–816.

    Article  PubMed  CAS  Google Scholar 

  41. LaTulippe, E., Satagopan, J., Smith, A., et al. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 62, 4499–4506.

    PubMed  CAS  Google Scholar 

  42. Luo, J. H., Yu, Y. P., Cieply, K., et al. (2002). Gene expression analysis of prostate cancers. Mol. Carcinog. 33, 25–35.

    Article  PubMed  CAS  Google Scholar 

  43. Luo, J., Dunn, T. A., Ewing, C. M., Walsh, P. C., and Isaacs, W. B. (2003). Decreased gene expression of steroid 5 alpha-reductase 2 in human prostate cancer: implications for finasteride therapy of prostate carcinoma. Prostate 57, 134–139.

    Article  PubMed  CAS  Google Scholar 

  44. Moore, S., Knudsen, B., True, L. D., et al. (2005). Loss of stearoyl-CoA desaturase expression is a frequent event in prostate carcinoma. Int. J. Cancer 114, 563–571.

    Article  PubMed  CAS  Google Scholar 

  45. Ramachandran, S., Liu, P., Young, A. N., et al. (2005). Loss of HOXC6 expression induces apoptosis in prostate cancer cells. Oncogene 24, 188–198.

    Article  PubMed  CAS  Google Scholar 

  46. Rossi, S., Graner, E., Febbo, P., et al. (2003). Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol. Cancer Res. 1, 707–715.

    PubMed  CAS  Google Scholar 

  47. Singh, D., Febbo, P. G., Ross, K., et al. (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209.

    Article  PubMed  CAS  Google Scholar 

  48. Stamey, T. A., Caldwell, M. C., Fan, Z., et al. (2003). Genetic profiling of Gleason grade 4/5 prostate cancer: which is the best prostatic control tissue? J. Urol. 170, 2263–2268.

    Article  PubMed  Google Scholar 

  49. Stuart, R. O., Wachsman, W., Berry, C. C., et al. (2004). In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc. Natl. Acad. Sci. USA 101, 615–620.

    Article  PubMed  CAS  Google Scholar 

  50. Vanaja, D. K., Cheville, J. C., Iturria, S. J., and Young, C. Y. (2003). Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 63, 3877–3882.

    PubMed  CAS  Google Scholar 

  51. Yu, Y. P., Landsittel, D., Jing, L., et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggres-sion and preceding development of malignancy. J. Clin. Oncol. 22, 2790–2799.

    Article  PubMed  CAS  Google Scholar 

  52. Figueroa, J. A., De Raad, S., Tadlock, L., Speights, V. O., and Rinehart, J. J. (1998). Differential expression of insulin-like growth factor binding proteins in high versus low Gleason score prostate cancer. J. Urol. 159, 1379–1383.

    Article  PubMed  CAS  Google Scholar 

  53. Thomas, R., True, L. D., Bassuk, J. A., Lange, P. H., and Vessella, R. L. (2000). Differential expression of osteonectin/ SPARC during human prostate cancer progression. Clin. Cancer Res. 6, 1140–1149.

    PubMed  CAS  Google Scholar 

  54. Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121.

    Article  PubMed  CAS  Google Scholar 

  55. Rosenwald, A., Wright, G., Chan, W. C., et al. (2002). The use of molecular profiling to predict survival after chemo-therapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937–1947.

    Article  PubMed  Google Scholar 

  56. Shipp, M. A., Ross, K. N., Tamayo, P., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8, 68–74.

    Article  PubMed  CAS  Google Scholar 

  57. Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 1, 133–143.

    Article  PubMed  CAS  Google Scholar 

  58. Bullinger, L., Dohner, K., Bair, E., et al. (2004). Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350, 1605–1616.

    Article  PubMed  CAS  Google Scholar 

  59. Valk, P. J., Verhaak, R. G., Beijen, M. A., et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 350, 1617–1628.

    Article  PubMed  CAS  Google Scholar 

  60. van’t Veer, L. J., Dai, H., van de Vijver, M. J., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536.

    Article  Google Scholar 

  61. Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445.

    Article  PubMed  CAS  Google Scholar 

  62. Bair, E. and Tibshirani, R. (2004). Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2, E108.

    Article  PubMed  Google Scholar 

  63. Ebert, B. L. and Golub, T. R. (2004). Genomic approaches to hematologic malignancies. Blood 104, 923–932.

    Article  PubMed  CAS  Google Scholar 

  64. Tonini, T., Bagella, L., D’Andrilli, G., Claudio, P. P., and Giordano, A. (2004). Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene 23, 4930–4937.

    Article  PubMed  CAS  Google Scholar 

  65. Tang, X., Milyavsky, M., Shats, I., Erez, N., Goldfinger, N., and Rotter, V. (2004). Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23, 5759–5769.

    Article  PubMed  CAS  Google Scholar 

  66. Attwooll, C., Oddi, S., Cartwright, P., et al. (2005). A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J. Biol. Chem. 280, 1199–1208.

    Article  PubMed  CAS  Google Scholar 

  67. Bracken, A. P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo. J. 22, 5323–5335.

    Article  PubMed  CAS  Google Scholar 

  68. Kleer, C. G., Cao, Q., Varambally, S., et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neo-plastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 100, 11,606–11,611.

    Article  PubMed  CAS  Google Scholar 

  69. Raaphorst, F. M., Meijer, C. J., Fieret, E., et al. (2003). Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia 5, 481–488.

    PubMed  CAS  Google Scholar 

  70. Abate-Shen, C., Banach-Petrosky, W. A., Sun, X., et al. (2003). Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 63, 3886–3890.

    PubMed  CAS  Google Scholar 

  71. Kim, M. J., Cardiff, R. D., Desai, N., et al. (2002). Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc. Natl. Acad. Sci. USA 99, 2884–2889.

    Article  PubMed  CAS  Google Scholar 

  72. Santagata, S., Demichelis, F., Riva, A., et al. (2004). JAGGED1 expression is associated with prostate cancer metasta-sis and recurrence. Cancer Res. 64, 6854–6857.

    Article  PubMed  CAS  Google Scholar 

  73. Shah, R. B., Mehra, R., Chinnaiyan, A. M., et al. (2004). Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 64, 9209–9216.

    Article  PubMed  CAS  Google Scholar 

  74. Blute, M. L., Bergstralh, E. J., Iocca, A., Scherer, B., and Zincke, H. (2001). Use of Gleason score, prostate spe-cific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy. J. Urol. 165, 119–125.

    Article  PubMed  CAS  Google Scholar 

  75. Kattan, M. W., Wheeler, T. M., and Scardino, P. T. (1999). Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 17, 1499–1507.

    PubMed  CAS  Google Scholar 

  76. Kattan, M. W. (2004). Evaluating a new marker’s predictive contribution. Clin. Cancer Res. 10, 822–824.

    Article  PubMed  CAS  Google Scholar 

  77. Ntzani, E. E. and Ioannidis, J. P. (2003). Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 362, 1439–1444.

    Article  PubMed  CAS  Google Scholar 

  78. Michiels, S., Koscielny, S. and Hill, C. (2005). Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365, 488–492.

    Article  PubMed  CAS  Google Scholar 

  79. Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridiza-tion array data repository. Nucl. Acids Res. 30, 207–210.

    Article  PubMed  CAS  Google Scholar 

  80. Brazma, A., Parkinson, H., Sarkans, U., et al. (2003). ArrayExpress-a public repository for microarray gene expres-sion data at the EBI. Nucl. Acids Res. 31, 68–71.

    Article  PubMed  CAS  Google Scholar 

  81. Mocellin, S., Rossi, C. R., Pilati, P., Nitti, D., and Marincola, F. M. (2003) Quantitative real-time PCR: a powerful ally in cancer research. Trends Mol. Med. 9, 189–195.

    Article  PubMed  CAS  Google Scholar 

  82. Brazeau, D. A. (2004) Combining genome-wide and targeted gene expression profiling in drug discovery: microarrays and real-time PCR. Drug Discov. Today 9, 838–845.

    CAS  Google Scholar 

  83. Paik, S., Shak, S., Tang, G., et al. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826.

    Article  PubMed  CAS  Google Scholar 

  84. Emmert-Buck, M. R., Bonner, R. F., Smith, P.D., et al. (1996). Laser capture microdissection. Science 274, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T., and Marincola, F. M. (2000). High-fidelity mRNA amplification for gene profiling. Nat. Biotechnol. 18, 457–459.

    Article  PubMed  CAS  Google Scholar 

  86. Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667.

    Article  PubMed  Google Scholar 

  87. Makrigiorgos, G. M., Chakrabarti, S., Zhang, Y., Kaur, M., and Price, B. D. (2002). A PCR-based amplification method retaining the quantitative difference between two complex genomes. Nat. Biotechnol. 20, 936–939.

    Article  PubMed  CAS  Google Scholar 

  88. Iscove, N. N., Barbara, M., Gu, M., Gibson, M., Modi, C., and Winegarden, N. (2002). Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat. Biotechnol. 20, 940–943.

    Article  PubMed  CAS  Google Scholar 

  89. Paez, J. G., Janne, P. A., Lee, J. C., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  90. Lynch, T. J., Bell, D. W., Sordella, R., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  91. Sweet-Cordero, A., Mukherjee, S., Subramanian, A., et al. (2005). An oncogenic KRAS2 expression signature identi-fied by cross-species gene-expression analysis. Nat. Genet. 37, 48–55.

    PubMed  CAS  Google Scholar 

  92. Lamb, J., Ramaswamy, S., Ford, H. L., et al. (2003) A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334.

    Article  PubMed  CAS  Google Scholar 

  93. Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tomlins, S.A., Chinnaiyan, A.M. (2007). Expression Profiling of Prostate Cancer Progression. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics