Skip to main content

Molecular Imaging

Noninvasive Strategies to Visualize Gene Expression in Living Subjects

  • Chapter
Book cover Prostate Cancer

Part of the book series: Contemporary Cancer Research ((CCR))

  • 1062 Accesses

Abstract

Recent advances in molecular imaging techniques have opened the door to a new universe that allows for early detection and characterization of disease and evaluation of therapy. Noninvasive imaging of reporter gene expression using different imaging modalities has proved to be valuable for the in vivo assessment of molecular events in several areas including reporter gene expression, immune cell trafficking, protein—protein interactions, and cancer gene therapy. Multimodality imaging offers the advantage of monitoring the expression of multiple genes using different imaging modalities and finds applications in many areas of biology and medicine. In the coming years, molecular imaging will play a key role in the screening of novel drugs and in the understanding of disease progression at the cellular and molecular level. This chapter provides a comprehensive review of different reporter gene imaging strategies, imaging modalities, and applications of molecular imaging for cancer gene therapy. The chapter also includes a discussion of transcriptional targeting using tissue-specific promoters, including prostate cancer imaging. The final section includes a brief review of the developments in viral and nonviral gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phair, R. D. and Misteli, T. (2001). Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2, 898–907.

    PubMed  CAS  Google Scholar 

  2. Massoud, T. F. and Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580.

    PubMed  CAS  Google Scholar 

  3. Tjuvajev, J. G., Avril, N., Oku, T., et al. (1998). Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 58, 4333–4341.

    PubMed  CAS  Google Scholar 

  4. Tjuvajev, J. G., Finn, R., Watanabe, K., Joshi, R., et al. (1996). Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095.

    PubMed  CAS  Google Scholar 

  5. Gambhir, S. S., Barrio, J. R., Phelps, M. E., et al. (1999). Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338.

    PubMed  CAS  Google Scholar 

  6. Gambhir, S. S., Herschman, H. R., Cherry, S. R., et al. (2000). Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118–138.

    PubMed  CAS  Google Scholar 

  7. Rehemtulla, A., Stegman, L. D., Cardozo, S. J., et al. (2000). Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2, 491–495.

    PubMed  CAS  Google Scholar 

  8. Contag, C. H., Spilman, S. D., Contag, P. R., et al. (1997). Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66, 523–531.

    PubMed  CAS  Google Scholar 

  9. Contag, C. H., and Bachmann, M. H. (2002). Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260.

    PubMed  CAS  Google Scholar 

  10. Weissleder, R., Simonova, M., Bogdanova, A., Bredow, S., Enochs, W., and Bogdanov, A. J. (1997). MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204, 425–429.

    PubMed  CAS  Google Scholar 

  11. Louie, A. Y., Huber, M. M., Ahrens, E. T., et al. (2000). In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18, 321–325.

    PubMed  CAS  Google Scholar 

  12. Shah, K., Jacobs, A., Breakefield, X. O., and Weissleder, R. (2004). Molecular imaging of gene therapy for cancer. Gene Ther. 11, 1175–1187.

    PubMed  CAS  Google Scholar 

  13. Jaffer, F. A. and Weissleder, R. (2005). Molecular imaging in the clinical arena. JAMA 293, 855–862.

    PubMed  CAS  Google Scholar 

  14. Gambhir, S. S. (2002). Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693.

    PubMed  CAS  Google Scholar 

  15. Conti, P. S., Lilien, D. L., Hawley, K., Keppler, J., Grafton, S. T., and Bading, J. R. (1996). PET and [18F]-FDG in oncology: a clinical update. Nucl. Med. Biol. 23, 717–735.

    PubMed  CAS  Google Scholar 

  16. Delbeke, D. (1999). Oncological applications of FDG-PET imaging: brain tumors, colorectal cancer, lymphoma, and melanoma. J. Nucl. Med. 40, 591–603.

    PubMed  CAS  Google Scholar 

  17. Effert, P. J., Bares, R., Handt, S., Wolff, J. M., Bull, U., and Jakse, G. (1996). Metabolic imaging of untreated prostate cancer by positron emission tomography with 18-fluorine-labeled deoxyglucose. J. Urol. 155, 994–998.

    PubMed  CAS  Google Scholar 

  18. Shreve, P. D., Grossman, H. B., Gross, M. D., and Wahl, R. L. (1996). Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]-fluoro-D-glucose. Radiology 199, 751–756.

    PubMed  CAS  Google Scholar 

  19. Hara, T., Kosaka, N., and Kishi, H. (1998). PET imaging of prostate cancer using carbon-11-choline. J. Nucl. Med. 39, 990–995.

    PubMed  CAS  Google Scholar 

  20. DeGrado, T. R., Baldwin, S. W., Wang, S., et al. (2001). Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J. Nucl. Med. 42, 1805–1814.

    PubMed  CAS  Google Scholar 

  21. Oyama, N., Akino, H., Kanamaru, H., et al. (2002). 11C-acetate PET imaging of prostate cancer. J. Nucl. Med. 43, 181–186.

    PubMed  CAS  Google Scholar 

  22. Sundaresan, G., Yazaki, P. J., Shively, J. E., et al. (2003). 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic nude mice. J. Nucl. Med. 44, 1962–1969.

    PubMed  CAS  Google Scholar 

  23. Israeli, R. S., Powell, C. T., Corr, J. G., Fair, W. R., and Heston, W. D. (1994). Expression of the prostate-specific membrane antigen. Cancer Res. 54, 1807–1811.

    PubMed  CAS  Google Scholar 

  24. Wynant, G. E., Murphy, G. P., Horoszewicz, J. S., et al. (1991). Immunoscintigraphy of prostatic cancer: preliminary results with 111In-labeled monoclonal antibody 7E11-C5.3 (CYT-356). Prostate 18, 229–241.

    PubMed  CAS  Google Scholar 

  25. Milowsky, M. I., Nanus, D. M., Kostakoglu, L., Vallabhajosula, S., Goldsmith, S. J., and Bander, N. H. (2004). Phase I trial of Yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J. Clin. Oncol. 22, 2522–2531.

    PubMed  CAS  Google Scholar 

  26. Bander, N. H., Milowsky, M. I., Nanus, D. M., Kostakoglu, L., Vallabhajosula, S., and Goldsmith, S. J. (2005). Phase I trial of 177Lu-labeled J591, a monoclonal antibody to prostate-specific membrane antigen in patients with androgenindependent prostate cancer. J. Clin. Oncol. 23, 4591–4601.

    PubMed  CAS  Google Scholar 

  27. Amara, N., Palapattu, G. S., Schrage, M., et al. (2001). Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Cancer Res. 61, 4660–4665.

    PubMed  CAS  Google Scholar 

  28. Saffran, D. C., Raitano, A. B., Hubert, R. S., Witte, O. N., Reiter, R. E., and Jakobovits, A. (2001). Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc. Natl. Acad. Sci. USA 98, 2658–2663.

    PubMed  CAS  Google Scholar 

  29. Ross, S., Spencer, S. D., Holcomb, I., et al. (2002). Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate. Cancer Res. 62, 2546–2553.

    PubMed  CAS  Google Scholar 

  30. Iwashina, T., Tovell, D. R., Xu, L., Tyrrell, D. L., Knaus, E. E., and Wiebe, L. I. (1988). Synthesis and antiviral activity of IVFRU, a potential probe for the non-invasive diagnosis of herpes simplex encephalitis. Drug Des. Deliv. 3, 309–321.

    PubMed  CAS  Google Scholar 

  31. Gambhir, S. S., Barrio, J. R., Wu, L., et al. (1998). Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J. Nucl. Med. 39, 2003–2011.

    PubMed  CAS  Google Scholar 

  32. Gambhir, S. S., Bauer, E., Black, M. E., et al. (2000). A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl. Acad. Sci. USA 97, 2785–2790.

    PubMed  CAS  Google Scholar 

  33. Tjuvajev, J. G., Chen, S. H., Joshi, A., et al. (1999). Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer expression in vivo. Cancer Res. 59, 5186–5193.

    PubMed  CAS  Google Scholar 

  34. Tjuvajev, J. G., Joshi, R., Lindsley, L., et al. (1998). Noninvasive imaging of HSV1-tk marker gene with FIAU for monitoring transfer and expression of other therapeutic genes by multi-gene delivery vectors. J. Nucl. Med. 39, 130P.

    Google Scholar 

  35. Iyer, M., Barrio, J. R., Namavari, M., et al. (2001). 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J. Nucl. Med. 42, 96–105.

    PubMed  CAS  Google Scholar 

  36. Min, J. J., Iyer, M., and Gambhir, S. S. (2003). Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur. J. Nucl. Med. 30, 1547–1560.

    CAS  Google Scholar 

  37. Iyer, M., Bauer, E., Barrio, J. R., et al. (2000). Comparison of FPCV, FHBG, and FIAU as reporter probes for imaging herpes simplex virus type 1 thymidine kinase reporter gene expression [abstract]. J. Nuc. Med. 41, 80P-81P.

    Google Scholar 

  38. Wang, H. E., Deng, W. P., Chang, P. F., et al. (2002). Evaluation and comparison of [18F]-FHBG and [131I]-FIAU as gene probes in gene therapy [abstract]. J. Nucl. Med. 43(Suppl.), 274.

    Google Scholar 

  39. Tjuvajev, J. G., Doubrovin, M., Akhurst, T., et al. (2002). Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucl. Med. 43, 1072–1083.

    PubMed  Google Scholar 

  40. Kang, K. W., Min, J. J., Chen, X., and Gambhir, S. S. (2005). Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol. Imag. Biol. 7, 296–303.

    Google Scholar 

  41. Loser, P., Jennings, G. S., Strauss, M., and Sandig, V. (1998). Reactivation of the previously silenced cytomegalovirus major-immediate early promoter in the mouse liver: involvement of NFkappaB. J. Virol. 72, 180–190.

    PubMed  CAS  Google Scholar 

  42. Meier, J. L. (2001). Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: the role of trichostatin A, retinoic acid and deletion of the 21-base pair repeats and modulator. J. Virol. 75, 1581–1593.

    PubMed  CAS  Google Scholar 

  43. Krishnan, M., Park, J. M., Cao, F., et al. (2006). Effects of epigenetic modulation of reporter gene expression: implications for stem cell imaging. FASEB J. 20, 106–108.

    PubMed  CAS  Google Scholar 

  44. Jacobs, A., Voges, J., Reszka, R., et al. (2001). Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729.

    PubMed  CAS  Google Scholar 

  45. Yaghoubi, S., Barrio, J. R., Dahlbom, M., et al. (2001). Human pharmacokinetic and dosimetry studies of [F-18]FHBG: A reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J. Nucl. Med. 42, 1225–1234.

    PubMed  CAS  Google Scholar 

  46. Penuelas, I., Mazzolini, G., Boan, J. F., et al. (2005). Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128, 1787–1795.

    PubMed  CAS  Google Scholar 

  47. Sato, M., Johnson, M., Zhang, L., Gambhir, S. S., Carey, M., and Wu, L. (2005). Functionality of androgen receptorbased gene expression imaging in hormone refractory prostate cancer. Clin. Cancer Res. 11, 3743–3749.

    PubMed  CAS  Google Scholar 

  48. MacLaren, D. C., Gambhir, S. S., Satyamurthy, N., et al. (1999). Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791.

    PubMed  CAS  Google Scholar 

  49. Liang, Q., Satyamurthy, N., Barrio, J. R., et al. (2001). Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther. 8, 1490–1498.

    PubMed  CAS  Google Scholar 

  50. Jhiang, S. M., Cho, J. Y., Ryu, K. Y., et al. (1998). An immunohistochemical study of Na+/I-symporter in human thyroid tissues and salivary gland tissues. Endocrinology 139, 4416–4419.

    PubMed  CAS  Google Scholar 

  51. Spitzweg, C., Joba, W., Schriever, K., Goellner, J. R., Morris, J. C., and Heufelder, A. E. (1999). Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. J. Clin. Endocrinol. Metab. 84, 4178–4184.

    PubMed  CAS  Google Scholar 

  52. Spitzweg, C., Joba, W., Eisenmenger, W., and Heufelder, A. E. (1998). Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland and gastric mucosa. J. Clin. Endocrinol. Metab. 83, 1746–1751.

    PubMed  CAS  Google Scholar 

  53. Eskandari, S., Loo, D. D., Dai, G., Levy, O., Wright, E. M., and Carrasco, N. (1997). Thyroid Na+/I-symporter. Mechanism, stoichiometry and specificity. J. Biol. Chem. 272, 2,7230–27,238.

    PubMed  CAS  Google Scholar 

  54. Mandell, R. B., Mandell, L. Z., and Link, C. J. (1999). Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res. 59, 661–668.

    PubMed  CAS  Google Scholar 

  55. Groot-Wassink, T., Aboagye, E. O., Glaser, M., Lemoine, N. R., and Vassaux, G. (2002). Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium iodide symporter as reporter gene. Hum. Gen. Ther. 13, 1723–1735.

    CAS  Google Scholar 

  56. Dingli, D., Peng, K. W., Harvey, M. E., et al. (2004). Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 103, 1641–1646.

    PubMed  CAS  Google Scholar 

  57. Spitzweg, C., O’Connor, M. K., Bergert, E. R., Tindall, D. J., Young, C. Y., and Morris, J. C. (2000). Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res. 60, 6526–6530.

    PubMed  CAS  Google Scholar 

  58. Bell, G. and Reisine, T. (1993). Molecular biology of somatostatin receptors. Trends Neurosci. 16, 34–38.

    PubMed  CAS  Google Scholar 

  59. Reubi, J., Waser, B., and Vanhagen, M. (1992). In vitro and in vivo detection of somatostatin receptors in human malignant lymphomas. Int. J. Cancer 50, 895–900.

    PubMed  CAS  Google Scholar 

  60. Reubi, J., Waser, B., and Foekens, J. (1990). Somatostatin receptor incidence and distribution in breast cancer using receptor autoradiography: relationship to EGF receptors. Int. J. Cancer 46, 416–420.

    PubMed  CAS  Google Scholar 

  61. Krenning, E. P., Bakker, W. H., Kooij, P. P., et al. (1992). Somatostatin receptor scintigraphy with indium-111-DTPAD-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J. Nucl. Med. 33, 652–658.

    PubMed  CAS  Google Scholar 

  62. Zinn, K. R., Buchsbaum, D. J., Chaudhuri, T. R., et al. (2000). Noninvasive monitoring of gene transfer using a receptor reporter imaged with a high affinitypeptide radiolabeled with 99mTc or 188Re. J. Nucl. Med. 41, 887–895.

    PubMed  CAS  Google Scholar 

  63. Rogers, B. E., Zinn, K. R., and Buchsbaum, D. J. (2000). Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q. J. Nucl. Med. 44, 208–223.

    PubMed  CAS  Google Scholar 

  64. Chaudhuri, T. R., Rogers, B. E., Buchsbaum, D. J., Mountz, J. M., and Zinn, K. R. (2001). A noninvasive reporter system to image adenoviral-mediated gene transfer to ovarian cancer xenografts. Gynecol. Oncol. 83, 432–438.

    PubMed  CAS  Google Scholar 

  65. McCart, J. A., Mehta, N., Scollard, D., et al. (2004). Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol. Ther. 10, 553–561.

    PubMed  CAS  Google Scholar 

  66. Zinn, K. R., Chaudhuri, T. R., Buchsbaum, D. J., Mountz, J. M., and Rogers, B. E. (2001). Detection and measurement of in vitro gene transfer by gamma camera imaging. Gene Ther. 8, 291–299.

    PubMed  CAS  Google Scholar 

  67. Zinn, K. R. and Chaudhuri, T. R. (2002). The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur. J. Nucl. Med. 29, 388–399.

    CAS  Google Scholar 

  68. Raben, D., Buchsbaum, D. J., Khazaeli, M. B., et al. (1996). Enhancement of radiolabeled antibody binding and tumor localization through adenoviral transduction of the human carcinoembryonic antigen gene. Gene Ther. 3, 567–580.

    PubMed  CAS  Google Scholar 

  69. Kim, Y. S., Cho, S. W., Lee, K. J., et al. (1999). Tc-99m MIBI SPECT is useful for noninvasively predicting the presence of NDR1 gene-encoded P-glycoprotein in patients with hepatocellular carcinoma. Clin. Nucl. Med. 24, 874–879.

    PubMed  CAS  Google Scholar 

  70. Wilson, T. and Hastings, J. W. (1998). Bioluminescence. Annu. Rev. Cell. Dev. Biol. 14, 197–230.

    PubMed  CAS  Google Scholar 

  71. Contag, C. and Bachmann, M. H. (2002). Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260.

    PubMed  CAS  Google Scholar 

  72. Contag, C. and Ross, B. D. (2002). It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 373–387.

    Google Scholar 

  73. Tsui, L. V., Kelly, M., Zayek, N., et al. (2002). Production of human clotting factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat. Biotechnol. 20, 53–57.

    PubMed  CAS  Google Scholar 

  74. Lipshutz, G. S., Gruber, C. A., Cao, Y., Hardy, J., Contag, C. H., and Gaensler, K. M. (2001). In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol. Ther. 3, 284–292.

    PubMed  CAS  Google Scholar 

  75. Chen, Z. Y., Yant, S. R., He, C. Y., Meuse, L., Shen, S., and Kay, M. A. (2001). Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol. Ther. 3, 403–410.

    PubMed  CAS  Google Scholar 

  76. Costa, G. L., Sandora, M. R., Nakajima, A., et al. (2001). Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379–2387.

    PubMed  CAS  Google Scholar 

  77. Paulmurugan, R., Umezawa, Y., and Gambhir, S. S. (2002). Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc. Natl. Acad. Sci. USA 15,608–15,613.

    Google Scholar 

  78. Adams, J. Y., Johnson, M., Sato, M., et al. (2002). Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat. Med. 8, 891–897.

    PubMed  CAS  Google Scholar 

  79. Wu, J. C., Sundaresan, G., Iyer, M., and Gambhir, S. S. (2001). Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol. Ther. 4, 297–306.

    PubMed  CAS  Google Scholar 

  80. Iyer, M., Berenji, M., Templeton, N. S., and Gambhir, S. S. (2002). Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice. Mol. Ther. 6, 555–562.

    PubMed  CAS  Google Scholar 

  81. Wu, J. C., Inubushi, M., Sundaresan, G., Schelbert, H. R., and Gambhir, S. S. (2002). Optical imaging of cardiac reporter gene expression in living rats. Circulation 105, 1631–1634.

    PubMed  Google Scholar 

  82. Wu, J. C., Chen, I. Y., Sundaresan, G., et al. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108, 1302–1305.

    PubMed  Google Scholar 

  83. Hardy, J., Edinger, M., Bachmann, M. H., Negrin, R. S., Fathman, C. G., and Contag, C. H. (2001). Bioluminescence imaging of lymphocyte trafficking in vivo. Exp. Hematol. 29, 1353–1360.

    PubMed  CAS  Google Scholar 

  84. Lorenz, W. W., McCann, R. O., Longiaru, M., and Cormier, M. J. (1991). Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc. Natl. Acad. Sci. USA 88, 4438–4442.

    PubMed  CAS  Google Scholar 

  85. Bhaumik, S. and Gambhir, S. S. (2002). Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. USA 99, 377–382.

    PubMed  CAS  Google Scholar 

  86. Liu, H., Iacono, R. P., and Szalay, A. A. (2001). Detection of GDNF secretion in glial cell culture and from transformed cell implants in the brains of live animals. Mol. Genet. Genomics 266, 614–623.

    PubMed  CAS  Google Scholar 

  87. Ray, P., Wu, A. M., and Gambhir, S. S. (2003). Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res. 63, 1160–1165.

    PubMed  CAS  Google Scholar 

  88. Ray, P., De, A., Min, J. J., Tsien, R. Y., and Gambhir, S. S. (2004). Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323–1330.

    PubMed  CAS  Google Scholar 

  89. Loening, A. M., Fenn, T. D., Wu, A. M., and Gambhir, S. S. (2006). Consensus guided mutagenesis of renilla luciferase yields enhanced stability and light output. Protein Engineering and Design 19, 453–460..

    Google Scholar 

  90. Contag, C. H., Contag, P. R., Mullins, J. I., Spilman, S. D., Stevenson, D. K., and Benaron, D. A. (1995). Photonic detection of bacterial pathogens in living hosts. Mol. Microbiol. 18, 593–603.

    PubMed  CAS  Google Scholar 

  91. Moore, A., Josephson, L., Bhorade, R. M., Basilion, J. P., and Weissleder, R. (2001). Human transferrin receptor gene as a marker gene for MR imaging. Radiology 221, 244–250.

    PubMed  CAS  Google Scholar 

  92. Ichikawa, T., Hogemann, D., Saeki, Y., et al. (2002). MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4, 523–530.

    PubMed  CAS  Google Scholar 

  93. Enochs, W. S., Petherick, P., Bogdanova, A., Mohr, U., and Weissleder, R. (1997). Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204, 417–423.

    PubMed  CAS  Google Scholar 

  94. Jaffer, F. A. and Weissleder, R. (2004). Seeing within molecular imaging of the cardiovascular system. Circ. Res. 94, 433–445.

    PubMed  CAS  Google Scholar 

  95. Genove, G., DeMarco, U., Xu, H., Goins, W. F., and Ahrens, E. T. (2005). A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 11, 450–454.

    PubMed  CAS  Google Scholar 

  96. Cohen, B., Dafni, H., Meir, G., Harmelin, A., and Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7, 109–117.

    PubMed  CAS  Google Scholar 

  97. Nettelbeck, D. M., Jerome, V., and Muller, R. (2000). Gene therapy: designer promoters for tumour targeting. Trends Genet. 16, 174–181.

    PubMed  CAS  Google Scholar 

  98. Yoon, T. K., Shichinohe, T., Laquerre, S., and Kasahara, N. (2001). Selectively replicating adenoviruses for oncolytic therapy. Curr. Cancer Drug Targets 1, 85–107.

    PubMed  CAS  Google Scholar 

  99. Biederer, C., Ries, S., Brandts, C. H., and McCormick, F. (2002). Replication-selective viruses for cancer therapy. J. Mol. Med. 80, 163–175.

    PubMed  CAS  Google Scholar 

  100. Roth, W., and Reed, J. C. (2002). Apoptosis and cancer: When BAX is TRAILing away. Nat. Med. 8, 216–218.

    PubMed  CAS  Google Scholar 

  101. Reed, J. C. (2002). Apoptosis-based therapies. Nat. Rev. Drug Discov. 1, 111–121.

    PubMed  CAS  Google Scholar 

  102. Zhu, Z. B., Makhija, S. K., Lu, B., et al. (2004). Transcriptional targeting of tumors with a novel tumor-specific survivin promoter. Cancer Gene Ther. 11, 256–262.

    PubMed  CAS  Google Scholar 

  103. Easty, D. J. and Bennett, D. C. (2000). Protein tyrosine kinases in malignant melanoma. Melanoma Res. 10, 401–411.

    PubMed  CAS  Google Scholar 

  104. Lee, S. E., Jin, R. J., Lee, S. G., et al. (2000). Development of a new plasmid vector with PSA-promoter and enhancer expressing tissue-specificity in prostate carcinoma cell lines. Anticancer Res. 20, 417–422.

    PubMed  CAS  Google Scholar 

  105. Yamamoto, M., Alemany, R., Adachi, Y., Grizzle, W. E., and Curiel, D. T. (2001). Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol. Ther. 3, 385–394.

    PubMed  CAS  Google Scholar 

  106. Nettelbeck, D. M., Rivera, A. A., Davydova, J., Dieckmann, D., Yamamoto, M., and Curiel, D. T. (2003). Cyclooxygenase-2 promoter for tumour-specific targeting of adenoviral vectors to melanoma. Melanoma Res. 13, 287–292.

    PubMed  CAS  Google Scholar 

  107. Anderson, L. M., Swaminathan, S., Zackon, I., Tajuddin, A. K., Thimmapaya, B., and Weitzman, S. A. (1999). Adenovirus-mediated tissue-targeted expression of the HSV-tk gene for the treatment of breast cancer. Gene Ther. 6, 854–864.

    PubMed  CAS  Google Scholar 

  108. Nettelbeck, D. M., Rivera, A. A., Balague, C., Alemany, R., and Curiel, D. T. (2002). Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res. 62, 4663–4670.

    PubMed  CAS  Google Scholar 

  109. Wu, L. and Sato, M. (2003). Integrated, molecular engineering approaches to develop prostate cancer gene therapy. Curr. Gene Ther. 3, 452–467.

    PubMed  CAS  Google Scholar 

  110. Siders, W. M., Halloran, P. J., and Fenton, R. G. (1996). Transcriptional targeting of recombinant adenoviruses to human and murine melanoma cells. Cancer Res. 56, 5638–5646.

    PubMed  CAS  Google Scholar 

  111. Rodriguez, R., Schuur, E. R., Lim, H. Y., Henderson, G. A., Simons, J. W., and Henderson, D. R. (1997). Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563.

    PubMed  CAS  Google Scholar 

  112. Pang, S., Dannull, J., Kaboo, R., et al. (1997). Identification of a positive regulatory element responsible for tissuespecific expression of prostate-specific antigen. Cancer Res 57, 495–499.

    PubMed  CAS  Google Scholar 

  113. Vile, R. G., Nelson, J. A., Castleden, S., Chong, H., and Hart, I. R. (1994). Systemic gene therapy of murine melanoma using tissue-specific expression of the HSVtk gene involves an immune component. Cancer Res. 54, 6228–6234.

    PubMed  CAS  Google Scholar 

  114. Nettelbeck, D. M., Jerome, V., and Muller, R. (1998). A strategy for enhancing the transcriptional activity of weak cell type-specific promoters. Gene Ther. 5, 1656–1664.

    PubMed  CAS  Google Scholar 

  115. Wu, L., Johnson, M., and Sato, M. (2003). Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol. Med. 9, 421–429.

    PubMed  CAS  Google Scholar 

  116. Schuur, E. R., Henderson, G. A., Kmetec, L. A., Miller, J. D., Lamparski, H. G., and Henderson, D. R. (1996). Prostatespecific antigen expression is regulated by an upstream enhancer. J. Biol. Chem. 271, 7043–7051.

    PubMed  CAS  Google Scholar 

  117. Wu, L., Matherly, J., Smallwood, A., Belldegrun, A. S., and Carey, M. (2001). Chimeric PSA enhancers exhibit augmented activity in prostate cancer gene therapy vector. Gene Ther. 8, 1416–1426.

    PubMed  CAS  Google Scholar 

  118. Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. (1988). GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564.

    PubMed  CAS  Google Scholar 

  119. Triezenberg, S. J., LaMarco, K. L., and McKnight, S. L. (1988). Evidence of DNA:protein interactions that mediate HSV-1 immediate early gene activation by VP16. Genes Dev. 2, 730–742.

    PubMed  CAS  Google Scholar 

  120. Carey, M., Lin, Y. S., Green, M. R., and Ptashne, M. (1990). A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345, 361–364.

    PubMed  CAS  Google Scholar 

  121. Carey, M. and Smale, S. T. (2000). Transcriptional Regulation in Eukaryotes. Cold Spring Harbor Laboratory Press, New York, NY.

    Google Scholar 

  122. Iyer, M., Wu, L., Carey, M., Wang, Y., Smallwood, A., and Gambhir, S. S. (2001). Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc. Natl. Acad. Sci USA 98, 14,595–14,600.

    PubMed  CAS  Google Scholar 

  123. Zhang, L., Adams, J. Y., Billick, E., et al. (2002). Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol. Ther. 5, 223–232.

    PubMed  CAS  Google Scholar 

  124. Sato, M., Johnson, M., Zhang, L., et al. (2003). Optimization of adenoviral vectors to direct highly amplified prostatespecific gene expression for imaging and gene therapy. Mol. Ther. 8, 726–737.

    PubMed  CAS  Google Scholar 

  125. Zhang, J., Johnson, M., Le, K. H., et al. (2003). Interrogating androgen receptor function in recurrent prostate cancer. Cancer Res. 63, 4552–4560.

    PubMed  CAS  Google Scholar 

  126. Sundaresan, G., Murugesan, S., and Gambhir, S. S. (2003). The Society for Molecular Imaging. 2nd Annual Meeting, San Fransisco, CA.

    Google Scholar 

  127. Iyer, M., Salazar, F., Lewis, X., et al. (2004). Noninvasive imaging of enhanced prostate-specific gene expression using a two-step transcriptional amplification-based lentivirus vector. Mol. Ther. 10, 545–552.

    PubMed  CAS  Google Scholar 

  128. Iyer, M., Salazar, F., Lewis, X., et al. (2005). Noninvasive imaging of a transgenic mouse model using a prostatespecific two-step transcriptional amplification strategy. Transgenic Res. 14, 47–55.

    PubMed  CAS  Google Scholar 

  129. Gill, G. and Ptashne, M. (1988). Negative effect of the transcriptional activator GAL4. Nature 334, 721–724.

    PubMed  CAS  Google Scholar 

  130. Yueh, Y. G., Yaworsky, P. J., and Kappen, C. (2000). Herpes simplex virus transcriptional activator VP16 is detrimental to preimplantation development in mice. Mol. Reprod. Dev. 55, 37–46.

    PubMed  CAS  Google Scholar 

  131. Wang, Y., Iyer, M., Annala, A., Wu, L., Carey, M., and Gambhir, S. S. (2006). Non-invasive indirect imaging of vascular endothelial growth factor gene expression using bioluminescence imaging in living transgenic mice. Phys. Genom. 24, 173–180.

    Google Scholar 

  132. Sundaresan, G. and Gambhir, S. S. (2002). Radionuclide imaging of reporter gene expression. In Brain Mapping: The Methods (Toga, A. W., Mazziotta, J. C., ed.). Academic Press, San Diego, CA, pp. 799–818.

    Google Scholar 

  133. Yu, Y., Annala, A. J., Barrio, J. R., et al. (2000). Quantification of target gene expression by imaging reporter gene expression in living animals. Nat. Med. 6, 933–937.

    PubMed  CAS  Google Scholar 

  134. Kamoshita, N., Tsukiyama-Kohara, K., Kohara, M., and Nomoto, A. (1997). Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors. Virology 233, 9–18.

    PubMed  CAS  Google Scholar 

  135. Chappell, S., Edelman, G., and Mauro, V. (2000). A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. USA 97, 1536–1541.

    PubMed  CAS  Google Scholar 

  136. Wang, Y., Iyer, M., Annala, A. J., Chappell, S., Mauro, V., and Gambhir, S. S. (2005). Noninvasive imaging of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J. Nucl. Med. 46, 667–674.

    PubMed  CAS  Google Scholar 

  137. Sun, X., Annala, A. J., Yaghoubi, S. S., et al. (2001). Quantitative imaging of gene induction in living animals. Gene Ther. 8, 1572–1579.

    PubMed  CAS  Google Scholar 

  138. Ray, S., Paulmurugan, R., Hildebrandt, I., et al. (2004). Novel bidirectional vector strategy for amplification of therapeutic and reporter gene expression. Hum. Gen. Ther. 15, 681–690.

    CAS  Google Scholar 

  139. Yaghoubi, S. S., Nguyen, K., Bauer, E., et al. (2000). Imaging adenoviral mediated therapeutic gene delivery by coadministration of a second adenovirus carrying a PET reporter gene. J. Nucl. Med. 41, 37P-38P.

    Google Scholar 

  140. Chien, C. T., Bartel, P. L., Sternlglanz, R., and Fields, S. (1991). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582.

    PubMed  CAS  Google Scholar 

  141. Bai, C. and Elledge, S. J. (1996). Gene identification using the yeast two-hybrid system. Methods Enzymol. 273, 331–347.

    PubMed  CAS  Google Scholar 

  142. Ray, P., Pimenta, H., Paulmurugan, R., et al. (2002). Noninvasive quantitative imaging of protein-protein interactions in living subjects. Proc. Natl. Acad. Sci. USA 99, 3105–3110.

    PubMed  CAS  Google Scholar 

  143. Luker, G. D., Sharma, V., Pica, C. M., et al. (2002). Noninvasive imaging of protein-protein interactions in living animals. Proc. Natl. Acad. Sci. USA 99, 6961–6966.

    PubMed  CAS  Google Scholar 

  144. Paulmurugan, R. and Gambhir, S. S. (2003). Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal. Chem. 75, 1584–1589.

    PubMed  CAS  Google Scholar 

  145. Massoud, T. F., Paulmurugan, R., and Gambhir, S. S. (2004). Molecular imaging of homodimeric protein-protein interactions in living subjects. FASEB J. 18, 1105–1107.

    PubMed  CAS  Google Scholar 

  146. Paulmurugan, R. and Gambhir, S. S. (2005). Firefly luciferase enzyme fragment complementation for imaging in cells and living animals. Anal. Chem. 77, 1295–1302.

    PubMed  CAS  Google Scholar 

  147. Paulmurugan, R. and Gambhir, S. S. (2005). Novel fusion protein approach for efficient high-throughput screening of small molecule-mediating protein-protein interactions in cells and living animals. Cancer Res. 65, 7413–7420.

    PubMed  CAS  Google Scholar 

  148. De, A. and Gambhir, S. S. (2005). Non-invasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J. 19, 2017–2019.

    PubMed  CAS  Google Scholar 

  149. Jensen, A. A., Hansen, J. L., Sheikh, S. P., and Brauner-Osborne, H. (2002). Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur. J. Biochem. 269, 5076–5087.

    PubMed  CAS  Google Scholar 

  150. Jacobs, R. E. and Cherry, S. R. (2001). Complementary emerging techniques: high-resolution PET and MRI. Curr. Opin. Neurobiol. 11, 621–629.

    PubMed  CAS  Google Scholar 

  151. Wickham, T. J., Mathias, P., Cheresh, D. A., and Nemerow, G. R. (1993). Integrins alpha v beta 3 and alpha v and beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319.

    PubMed  CAS  Google Scholar 

  152. Bergelson, J. M., Cunningham, J. A., Droguett, G., et al. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.

    PubMed  CAS  Google Scholar 

  153. Ferry, N. and Heard, J. M. (1998). Liver-directed gene transfer vectors. Hum. Gene Ther. 9, 1975–1981.

    PubMed  CAS  Google Scholar 

  154. Bruder, J. T., Jie, T., McVey, D. L., and Kovesdi, I. (1997). Expression of gp 19K increases the persistence of transgene expression from an adenovirus vector in the mouse lung and liver. J. Virol. 71, 7623–7628.

    PubMed  CAS  Google Scholar 

  155. Ilan, Y., Droguett, G., Chowdhury, N. R., et al. (1997). Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc. Natl. Acad. Sci. USA 94, 2587–2592.

    PubMed  CAS  Google Scholar 

  156. Vilquin, J. T., Guereatte, B., Kinoshita, I., et al. (1995). FK 506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum. Gen. Ther. 6, 1391–1401.

    CAS  Google Scholar 

  157. Kass-Eisler, A., Leinwand, L., Gall, J., Bloom, B., and Falck-Pedersen, E. (1996). Circumventing the immune response to adenovirus-mediated gene therapy. Gene Ther. 3, 154–162.

    PubMed  CAS  Google Scholar 

  158. O’Riordan, C. R., Lachapelle, A., Delgado, C., et al. (1999). PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum. Gen. Ther. 10, 1349–1358.

    CAS  Google Scholar 

  159. Shinnick, T. M., Lerner, R. A., and Sutcliffe, J. G. (1981). Nucleotide sequence of Moloney murine leukemia virus. Nature 293, 543–548.

    PubMed  CAS  Google Scholar 

  160. Roth, J. A. and Cristiano, R. (1997). Gene therapy for cancer: what have we done and where are we going? J. Natl. Cancer Inst. 89, 21–39.

    PubMed  CAS  Google Scholar 

  161. Romano, G., Pacilio, C., and Giordano, A. (1999). Gene transfer technology in therapy: current applications and future goals. Stem Cells 17, 191–202.

    PubMed  CAS  Google Scholar 

  162. Amado, R. G., Mitsuyasu, R. T., Symonds, G., et al. (1999). A phase I trial of autologous CD34+ hematopoietic prgenitor cells transduced with an anti-HIV ribozyme. Hum. Gen. Ther. 10, 2255–2270.

    CAS  Google Scholar 

  163. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee J. K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    PubMed  CAS  Google Scholar 

  164. Takeuchi, Y., Cosset, F. L., Lachmann, P. J., Okada, H., Weiss, R. A., and Collins, M. K. (1994). Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J. Virol. 68, 8001–8007.

    PubMed  CAS  Google Scholar 

  165. Martineau, D., Klump, W. M., McCormack, J. E., et al. (1997). Evaluation of PCR and ELISA assays for screening clinical trial subjects for replication-competent retrovirus. Hum. Gen. Ther. 8, 1231–1241.

    CAS  Google Scholar 

  166. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993). Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    PubMed  CAS  Google Scholar 

  167. Yang, S., Delgado, R., King, S. R., et al. (1999). Generation of retroviral vector for clinical studies using transient transfection. Hum. Gen. Ther. 10, 123–132.

    CAS  Google Scholar 

  168. Weindler, F. W. and Heilbronn, R. (1991). A subset of heres simplex virus replication genes provides helper functions for productive adeno-associated virus replication. J. Virol. 65, 2476–2483.

    PubMed  CAS  Google Scholar 

  169. Yakinoglu, A. O., Heilbronn, R., Burkle, A., Schlehofer, J. R., and zur Hausen, H. (1988). DNA amplification of adeno-associated virus as a response to cellular genotoxic stress. Cancer Res. 48, 3123–3129.

    Google Scholar 

  170. Alexander, I. E., Russell, D. W., and Miller, A. D. (1994). DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J. Virol. 68, 8282–8287.

    PubMed  CAS  Google Scholar 

  171. Kanazawa, T., Mizukami, H., Okada, T., et al. (2003). Suicide gene therapy using AAV-HSVtk/ganciclovir in combination with irradiation results in regression of human head and neck cancer xenografts in nude mice. Gene Ther. 10, 51–58.

    PubMed  CAS  Google Scholar 

  172. Behr, J. P. (1994). Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug. Chem. 5, 382–389.

    PubMed  CAS  Google Scholar 

  173. Nishikawa, M. and Huang, L. (2001). Nonviral vectors in the new millennium: Delivery barriers in gene transfer. Hum. Gen. Ther. 12, 861–870.

    CAS  Google Scholar 

  174. Alio, S. F. (1997). Long term expression of the human alpha I antitrypson gene in mice employing anionic and cationic liposome vector. Biochem. Pharmacol. 54, 9–13.

    Google Scholar 

  175. Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S. K., and Papahadjopoulos, D. (1991). Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta. 1070, 187–192.

    PubMed  CAS  Google Scholar 

  176. Wagner, E., Cotten, M., Foisner, R., and Birnstiel, M. L. (1991). Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery into cells. Proc. Natl. Acad. Sci. USA 88, 4255–4259.

    PubMed  CAS  Google Scholar 

  177. Wu, C. H., Wilson, J. M., and Wu, G. Y. (1989). Targeting genes: Delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J. Biol. Chem. 264, 16985–16987.

    PubMed  CAS  Google Scholar 

  178. Ferkol, T., Kaetzel, C. S., and Davis, P. B. (1993). Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobin receptor. J. Clin. Invest. 92, 2394–2400.

    PubMed  CAS  Google Scholar 

  179. Liu, F., Song, Y. K., and Liu, D. (1999). Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266.

    PubMed  CAS  Google Scholar 

  180. Ehrhardt, A., Peng, P. D., Xu, H., Meuse, L., and Kay, M. A. (2003). Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum. Gen. Ther. 14, 215–225.

    CAS  Google Scholar 

  181. Wolff, J. A., Malone, R. W., Williams, P., et al. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Iyer, M., Gambhir, S.S. (2007). Molecular Imaging. In: Chung, L.W.K., Isaacs, W.B., Simons, J.W. (eds) Prostate Cancer. Contemporary Cancer Research. Humana Press. https://doi.org/10.1007/978-1-59745-224-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-224-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-696-2

  • Online ISBN: 978-1-59745-224-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics