Skip to main content

Contributions of Telomerase to Tumorigenesis

  • Chapter
Apoptosis, Senescence, and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1678 Accesses

summary

In eukaryotic cells, the telomere acts as a molecular cap, protecting the chromosome ends and preventing end-to-end fusions. In addition to this end protection function, dysfunctional telomeres limit replicative potential by inducing a non-proliferative state termed replicative senescence. In premalignant cells, telomere loss results in genomic instability, which promotes the formation and selection of pro-tumorigenic mutations. Telomeres are maintained by the reverse transcriptase telomerase, an enzyme whose activity is tightly controlled by limiting the expression of the catalytic subunit, telomerase reverse transcriptase (TERT). The majority of human tumors exhibit abundant telomerase activity, which protects the chromosome ends to prevent additional genomic instability and confers unlimited replicative potential. This unique biochemical activity is vital to tumorigenesis and presents an ideal target for potential pharmacologic and immunologic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345(6274):458–60.

    Article  PubMed  CAS  Google Scholar 

  2. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990; 346(6287):866–8.

    Article  PubMed  CAS  Google Scholar 

  3. Greider CW, Blackburn EH. A telomeric sequence in the RNA of tetrahymena telomerase required for telomere repeat synthesis. Nature 1989; 337(6205):331–7.

    Article  PubMed  CAS  Google Scholar 

  4. Meyne J, Ratliff RL, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 1989; 86(18):7049–53.

    Article  PubMed  CAS  Google Scholar 

  5. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988; 85(18):6622–6.

    Article  PubMed  CAS  Google Scholar 

  6. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97(4):503–14.

    Google Scholar 

  7. van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature 1997; 385(6618):740–3.

    Article  PubMed  Google Scholar 

  8. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998; 92(3):401–13.

    Article  PubMed  Google Scholar 

  9. Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001; 292(5519):1171–5.

    Article  PubMed  CAS  Google Scholar 

  10. Kelleher C, Kurth I, Lingner J. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 2005; 25(2):808–18.

    Article  PubMed  CAS  Google Scholar 

  11. Ye JZ, Donigian JR, van Overbeek M, et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 2004; 279(45):47264–71.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu XD, Kuster B, Mann M, Petrini JH, de Lange T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 2000; 25(3):347–52.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu HL, Gilley D, Blackburn EH, Chen DJ. Ku is associated with the telomere in mammals. Proc Natl Acad Sci USA 1999; 96(22):12454–8.

    Google Scholar 

  14. Bianchi A, de Lange T. Ku binds telomeric DNA in vitro. J Biol Chem 1999; 274(30):21223–7.

    Article  Google Scholar 

  15. Nakamura TM, Cech TR. Reversing time: origin of telomerase. Cell 1998; 92(5):587–90.

    Article  PubMed  CAS  Google Scholar 

  16. Meyerson M. Role of telomerase in normal and cancer cells. J Clin Oncol 2000; 18(13):2626–34.

    PubMed  CAS  Google Scholar 

  17. Feng J, Funk WD, Wang SS, et al. The RNA component of human telomerase. Science 1995; 269(5228):1236–41.

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell JR, Cheng J, Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3 end. Mol Cell Biol 1999; 19(1):567–76.

    PubMed  CAS  Google Scholar 

  19. Mitchell JR, Collins K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell 2000; 6(2):361–71.

    Article  PubMed  CAS  Google Scholar 

  20. Weinrich SL, Pruzan R, Ma L, et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 1997; 17(4):498–502.

    Article  PubMed  CAS  Google Scholar 

  21. Harrington L, McPhail T, Mar V, et al. A mammalian telomerase-associated protein. Science 1997; 275(5302):973–7.

    Article  PubMed  CAS  Google Scholar 

  22. Holt SE, Aisner DL, Baur J, et al. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999; 13(7):817–26.

    PubMed  CAS  Google Scholar 

  23. Meyerson M, Counter CM, Eaton EN, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90(4):785–95.

    Article  PubMed  CAS  Google Scholar 

  24. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266(5193):2011–5.

    Article  PubMed  CAS  Google Scholar 

  25. Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114(2):241–53.

    Article  PubMed  CAS  Google Scholar 

  26. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25:585–621.

    Article  Google Scholar 

  27. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–36.

    Article  PubMed  CAS  Google Scholar 

  28. Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89(21):10114–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992; 27(4):383–9.

    Article  PubMed  CAS  Google Scholar 

  30. Harley CB, Kim NW, Prowse KR, et al. Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol 1994; 59:307–15.

    Google Scholar 

  31. Hemann MT, Strong MA, Hao LY, Greider CW. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 2001; 107(1):67–77.

    Article  PubMed  CAS  Google Scholar 

  32. Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295(5564):2446–9.

    Article  PubMed  CAS  Google Scholar 

  33. Stewart SA, Ben-Porath I, Carey VJ, O’Connor BF, Hahn WC, Weinberg RA. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003; 33(4):492–6.

    Article  PubMed  CAS  Google Scholar 

  34. Shay JW, Wright WE, Werbin H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1991; 1072(1):1–7.

    PubMed  CAS  Google Scholar 

  35. Wei W, Sedivy JM. Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res 1999; 253(2):519–22.

    Article  PubMed  CAS  Google Scholar 

  36. Shay JW, Van Der Haegen BA, Ying Y, Wright WE. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res 1993; 209(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  37. Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11(5): 1921–9.

    PubMed  CAS  Google Scholar 

  38. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279(5349):349–52.

    Article  PubMed  CAS  Google Scholar 

  39. Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 1998; 8(5):279–82.

    Article  PubMed  CAS  Google Scholar 

  40. Yang J, Chang E, Cherry AM, et al. Human endothelial cell life extension by telomerase expression. J Biol Chem 1999; 274(37):26141–8.

    Article  PubMed  CAS  Google Scholar 

  41. Dickson MA, Hahn WC, Ino Y, et al. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 2000; 20(4):1436–47.

    Article  PubMed  CAS  Google Scholar 

  42. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396(6706):84–8.

    Article  PubMed  CAS  Google Scholar 

  43. Ramirez RD, Morales CP, Herbert BS, et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 2001; 15(4):398–403.

    Article  PubMed  CAS  Google Scholar 

  44. DiRenzo J, Signoretti S, Nakamura N, et al. Growth factor requirements and basal phenotype of an immortalized mammary epithelial cell line. Cancer Res 2002; 62(1):89–98.

    PubMed  CAS  Google Scholar 

  45. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88(5):593–602.

    Article  PubMed  CAS  Google Scholar 

  46. McConnell BB, Starborg M, Brookes S, Peters G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr Biol 1998; 8(6):351–4.

    Article  PubMed  CAS  Google Scholar 

  47. Lundberg AS, Hahn WC, Gupta P, Weinberg RA. Genes involved in senescence and immortalization. Curr Opin Cell Biol 2000; 12(6):705–9.

    Article  PubMed  CAS  Google Scholar 

  48. Gorbunova V, Seluanov A, Pereira-Smith OM. Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 2002; 277(41):38540–9.

    Article  PubMed  CAS  Google Scholar 

  49. Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 2004; 15(8):3709–18.

    Google Scholar 

  50. Zhu J, Wang H, Bishop JM, Blackburn EH. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc Natl Acad Sci USA 1999; 96(7):3723–8.

    Article  PubMed  CAS  Google Scholar 

  51. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995; 14(17):4240–8.

    PubMed  CAS  Google Scholar 

  52. Murnane JP, Sabatier L, Marder BA, Morgan WF. Telomere dynamics in an immortal human cell line. EMBO J 1994; 13(20):4953–62.

    PubMed  CAS  Google Scholar 

  53. Dunham MA, Neumann AA, Fasching CL, Reddel RR. Telomere maintenance by recombination in human cells. Nat Genet 2000; 26(4):447–50.

    Article  PubMed  CAS  Google Scholar 

  54. Stansel RM, de Lange T, Griffith JD. T-loop assembly in vitro involves binding of TRF2 near the 3 telomeric overhang. EMBO J 2001; 20(19):5532–40.

    Article  PubMed  CAS  Google Scholar 

  55. Chan SW, Blackburn EH. New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 2002; 21(4):553–63.

    Article  PubMed  CAS  Google Scholar 

  56. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273(10):5858–68.

    Article  PubMed  CAS  Google Scholar 

  57. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000; 10(15):886–95.

    Article  PubMed  CAS  Google Scholar 

  58. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426(6963):194–8.

    Article  PubMed  CAS  Google Scholar 

  59. Schulz VP, Zakian VA, Ogburn CE, et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum Genet 1996; 97(6):750–4.

    PubMed  CAS  Google Scholar 

  60. Shiloh Y, Tabor E, Becker Y. In vitro phenotype of ataxia-telangiectasia (AT) fibroblast strains: clues to the nature of the “AT DNA lesion” and the molecular defect in AT. Kroc Found er 1985; 19:111–21.

    CAS  Google Scholar 

  61. Chen QM, Prowse KR, Tu VC, Purdom S, Linskens MH. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp Cell Res 2001; 265(2):294–303.

    Article  PubMed  CAS  Google Scholar 

  62. Suzuki K, Mori I, Nakayama Y, Miyakoda M, Kodama S, Watanabe M. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening. Radiat Res 2001; 155(1 Pt 2):248–53.

    Google Scholar 

  63. Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J Biol Chem 1999; 274(2):962–71.

    Article  PubMed  CAS  Google Scholar 

  64. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett 1999; 453(3):365–8.

    Article  PubMed  CAS  Google Scholar 

  65. Oikawa S, Tada-Oikawa S, Kawanishi S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry 2001; 40(15):4763–8.

    Article  PubMed  CAS  Google Scholar 

  66. Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 1998; 239(1):152–60.

    Article  PubMed  CAS  Google Scholar 

  67. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 2004; 6(2):168–70.

    Article  PubMed  CAS  Google Scholar 

  68. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999; 283(5406):1321–5.

    Article  PubMed  CAS  Google Scholar 

  69. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999; 97(4):527–38.

    Article  PubMed  CAS  Google Scholar 

  70. Artandi SE, Chang S, Lee SL, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406(6796):641–5.

    Article  PubMed  CAS  Google Scholar 

  71. Hahn WC, Stewart SA, Brooks MW, et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5(10):1164–70.

    Article  PubMed  CAS  Google Scholar 

  72. Herbert B, Pitts AE, Baker SI, et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 1999; 96(25):14276–81.

    Article  PubMed  CAS  Google Scholar 

  73. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13(18):2388–99.

    Article  PubMed  CAS  Google Scholar 

  74. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999; 400(6743):464–8.

    Article  PubMed  CAS  Google Scholar 

  75. Stewart SA, Hahn WC, O’Connor BF, et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 2002; 99(20):12606–11.

    Article  PubMed  CAS  Google Scholar 

  76. Chang S, Khoo CM, Naylor ML, Maser RS, DePinho RA. Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev 2003; 17(1):88–100.

    Article  PubMed  CAS  Google Scholar 

  77. Gonzalez-Suarez E, Samper E, Ramirez A, et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 2001; 20(11):2619–30.

    Article  PubMed  CAS  Google Scholar 

  78. Artandi SE, Alson S, Tietze MK, et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci USA 2002; 99(12):8191–6.

    Article  PubMed  CAS  Google Scholar 

  79. Blasco MA, Rizen M, Greider CW, Hanahan D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat Genet 1996; 12(2):200–4.

    Article  PubMed  CAS  Google Scholar 

  80. Broccoli D, Godley LA, Donehower LA, Varmus HE, de Lange T. Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol Cell Biol 1996; 16(7):3765–72.

    PubMed  CAS  Google Scholar 

  81. Dudognon C, Pendino F, Hillion J, Saumet A, Lanotte M, Segal-Bendirdjian E. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 2004; 23(45):7469–74.

    Article  PubMed  CAS  Google Scholar 

  82. Holt SE, Glinsky VV, Ivanova AB, Glinsky GV. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Mol Carcinog 1999; 25(4):241–8.

    Article  PubMed  CAS  Google Scholar 

  83. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005; 309(5738):1253–6.

    Article  PubMed  CAS  Google Scholar 

  84. Sarin KY, Cheung P, Gilison D, et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 2005; 436(7053):1048–52.

    Article  PubMed  CAS  Google Scholar 

  85. Masutomi K, Possemato R, Wong JM, et al. The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 2005; 102(23):8222–7.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang R, Wang X, Guo L, Xie H. Growth inhibition of BEL-7404 human hepatoma cells by expression of mutant telomerase reverse transcriptase. Int J Cancer 2002; 97(2):173–9.

    Article  PubMed  CAS  Google Scholar 

  87. Damm K, Hemmann U, Garin-Chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001; 20(24):6958–68.

    Article  PubMed  CAS  Google Scholar 

  88. Pascolo E, Wenz C, Lingner J, et al. Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 2002; 277(18):15566–72.

    Article  PubMed  CAS  Google Scholar 

  89. Nosrati M, Li S, Bagheri S, et al. Antitumor activity of systemically delivered ribozymes targeting murine telomerase RNA. Clin Cancer Res 2004; 10(15):4983–90.

    Article  PubMed  CAS  Google Scholar 

  90. 2Kondo S, Kondo Y, Li G, Silverman RH, Cowell JK. Targeted therapy of human malignant glioma in a mouse model by 2–5A antisense directed against telomerase RNA. Oncogene 1998; 16(25):3323–30.

    Article  PubMed  CAS  Google Scholar 

  91. Kim MM, Rivera MA, Botchkina IL, Shalaby R, Thor AD, Blackburn EH. A low threshold level of expression of mutant-template telomerase RNA inhibits human tumor cell proliferation. Proc Natl Acad Sci USA 2001; 98(14):7982–7.

    Article  PubMed  CAS  Google Scholar 

  92. Guiducci C, Cerone MA, Bacchetti S. Expression of mutant telomerase in immortal telomerase-negative human cells results in cell cycle deregulation, nuclear and chromosomal abnormalities and rapid loss of viability. Oncogene 2001; 20(6):714–25.

    Article  PubMed  CAS  Google Scholar 

  93. Li S, Rosenberg JE, Donjacour AA, et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res 2004; 64(14):4833–40.

    Article  PubMed  CAS  Google Scholar 

  94. Zahler AM, Williamson JR, Cech TR, Prescott DM. Inhibition of telomerase by G-quartet DNA structures. Nature 1991; 350(6320):718–20.

    Article  PubMed  CAS  Google Scholar 

  95. Gu J, Kagawa S, Takakura M, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000; 60(19):5359–64.

    PubMed  CAS  Google Scholar 

  96. Majumdar AS, Hughes DE, Lichtsteiner SP, Wang Z, Lebkowski JS, Vasserot AP. The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther 2001; 8(7):568–78.

    Article  PubMed  CAS  Google Scholar 

  97. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6(9):1011–7.

    Article  PubMed  CAS  Google Scholar 

  98. Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S. Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 2001; 97(9):2903–7.

    Article  PubMed  CAS  Google Scholar 

  99. Vonderheide RH, Schultze JL, Anderson KS, et al. Equivalent induction of telomerase-specific cytotoxic T lymphocytes from tumor-bearing patients and healthy individuals. Cancer Res 2001; 61(23):8366–70.

    PubMed  CAS  Google Scholar 

  100. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 1999; 10(6):673–9.

    Article  PubMed  CAS  Google Scholar 

  101. Kraemer K, Fuessel S, Schmidt U, et al. Antisense-mediated hTERT inhibition specifically reduces the growth of human bladder cancer cells. Clin Cancer Res 2003; 9(10 Pt 1):3794–800.

    PubMed  CAS  Google Scholar 

  102. Saretzki G, Ludwig A, von Zglinicki T, Runnebaum IB. Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther 2001; 8(10):827–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Possemato, R., Hahn, W.C. (2007). Contributions of Telomerase to Tumorigenesis. In: Gewirtz, D.A., Holt, S.E., Grant, S. (eds) Apoptosis, Senescence, and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-221-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-221-2_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-527-9

  • Online ISBN: 978-1-59745-221-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics