Skip to main content

Nano-Sized Carriers for Drug Delivery

  • Chapter
NanoBioTechnology

Abstract

Drug delivery is an important issue, especially with a new generation of therapeutics, which are either unstable in the biological environment, have poor transport properties across biological membranes, are insoluble in water, or have very low bioavailability. Nano-sized drug carriers can address some of the above issues and enhance their therapeutic efficacy. Different types of nano-sized carriers, such as nanoparticles, nanowires, nanocages, dendrimers, etc., are being developed for various drug-delivery applications. The challenge is to determine the therapeutic dose of the drug formulated in a system, which could be significantly different from that of the drug nanocarrier. In this regard, a better understanding of the pathophysiology of the disease condition under consideration is critical so that one can select and design an appropriate drug carrier system that would deliver a therapeutic dose of the drug in the target tissue or a body compartment at a rate and for the duration that is therapeutically effective and can cure the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 2003; 14:337–346.

    CAS  Google Scholar 

  2. Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3–5.

    CAS  Google Scholar 

  3. Muller RH, Ruhl D, Runge S, Schulze-Forster K, Mehnert W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res 1997;14:458–462.

    CAS  Google Scholar 

  4. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 2002;238:241–245.

    CAS  Google Scholar 

  5. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999;59:299–307.

    CAS  Google Scholar 

  6. Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56:1257–1272.

    CAS  Google Scholar 

  7. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 2004;284:109–122.

    CAS  Google Scholar 

  8. Fundaro A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. Nonstealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42:337–343.

    CAS  Google Scholar 

  9. Maia CS, Mehnert W, Schafer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm 2000; 196:165–167.

    CAS  Google Scholar 

  10. Uner M, Wissing SA, Yener G, Muller RH. Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations. Pharmazie 2004;59:331–332.

    CAS  Google Scholar 

  11. Zara GP, Cavalli R, Bargoni A, Fundaro A, Vighetto D, Gasco MR. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 2002; 10:327–335.

    CAS  Google Scholar 

  12. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003;8:1112–1120.

    CAS  Google Scholar 

  13. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55:329–347.

    CAS  Google Scholar 

  14. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649–1659.

    CAS  Google Scholar 

  15. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13: 1838–1845.

    CAS  Google Scholar 

  16. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14:1568–1573.

    CAS  Google Scholar 

  17. Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactideco-glycolide) nanoparticles. Int J Pharm 2003;262:1–11.

    CAS  Google Scholar 

  18. Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 2003;100:9138–9143.

    CAS  Google Scholar 

  19. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002; 16:1217–1226.

    CAS  Google Scholar 

  20. Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 2002;233:51–59.

    CAS  Google Scholar 

  21. Panyam J, Labhasetwar V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 2004; 1:77–84.

    CAS  Google Scholar 

  22. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631–651.

    CAS  Google Scholar 

  23. Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 2003;93:151–160.

    CAS  Google Scholar 

  24. Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release 2000;68:419–431.

    CAS  Google Scholar 

  25. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol). J Control Release 2002;80:129–144.

    CAS  Google Scholar 

  26. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283–318.

    CAS  Google Scholar 

  27. Iakoubov L, Rokhlin O, Torchilin V. Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. Immunol Lett 1995;47:147–149.

    CAS  Google Scholar 

  28. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–284.

    CAS  Google Scholar 

  29. Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004; 112:335–340.

    CAS  Google Scholar 

  30. Fisher RS, Ho J. Potential new methods for antiepileptic drug delivery. CNS Drugs 2002;16:579–593.

    CAS  Google Scholar 

  31. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002;28:1–13.

    CAS  Google Scholar 

  32. Kastin AJ, Akerstrom V, Pan W. Interleukin-10 as a CNS therapeutic: the obstacle of the blood-brain/blood-spinal cord barrier. Brain Res Mol Brain Res2003;114:168–171.

    CAS  Google Scholar 

  33. Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS. Adv Drug Deliv Rev 2003;55:83–105.

    CAS  Google Scholar 

  34. Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409–416.

    CAS  Google Scholar 

  35. Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000;26:459–463.

    CAS  Google Scholar 

  36. Jain TK, Roy I, De TK, Maitra AN. Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J Am Chem Soc 1998;120:11,092–11,095.

    CAS  Google Scholar 

  37. Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drugcarrier system for photodynamic therapy. J Am Chem Soc 2003; 125: 7860–7865.

    CAS  Google Scholar 

  38. Lal ML, Kim KS, He GS, et al. Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence. Chem Mater 2000;19:2632–2639.

    Google Scholar 

  39. Badley RD, Ford WT, McEnroe FJ, Assink RA. Surface modification of colloidal silica. Langmuir 1990;6:792–801.

    CAS  Google Scholar 

  40. Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 2005; 102:279–284.

    CAS  Google Scholar 

  41. Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996;13:245–255.

    CAS  Google Scholar 

  42. Chatterjee J, Haik Y, Chen CJ. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albuminbased magnetic microspheres. J Mag Mag Mat 2001;225:21–29.

    CAS  Google Scholar 

  43. Widder KJ, Senyei AE, Ranney DF. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres. Cancer Res 1980;40:3512–3517.

    CAS  Google Scholar 

  44. Gupta PK, Hung CT. Magnetically controlled targeted micro-carrier systems. Life Sci 1989;44:175–186.

    CAS  Google Scholar 

  45. Gomez-Lopera SA, Plaza RC, Delgado AV. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 2001;240:40–47.

    CAS  Google Scholar 

  46. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Ironoxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005;2:194–205.

    CAS  Google Scholar 

  47. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Symposium1975;51:135–153.

    CAS  Google Scholar 

  48. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 2003;42:1089–1105.

    CAS  Google Scholar 

  49. Luo Y, Prestwich GD. Cancer-targeted polymeric drugs. Curr Cancer Drug Targets 2002;2:209–226.

    CAS  Google Scholar 

  50. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387–6392.

    CAS  Google Scholar 

  51. Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001;74:47–61.

    CAS  Google Scholar 

  52. Sprincl L, Exner J, Sterba O, Kopecek J. New types of synthetic infusion solutions. III. Elimination and retention of poly-[N-(2-hydroxypropyl) methacrylamide] in a test organism. J Biomed Mater Res 1976; 10:953–963.

    CAS  Google Scholar 

  53. Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 1999;5:83–94.

    CAS  Google Scholar 

  54. Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001;46:169–185.

    CAS  Google Scholar 

  55. Fang J, Sawa T, Maeda H. Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. Adv Exp Med Biol 2003;519:29–49.

    CAS  Google Scholar 

  56. Schoemaker NE, van Kesteren C, Rosing H, et al. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br J Cancer 2002;87:608–614.

    CAS  Google Scholar 

  57. Li C, Yu DF, Newman RA, et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res 1998;58:2404–2409.

    CAS  Google Scholar 

  58. Greenwald RB, Choe YH, McGuire J, Conover CD. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 2003;55:217–250.

    CAS  Google Scholar 

  59. Singer JW, Baker B, De Vries P, et al. Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv Exp Med Biol2003;519:81–99.

    CAS  Google Scholar 

  60. Smith DA, van de Waterbeemd H. Pharmacokinetics and metabolism in early drug discovery. Curr Opin Chem Biol 1999;3:373–378.

    CAS  Google Scholar 

  61. Bendas G. Immunoliposomes: a promising approach to targeting cancer therapy. BioDrugs 2001;15:215–224.

    CAS  Google Scholar 

  62. Wright LR, Rothbard JB, Wender PA. Guanidinium rich peptide transporters and drug delivery. Curr Protein Pept Sci 2003;4:105–124.

    CAS  Google Scholar 

  63. Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 2002;35:1035–1044.

    CAS  Google Scholar 

  64. Selinger JV, Schnur JM. Theory of chiral lipid tubules. Phys Rev Lett 1993;71:4091–4094.

    CAS  Google Scholar 

  65. Spector MS, Schnur JM. DNA ordering on a lipid membrane. Science 1997;275:791–792.

    CAS  Google Scholar 

  66. Zheng LX, O’Connell MJ, Doorn SK, et al. Ultralong single-wall carbon nanotubes. Nat Mater 2004;3:673–676.

    CAS  Google Scholar 

  67. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Selfassembling organic nanotubes based on a cyclic peptide architecture. Nature 1993;366:324–327.

    CAS  Google Scholar 

  68. Ghadiri MR, Granja JR, Buehler LK. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 1994;369:301–304.

    CAS  Google Scholar 

  69. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 2002;296:2198–2200.

    CAS  Google Scholar 

  70. Mitchell DT, Lee SB, Trofin L, et al. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 2002;124:11,864–11,865.

    CAS  Google Scholar 

  71. Goldstein AS, Amory JK, Martin SM, Vernon C, Matsumoto A, Yager P. Testosterone delivery using glutamide-based complex high axial ratio microstructures. Bioorg Med Chem 2001;9:2819–2825.

    CAS  Google Scholar 

  72. Liu J, Rinzler AG, Dai H, et al. Fullerene pipes. Science 1998;280: 1253–1256.

    CAS  Google Scholar 

  73. Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 2001; 123:3838–3839.

    CAS  Google Scholar 

  74. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000;14:175–182.

    CAS  Google Scholar 

  75. Pantarotto D, Tagmatarchis N, Bianco A, Prato M. Synthesis and biological properties of fullerene-containing amino acids and peptides. Mini Rev Med Chem2004;4:805–814.

    CAS  Google Scholar 

  76. Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev 2004;33:43–63.

    CAS  Google Scholar 

  77. Padilla De Jesus OL, Ihre HR, Gagne L, Frechet JM, Szoka FC, Jr. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem 2002;13:453–461.

    Google Scholar 

  78. Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimerbased therapeutic nanodevice targeted to tumor cells through the folate receptor. PharmRes 2002;19:1310–1316.

    CAS  Google Scholar 

  79. Nierengarten JF, Eckert JF, Rio Y, Carreon MP, Gallani JL, Guillon D. Amphiphilic diblock dendrimers: synthesis and incorporation in Langmuir and Langmuir-Blodgett films. J Am Chem Soc 2001;123:9743–9748.

    CAS  Google Scholar 

  80. Morgan JR, Cloninger MJ. Heterogeneously functionalized dendrimers. Curr Opin Drug Discov Devel 2002;5:966–973.

    CAS  Google Scholar 

  81. Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH. Chemistry of micelles. 13. Monomolecular micelles. Angew Chem 1991;103:1207–1209.

    CAS  Google Scholar 

  82. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc 1995;117:4417–4418.

    CAS  Google Scholar 

  83. Liu M, Kono K, Frechet JM. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release 2000;65:121–131.

    CAS  Google Scholar 

  84. Kojima C, Kono K, Maruyama K, Takagishi T. Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjug Chem 2000;1 1:910–917.

    Google Scholar 

  85. Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999; 10:767–776.

    CAS  Google Scholar 

  86. Zhuo RX, Du B, Lu ZR. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release 1999;57:249–257.

    CAS  Google Scholar 

  87. Kono K, Liu M, Frechet JM. Design of dendritic macromolecules containing late or methotrexate residues. Bioconjug Chem 1999; 10:1115–1121.

    CAS  Google Scholar 

  88. Liu M, Frechet JMJ. Designing dendrimers for drug delivery. Pharm Sci Technol Today 1999;2:393–401.

    CAS  Google Scholar 

  89. Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001;6:427–436.

    CAS  Google Scholar 

  90. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147–162.

    CAS  Google Scholar 

  91. Barth RF, Soloway AH, Fairchild RG, Brugger RM. Boron neutron capture therapy for cancer. Realities and prospects. Cancer 1992;70:2995–3007.

    CAS  Google Scholar 

  92. Barth RF, Soloway AH. Boron neutron capture therapy of primary and metastatic brain tumors. Mol Chem Neuropathol 1994;21:139–154.

    CAS  Google Scholar 

  93. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett 2001;1: 18–21.

    CAS  Google Scholar 

  94. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 2002;54:203–222.

    CAS  Google Scholar 

  95. Kwon GS, Okano T. Soluble self-assembled block copolymers for drug delivery. Pharm Res 1999; 16:597–600.

    CAS  Google Scholar 

  96. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002;54:169–190.

    CAS  Google Scholar 

  97. Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001;74:295–302.

    CAS  Google Scholar 

  98. Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kataoka K. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J Drug Target 1999;7:171–186.

    CAS  Google Scholar 

  99. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 2001;73:137–172.

    CAS  Google Scholar 

  100. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003; 100:6039–6044.

    CAS  Google Scholar 

  101. Kabanov AV, Alakhov VY. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 2002;19:1–72.

    CAS  Google Scholar 

  102. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002;82:189–212.

    CAS  Google Scholar 

  103. Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood-brain barrier. Adv Drug Deliv Rev 2003;55:151–164.

    CAS  Google Scholar 

  104. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002;54:759–779.

    CAS  Google Scholar 

  105. Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 2004;4:484–488.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sahoo, S.K., Jain, T.K., Reddy, M.K., Labhasetwar, V. (2008). Nano-Sized Carriers for Drug Delivery. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_13

Download citation

Publish with us

Policies and ethics