Skip to main content

Regulation and Function of Detachment-Induced Cell Death (Anoikis) in Cancer Progression and Metastasis

  • Chapter
Apoptosis, Senescence, and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

Epithelial cells and possibly all normal cell types must receive adhesion-dependent signals from their microenvironments to survive. The cell death that is triggered when adherent cells detach has been termed “anoikis,” and the appreciation that tumor metastasis involves the suppression of anoikis has prompted aggressive investigation into the biochemical and molecular mechanisms that control the process. Much of this work has focused on integrins and the integrin-mediated signaling events that mediate attachment-induced normal cell survival and the molecular mechanisms that are activated in metastatic tumor cells that uncouple these responses. However, it also appears that unique cell death pathway(s) can be activated in metastatic tumor cells when conventional caspase-dependent apoptotic pathways are disrupted, some of which resemble those activated in cells undergoing autophagy (auto-digestion). Here, we will review what is known about the signaling pathways that control attachment-mediated survival in normal cells and the molecular alterations that appear to disrupt these pathways in metastatic cells. We will also review the evidence that alternative cell death mechanism(s) can be activated in metastatic tumors when apoptosis is disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1:571–3.

    Article  Google Scholar 

  2. Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol 2002; 12:89–96.

    Article  PubMed  Google Scholar 

  3. Kerbel RS. Significance of tumor-host interactions in cancer growth and metastases. Cancer Metastasis Rev 1995; 14:259–62.

    Article  PubMed  CAS  Google Scholar 

  4. Raff MC. Social controls on cell survival and cell death. Nature 1992; 356:397–400.

    Article  PubMed  CAS  Google Scholar 

  5. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124:619–26.

    Article  PubMed  CAS  Google Scholar 

  6. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9:701–6.

    Article  PubMed  CAS  Google Scholar 

  7. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol 2001; 13:555–62.

    Article  PubMed  CAS  Google Scholar 

  8. Ruoslahti E. Fibronectin and its integrin receptors in cancer. Adv Cancer Res 1999; 76:1–20.

    Article  PubMed  CAS  Google Scholar 

  9. Liu W, Ahmad SA, Reinmuth N, et al. Endothelial cell survival and apoptosis in the tumor vasculature. Apoptosis 2000; 5:323–8.

    Article  PubMed  CAS  Google Scholar 

  10. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997; 88:435–7.

    Article  PubMed  CAS  Google Scholar 

  11. Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 1997; 16:2783–93.

    Article  PubMed  CAS  Google Scholar 

  12. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004; 22:2954–63.

    Article  PubMed  CAS  Google Scholar 

  13. Bernstein SC, Weinberg RA. Expression of the metastatic phenotype in cells transfected with human metastatic tumor DNA. Proc Natl Acad Sci USA 1985; 82:1726–30.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson JE, Thompson CB. Putting the rap on Akt. J Clin Oncol 2004; 22:4217–26.

    Article  PubMed  CAS  Google Scholar 

  15. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411:355–65.

    Article  PubMed  CAS  Google Scholar 

  16. Dedhar S, Williams B, Hannigan G. Integrin-linked kinase (ILK: a regulator of integrin and growth-factor signalling. Trends Cell Biol 1999; 9:319–23.

    Article  PubMed  CAS  Google Scholar 

  17. Wu C. PINCH, N(i)ck and the ILK: network wiring at cell-matrix adhesions. Trends Cell Biol 2005; 15:460–6.

    Article  PubMed  CAS  Google Scholar 

  18. Attwell S, Roskelley C, Dedhar S. The integrin-linked kinase (ILK) suppresses anoikis. Oncogene 2000; 19:3811–5.

    Article  PubMed  CAS  Google Scholar 

  19. Troussard AA, Mawji NM, Ong C, Mui A, St-Arnaud R, Dedhar S. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 2003; 278:22374–8.

    Article  PubMed  CAS  Google Scholar 

  20. Fukuda T, Chen K, Shi X, Wu C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J Biol Chem 2003; 278:51324–33.

    Article  PubMed  CAS  Google Scholar 

  21. Duxbury MS, Ito H, Benoit E, Waseem T, Ashley SW, Whang EE. RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clin Cancer Res 2005; 11:3433–8.

    Article  PubMed  CAS  Google Scholar 

  22. Nho RS, Xia H, Kahm J, Kleidon J, Diebold D, Henke CA. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a beta1 integrin viability signaling pathway. J Biol Chem 2005; 280:26630–9.

    Article  PubMed  CAS  Google Scholar 

  23. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134:793–9.

    Article  PubMed  CAS  Google Scholar 

  24. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 2004; 279:33024–34.

    Article  PubMed  CAS  Google Scholar 

  25. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery 2004; 135:555–62.

    Article  PubMed  CAS  Google Scholar 

  26. Hisano C, Tanaka R, Fujishima H, et al. Suppression of anoikis by v-Src but not by activated c-H-ras in human gallbladder epithelial cells. Cell Biol Int 2003; 27:415–21.

    Article  PubMed  CAS  Google Scholar 

  27. Wei L, Yang Y, Zhang X, Yu Q. Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis. Oncogene 2004; 23:9052–61.

    Article  PubMed  CAS  Google Scholar 

  28. Windham TC, Parikh NU, Siwak DR, et al. Src activation regulates anoikis in human colon tumor cell lines. Oncogene 2002; 21: 7797–807.

    Article  PubMed  CAS  Google Scholar 

  29. Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 1995; 81:513–23.

    Article  PubMed  CAS  Google Scholar 

  30. Kurenova E, Xu LH, Yang X, et al. Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol 2004; 24:4361–71.

    Article  PubMed  CAS  Google Scholar 

  31. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87: 565–76.

    Article  PubMed  CAS  Google Scholar 

  32. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4:387–96.

    Article  PubMed  CAS  Google Scholar 

  33. Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 1996; 15:6189–96.

    PubMed  CAS  Google Scholar 

  34. Funakoshi-Tago M, Sonoda Y, Tanaka S, et al. Tumor necrosis factor-induced nuclear factor kappaB activation is impaired in focal adhesion kinase-deficient fibroblasts. J Biol Chem 2003; 278: 29359–65.

    Article  PubMed  CAS  Google Scholar 

  35. Gervais FG, Thornberry NA, Ruffolo SC, Nicholson DW, Roy S. Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J Biol Chem 1998; 273:17102–8.

    Article  PubMed  CAS  Google Scholar 

  36. Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 1998; 273:7141–7.

    Article  PubMed  CAS  Google Scholar 

  37. Levkau B, Herren B, Koyama H, Ross R, Raines EW. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 1998; 187: 579–86.

    Article  PubMed  CAS  Google Scholar 

  38. Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem 1997; 272:26056–61.

    Article  PubMed  CAS  Google Scholar 

  39. Lu Y, Lin YZ, LaPushin R, et al. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 1999; 18:7034–45.

    Article  PubMed  CAS  Google Scholar 

  40. Davies MA, Lu Y, Sano T, et al. Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 1998; 58:5285–90.

    PubMed  CAS  Google Scholar 

  41. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275:1943–7.

    Article  PubMed  CAS  Google Scholar 

  42. Myers MP, Stolarov JP, Eng C, et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 1997; 94:9052–7.

    Article  PubMed  CAS  Google Scholar 

  43. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23. 3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–62.

    Article  PubMed  CAS  Google Scholar 

  44. Reginato MJ, Mills KR, Paulus JK, et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol 2003; 5:733–40.

    Article  PubMed  CAS  Google Scholar 

  45. Collins NL, Reginato MJ, Paulus JK, Sgroi DC, Labaer J, Brugge JS. G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol Cell Biol 2005; 25:5282–91.

    Article  PubMed  CAS  Google Scholar 

  46. Marani M, Hancock D, Lopes R, Tenev T, Downward J, Lemoine NR. Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene 2004; 23:2431–41.

    Article  PubMed  CAS  Google Scholar 

  47. Bondar VM, McConkey DJ. Anoikis is regulated by BCL-2-independent pathways in human prostate carcinoma cells. Prostate 2002; 51: 42–9.

    Article  PubMed  CAS  Google Scholar 

  48. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem 2000; 69:217–45.

    Article  PubMed  CAS  Google Scholar 

  49. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–6.

    Article  PubMed  CAS  Google Scholar 

  50. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94:491–501.

    Article  PubMed  CAS  Google Scholar 

  51. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94:481–90.

    Article  PubMed  CAS  Google Scholar 

  52. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17:1675–87.

    Article  PubMed  CAS  Google Scholar 

  53. Frisch SM. Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol 1999; 9: 1047–9.

    Article  PubMed  CAS  Google Scholar 

  54. Rytomaa M, Martins LM, Downward J. Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr Biol 1999; 9: 1043–6.

    Article  PubMed  CAS  Google Scholar 

  55. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 2001; 152:633–43.

    Article  PubMed  CAS  Google Scholar 

  56. Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001; 155:459–70.

    Article  PubMed  CAS  Google Scholar 

  57. Skurk C, Maatz H, Kim HS, et al. The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 2004; 279:1513–25.

    Article  PubMed  CAS  Google Scholar 

  58. Miyazaki T, Shen M, Fujikura D, et al. Functional role of death-associated protein 3 (DAP3) in anoikis. J Biol Chem 2004; 279:44667–72.

    Article  PubMed  CAS  Google Scholar 

  59. Marconi A, Atzei P, Panza C, et al. FLICE/caspase-8 activation triggers anoikis induced by beta1-integrin blockade in human keratinocytes. J Cell Sci 2004; 117:5815–23.

    Article  PubMed  CAS  Google Scholar 

  60. Maubant S, Saint-Dizier D, Boutillon M, et al. Blockade of ⌊alpha⌋ v ⌊beta⌋ 3 and ⌊alpha⌋v⌊beta⌋5 integrins by RGD mimetics induces anoikis and not integrin-mediated death in human endothelial cells. Blood 2006; 108(9):3035–44.

    Google Scholar 

  61. Bozzo C, Sabbatini M, Tiberio R, Piffanelli V, Santoro C, Cannas M. Activation of caspase-8 triggers anoikis in human neuroblastoma cells. Neurosci Res 2006; 29(6):347–50.

    Google Scholar 

  62. Valentijn AJ, Gilmore AP. Translocation of full-length Bid to mitochondria during anoikis. J Biol Chem 2004; 279:32848–57.

    Article  PubMed  CAS  Google Scholar 

  63. Grossmann J, Walther K, Artinger M, Kiessling S, Scholmerich J. Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ 2001; 12:147–55.

    PubMed  CAS  Google Scholar 

  64. Wang P, Valentijn AJ, Gilmore AP, Streuli CH. Early events in the anoikis program occur in the absence of caspase activation. J Biol Chem 2003; 278:19917–25.

    Article  PubMed  CAS  Google Scholar 

  65. Willis SN, Adams JM. Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 2005; 17:617–25.

    Article  PubMed  CAS  Google Scholar 

  66. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116:205–19.

    Article  PubMed  CAS  Google Scholar 

  67. Scorrano L, Ashiya M, Buttle K, et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002; 2:55–67.

    Google Scholar 

  68. Gross A, Yin XM, Wang K, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999; 274:1156–63.

    Article  PubMed  CAS  Google Scholar 

  69. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999; 400: 886–91.

    Article  PubMed  CAS  Google Scholar 

  70. Chen D, Zhou Q. Caspase cleavage of BimEL triggers a positive feedback amplification of apoptotic signaling. Proc Natl Acad Sci USA 2004; 101:1235–40.

    Article  PubMed  CAS  Google Scholar 

  71. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–28.

    Article  PubMed  CAS  Google Scholar 

  72. Datta SR, Ranger AM, Lin MZ, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell 2002; 3:631–43.

    Article  PubMed  CAS  Google Scholar 

  73. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:231–41.

    Article  PubMed  CAS  Google Scholar 

  74. Harada H, Becknell B, Wilm M, et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 1999; 3:413–22.

    Article  PubMed  CAS  Google Scholar 

  75. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001; 98: 9666–70.

    Article  PubMed  CAS  Google Scholar 

  76. Fukazawa H, Noguchi K, Masumi A, Murakami Y, Uehara Y. BimEL is an important determinant for induction of anoikis sensitivity by mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitors. Mol Cancer Ther 2004; 3:1281–8.

    PubMed  CAS  Google Scholar 

  77. Wang P, Gilmore AP, Streuli CH. Bim is an apoptosis sensor that responds to loss of survival signals delivered by epidermal growth factor but not those provided by integrins. J Biol Chem 2004; 279: 41280–5.

    Article  PubMed  CAS  Google Scholar 

  78. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292:727–30.

    Article  PubMed  CAS  Google Scholar 

  79. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2:183–92.

    Article  PubMed  CAS  Google Scholar 

  80. Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005; 17:525–35.

    Article  PubMed  CAS  Google Scholar 

  81. Puthalakath H, Villunger A, O’Reilly LA, et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001; 293: 1829–32.

    Article  PubMed  CAS  Google Scholar 

  82. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 1999; 3: 287–96.

    Article  PubMed  CAS  Google Scholar 

  83. Bouillet P, Metcalf D, Huang DC, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 1999; 286:1735–8.

    Article  PubMed  CAS  Google Scholar 

  84. Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ. A role for proapoptotic BID in the DNA-damage response. Cell 2005; 122: 579–91.

    Article  PubMed  CAS  Google Scholar 

  85. Chen G, Bhojani MS, Heaford AC, et al. Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA 2005; 102: 12507–12.

    Article  PubMed  CAS  Google Scholar 

  86. Su H, Bidere N, Zheng L, et al. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 2005; 307: 1465–8.

    Article  PubMed  CAS  Google Scholar 

  87. Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S. Apoptosis: cell death defined by caspase activation. Cell Death Differ 1999; 6:495–6.

    Article  PubMed  CAS  Google Scholar 

  88. Termuhlen PM, Sweeney-Gotsch BM, Berman RS, et al. Increased apoptosis in metastatic human colonic adenocarcinomas. Cancer Biol Ther 2002; 1:58–63.

    PubMed  Google Scholar 

  89. Swan EA, Jasser SA, Holsinger FC, Doan D, Bucana C, Myers JN. Acquisition of anoikis resistance is a critical step in the progression of oral tongue cancer. Oral Oncol 2003; 39: 648–55.

    Article  PubMed  CAS  Google Scholar 

  90. McConkey DJ, Greene G, Pettaway CA. Apoptosis resistance increases with metastatic potential in cells of the human LNCaP prostate carcinoma line. Cancer Res 1996; 56:5594–9.

    PubMed  CAS  Google Scholar 

  91. Pettaway CA, Pathak S, Greene G, et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res 1996; 2: 1627–36.

    PubMed  CAS  Google Scholar 

  92. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–6.

    Article  PubMed  CAS  Google Scholar 

  93. Jan Y, Matter M, Pai JT, et al. A mitochondrial protein, Bit1, mediates apoptosis regulated by integrins and Groucho/TLE corepressors. Cell 2004; 116:751–62.

    Article  PubMed  CAS  Google Scholar 

  94. Ren B, Chee KJ, Kim TH, Maniatis T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev 1999; 13:125–37.

    PubMed  CAS  Google Scholar 

  95. Roose J, Molenaar M, Peterson J, et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 1998; 395:608–12.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

McConkey, D.J., Bondar, V. (2007). Regulation and Function of Detachment-Induced Cell Death (Anoikis) in Cancer Progression and Metastasis. In: Gewirtz, D.A., Holt, S.E., Grant, S. (eds) Apoptosis, Senescence, and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-221-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-221-2_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-527-9

  • Online ISBN: 978-1-59745-221-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics