Skip to main content

BCR-ABL and Human Cancer

  • Chapter

Summary

The BCR-ABL oncogene was the first chromosomal abnormality shown to be associated with a specific human malignancy, the chronic myelogenous leukemia (CML), resulting from a reciprocal t(9;22) translocation characterized by the formation of a shortened chromosome, named Philadelphia chromosome (Ph), in which the tyrosine kinase of c-ABL is constitutively activated. This chromosomal translocation generates BCR-ABL fusion genes which can be translated in three different oncoproteins, p210, p190, and p230, associated with three different pathologies in humans, CML, acute lymphoblastic leukemia (ALL), and chronic neutrophilic leukemia, respectively. The molecular mechanisms and downstream pathways of BCR-ABL are poorly understood mainly as a result of the lack of a good in vivo model that mimics the human disease. Nevertheless, additional in vitro and in vivo models have led to the design of several novel therapeutic approaches. That is the case of Imatinib mesylate (Gleevec, STI571; Novartis Pharma AG), a drug targeting the tyrosine kinase activity of BCR-ABL and an effective therapy for chronic phase CML but not advanced stages of CML and patients with Ph+ ALL. The resistance mutations in the kinase domain of BCR-ABL together with the stem cell origin of the chromosomal translocation and the inability of the imatinib to inhibit the BCR-ABL activity in these cells have revealed the limitations of Gleevec, providing new lessons for the development of alternative therapies in oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960;132:1497.

    Google Scholar 

  2. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984;36(1):93–99.

    PubMed  CAS  Google Scholar 

  3. Klucher KM, Lopez DV, Daley GQ. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 1998;91(10):3927–3934.

    PubMed  CAS  Google Scholar 

  4. Abelson HT, Rabstein LS. Influence of prednisolone on Moloney leukemogenic virus in BALB-c mice. Cancer Res 1970;30(8):2208–2212.

    PubMed  CAS  Google Scholar 

  5. Ben-Neriah Y, Bernards A, Paskind M, Daley GQ, Baltimore D. Alternative 5_ exons in c-abl mRNA. Cell 1986;44(4):577–586.

    PubMed  CAS  Google Scholar 

  6. Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989;58(4):669–678.

    PubMed  Google Scholar 

  7. Saglio G, Cilloni D. Abl: the prototype of oncogenic fusion proteins. Cell Mol Life Sci 2004;61(23):2897–2911.

    PubMed  CAS  Google Scholar 

  8. Laneuville P. Abl tyrosine protein kinase. Semin Immunol 1995;7(4):255–266.

    PubMed  CAS  Google Scholar 

  9. Woodring PJ, Hunter T, Wang JY. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci 2003;116 (Pt 13):2613–2626.

    PubMed  CAS  Google Scholar 

  10. Sawyers CL, McLaughlin J, Goga A, Havlik M, Witte O. The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 1994;77(1):121–131.

    PubMed  CAS  Google Scholar 

  11. Yuan ZM, Shioya H, Ishiko T, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999;399(6738):814–817.

    PubMed  CAS  Google Scholar 

  12. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukaemia. Blood 2000;96:3343–3356.

    PubMed  CAS  Google Scholar 

  13. Chissoe SL, Bodenteich A, Wang YF, et al. Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 1995;27(1):67–82.

    PubMed  CAS  Google Scholar 

  14. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;13(12):7587–7595.

    PubMed  CAS  Google Scholar 

  15. Diekmann D, Brill S, Garrett MD, et al. Bcr encodes a GTPase-activating protein for p21rac. Nature 1991;351(6325):400–402.

    PubMed  CAS  Google Scholar 

  16. Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB. Bcr phosphorylated on tyrosine 177 binds Grb2. Oncogene 1997;14(19):2367–2372.

    PubMed  CAS  Google Scholar 

  17. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996;88(7):2375–2384.

    PubMed  CAS  Google Scholar 

  18. Saglio G, Pane F, Martinelli G, Guerrasio A. BCR/ABL transcripts and leukemia phenotype: an unsolved puzzle. Leuk Lymphoma 1997;26(3–4):281–286.

    PubMed  CAS  Google Scholar 

  19. Clarkson B, Strife A. Linkage of proliferative and maturational abnormalities in chronic myelogenous leukemia and relevance to treatment. Leukemia 1993;7(11):1683–1721.

    PubMed  CAS  Google Scholar 

  20. Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB. Bcr phosphorylated on tyrosine 177 binds Grb2. Oncogene 1997;14(19):2367–2372.

    PubMed  CAS  Google Scholar 

  21. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996;13(2):247–254.

    PubMed  CAS  Google Scholar 

  22. Ilaria RL, Jr, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996;271(49):31,704–31,710.

    PubMed  CAS  Google Scholar 

  23. Skorski T, Kanakaraj P, Nieborowska-Skorska M, et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995;86(2):726–736.

    PubMed  CAS  Google Scholar 

  24. Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell 1997;88(4):435–437.

    PubMed  CAS  Google Scholar 

  25. Sanchez-Garcia I, Grutz G. Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci USA 1995;92(12):5287–5291.

    PubMed  CAS  Google Scholar 

  26. de Groot RP, Raaijmakers JA, Lammers JW, Koenderman L. STAT5-Dependent CyclinD1 and Bcl-xL expression in Bcr-Abl-transformed cells. Mol Cell Biol Res Commun 2000;3(5):299–305.

    PubMed  Google Scholar 

  27. Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA. The COOH terminus of the c-Abl tyrosine kinase contains distinct F-and G-actin binding domains with bundling activity. J Cell Biol 1994;124(3):325–340. Erratum in J Cell Biol 1994;124(5):865.

    PubMed  Google Scholar 

  28. Salgia R, Li JL, Ewaniuk DS, et al. BCR/ABL induces multiple abnormalities of cytoskeletal function. J Clin Invest 1997;100(1):46–57.

    PubMed  CAS  Google Scholar 

  29. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987;328(6128):342–344.

    PubMed  CAS  Google Scholar 

  30. Cortez D, Reuther G, Pendergast AM. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997;15(19):2333–2342.

    PubMed  CAS  Google Scholar 

  31. Chopra R, Pu QQ, Elefanty AG. Biology of BCR-ABL. Blood Rev 1999;13(4):211–229.

    PubMed  CAS  Google Scholar 

  32. Cogswell PC, Morgan R, Dunn M, et al. Mutations of the ras protooncogenes in chronic myelogenous leukemia: a high frequency of ras mutations in bcr/abl rearrangementnegative chronic myelogenous leukemia. Blood 1989;74(8):2629–2633.

    PubMed  CAS  Google Scholar 

  33. Feinstein E, Cimino G, Gale RP, et al. p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci USA 1991;88(14):6293–6297.

    PubMed  CAS  Google Scholar 

  34. Sawyers CL. The role of myc in transformation by BCR-ABL. Leuk Lymphoma 1993; 11(Suppl 1):45–46.

    PubMed  Google Scholar 

  35. Ahuja H, Bar-Eli M, Arlin Z, et al. The spectrum of molecular alterations in the evolution of chronic myelocytic leukemia. J Clin Invest 1991;87(6):2042–2047.

    PubMed  CAS  Google Scholar 

  36. Towatari M, Adachi K, Kato H, Saito H. Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. Blood 1991;78(9): 2178–2181.

    PubMed  CAS  Google Scholar 

  37. Quesnel B, Preudhomme C, Fenaux Pp16ink4a gene and hematological malignancies. Leuk Lymphoma 1996;22(1–2):11–24.

    PubMed  CAS  Google Scholar 

  38. Sill H, Goldman JM, Cross NC. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 1995;85(8):2013–2016.

    PubMed  CAS  Google Scholar 

  39. Zion M, Ben-Yehuda D, Avraham A, et al. Progressive de novo DNA methylation at the bcr-abl locus in the course of chronic myelogenous leukemia. Proc Natl Acad Sci USA 1994;91(22):10,722–10,726.

    PubMed  CAS  Google Scholar 

  40. Asimakopoulos FA, Shteper PJ, Krichevsky S, et al. ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 1999; 94(7):2452–2460.

    PubMed  CAS  Google Scholar 

  41. Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, et al. SLUG in cancer development. Oncogene 2005;24(19):3073–3082.

    PubMed  CAS  Google Scholar 

  42. Nieto MA, Sargent MG, Wilkinson DG, Cooke J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994;264(5160):835–839.

    PubMed  CAS  Google Scholar 

  43. Perez-Losada J, Sanchez-Martin M, Perez-Caro M, Perez-Mancera PA, Sanchez-Garcia I. The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 2003;22(27):4205–4211.

    PubMed  CAS  Google Scholar 

  44. Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T. The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 1998;98(2):277–285.

    Google Scholar 

  45. Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J, Sagrera A, Read AP, Sanchez-Garcia I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11(25):3231–3236.

    PubMed  CAS  Google Scholar 

  46. Sanchez-Martin M, Perez-Losada J, Rodriguez-Garcia A, et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 2003;122(2):125–132.

    PubMed  Google Scholar 

  47. Inukai T, Inoue A, Kurosawa H, et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 1999;4(3):343–352.

    PubMed  CAS  Google Scholar 

  48. Khan J, Bittner ML, Saal LH, et al. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 1999;96(23):13,264–13,269.

    PubMed  CAS  Google Scholar 

  49. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 2002;100(4):1274–1286.

    PubMed  CAS  Google Scholar 

  50. Chan LC, Karhi KK, Rayter SI, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987;325(6105):635–637.

    PubMed  CAS  Google Scholar 

  51. Melo JV, Myint H, Galton DA, Goldman JM. P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 1994;8(1):208–211.

    PubMed  CAS  Google Scholar 

  52. Saglio G, Guerrasio A, Rosso C, et al. New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 1990;76(9):1819–1824.

    PubMed  CAS  Google Scholar 

  53. Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88(7):2410–2414. Erratum in Blood 1997;89(11):4244.

    PubMed  CAS  Google Scholar 

  54. Janssen JW, Ridge SA, Papadopoulos P, et al. The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event. Br J Haematol 1995;90(1):222–224.

    PubMed  CAS  Google Scholar 

  55. Nilsson T, Andreasson P, Hoglund M, et al. ETV6/ABL fusion is rare in Ph-negative chronic myeloid disorders. Leukemia 1998;12(7):1167–1168.

    PubMed  CAS  Google Scholar 

  56. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77(2):307–316.

    PubMed  CAS  Google Scholar 

  57. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1995;92(11): 4917–4921.

    PubMed  CAS  Google Scholar 

  58. Golub TR, Goga A, Barker GF, et al. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996;16(8):4107–4116.

    PubMed  CAS  Google Scholar 

  59. Hannemann JR, McManus DM, Kabarowski JH, Wiedemann LM. Haemopoietic transformation by the TEL/ABL oncogene. Br J Haematol 1998;102(2):475–485.

    PubMed  CAS  Google Scholar 

  60. Jousset C, Carron C, Boureux A, et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J 1997;16(1):69–82.

    PubMed  CAS  Google Scholar 

  61. Schwaller J, Frantsve J, Aster J, et al. Transformation of hematopoietic cell lines to growthfactor independence and induction of a fatal myelo-and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998;17(18):5321–5333.

    PubMed  CAS  Google Scholar 

  62. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;13(12):7587–7595.

    PubMed  CAS  Google Scholar 

  63. Biernaux C, Sels A, Huez G, Stryckmans P. Very low level of major BCR-ABL expression in blood of some healthy individuals. Bone Marrow Transplant 1996;17(Suppl 3):S45–S47.

    PubMed  Google Scholar 

  64. Sanchez-Garcia I. Consequences of chromosomal abnormalities in tumor development. Annu Rev Genet 1997;31:429–453.

    PubMed  CAS  Google Scholar 

  65. Sanchez-Garcia I. Chromosomal Abnormalities, Cancer and Mouse Models: The critical role of translocation-associated genes in human cancer. Curr Genomics 2000;1:71–80.

    CAS  Google Scholar 

  66. Perez-Losada J, Gutierrez-Cianca N, Sanchez-Garcia I. Philadelphia-positive B-cell acute lymphoblastic leukemia is initiated in an uncommitted progenitor cell. Leuk Lymphoma 2001;42(4):569–576.

    PubMed  CAS  Google Scholar 

  67. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998;92(9):3362–3367.

    PubMed  CAS  Google Scholar 

  68. Tordaro GJ, Green H. An assay for cellular transformation by SV40. Virology 1964; 23(1):117–119.

    PubMed  CAS  Google Scholar 

  69. Lugo TG, Witte ON. The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 1989;9(3):1263–1270.

    PubMed  CAS  Google Scholar 

  70. Daley GQ, McLaughlin J, Witte ON, Baltimore D. The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 1987;237(4814):532–535.

    PubMed  CAS  Google Scholar 

  71. Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 1988;85(23):9312–9316.

    PubMed  CAS  Google Scholar 

  72. Sanchez-Garcia I, Grutz G. Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci USA 1995;92(12):5287–5291.

    PubMed  CAS  Google Scholar 

  73. Spencer A, Yan XH, Chase A, Goldman JM, Melo JV. BCR-ABL-positive lymphoblastoid cells display limited proliferative capacity under in vitro culture conditions. Br J Haematol 1996;94(4):654–658.

    PubMed  CAS  Google Scholar 

  74. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc Natl Acad Sci USA 1996;93(25):14,845–14,850.

    PubMed  CAS  Google Scholar 

  75. Klucher KM, Lopez DV, Daley GQ. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 1998;91(10):3927–3934.

    PubMed  CAS  Google Scholar 

  76. Ruibao Ren. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model. Oncogene 2002;21:8629–8642.

    Google Scholar 

  77. Cobaleda C, Sanchez-Garcia I. In vivo inhibition by a site-specific catalytic RNA subunit of RNase P designed against the BCR-ABL oncogenic products: a novel approach for cancer treatment. Blood 2000;95(3):731–737.

    PubMed  CAS  Google Scholar 

  78. Cobaleda C, Perez-Losada J, Sanchez-Garcia I. Chromosomal abnormalities and tumor development: from genes to therapeutic mechanisms. Bioessays 1998;20(11):922–930.

    PubMed  CAS  Google Scholar 

  79. Nakano T, Kodama H, Honjo T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 1994;265(5175):1098–1101.

    PubMed  CAS  Google Scholar 

  80. Era T, Witte ON. Regulated expression of P210 Bcr-Abl during embryonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate. Proc Natl Acad Sci USA 2000;97(4):1737–1742.

    PubMed  CAS  Google Scholar 

  81. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002;109(1):29–37.

    PubMed  CAS  Google Scholar 

  82. Peters DG, Klucher KM, Perlingeiro RC, Dessain SK, Koh EY, Daley GQ. Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene 2001;20(21):2636–2646.

    PubMed  CAS  Google Scholar 

  83. McLaughlin J, Chianese E, Witte ON. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 1987;84(18):6558–6562.

    PubMed  CAS  Google Scholar 

  84. Sawyers CL, Gishizky ML, Quan S, Golde DW, Witte ON. Propagation of human blastic myeloid leukemias in the SCID mouse. Blood 1992;79(8):2089–2098.

    PubMed  CAS  Google Scholar 

  85. Sawyers CL, Gishizky ML, Quan S, Golde DW, Witte ON. Propagation of human blastic leukemias in the SCID mouse. Blood 1992;79:2089–2098.

    PubMed  CAS  Google Scholar 

  86. Cesano A, Hoxie JA, Lange B, Nowell PC, Bishop J, Santoli D. The severe combined immunodeficient (SCID) mouse as a model for myeloid leukemias. Oncogene 1992;7:827–836.

    PubMed  CAS  Google Scholar 

  87. Namikawa R, Ueda R, Kyoizumi S. Growth of human myeloid leukemia in the human marrow environment of SCID-hu mice. Blood 1993;82:2526–2536.

    PubMed  CAS  Google Scholar 

  88. Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995;154:180–191.

    PubMed  CAS  Google Scholar 

  89. Larochelle A, Vormoor J, Lapidot T, et al. Engraftment of immune-deficient mice with primitive hematopoietic cells from _-thalassemia and sickle cell anemia patients: Implications for evaluating human gene therapy protocols. Hum Mol Genet 1995;4:163–172.

    PubMed  CAS  Google Scholar 

  90. Cashman JD, Lapidot T, Wang JCY, et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 1997;89:4307–4316.

    PubMed  CAS  Google Scholar 

  91. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.

    PubMed  CAS  Google Scholar 

  92. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247(4944): 824–830.

    PubMed  CAS  Google Scholar 

  93. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J 1990;9(4):1069–1078.

    PubMed  CAS  Google Scholar 

  94. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 1990;87(17):6649–6653.

    PubMed  CAS  Google Scholar 

  95. Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998;92(10):3829–3840.

    PubMed  CAS  Google Scholar 

  96. Pear WS, Miller JP, Xu L, et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998;92(10):3780–3792.

    PubMed  CAS  Google Scholar 

  97. Hawley RG. High-titer retroviral vectors for efficient transduction of functional genes into murine hematopoietic stem cells. Ann NY Acad Sci 1994;716:327–330.

    PubMed  CAS  Google Scholar 

  98. Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 2000;20(20): 7419–7426.

    PubMed  CAS  Google Scholar 

  99. Heisterkamp N, Jenster G, Kioussis D, Pattengale PK, Groffen J. Human bcr-abl gene has a lethal effect on embryogenesis. Transgenic Res 1991;1(1):45–53.

    PubMed  CAS  Google Scholar 

  100. Honda H, Hirai H. Model mice for BCR/ABL-positive leukemias. Blood Cell Mol Dis 2001;27(1):265–278.

    CAS  Google Scholar 

  101. Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 2000;24(1):57–60.

    PubMed  CAS  Google Scholar 

  102. Castellanos A, Pintado B, Weruaga E, et al. A BCR-ABL(p190) fusion gene made by homologous recombination causes B-cell acute lymphoblastic leukemias in chimeric mice with independence of the endogenous bcr product. Blood 1997;90(6):2168–2174.

    PubMed  CAS  Google Scholar 

  103. Koschmieder S, Gottgens B, Zhang P, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood 2005;105(1):324–334.

    PubMed  CAS  Google Scholar 

  104. Schorpp-Kistner M, Wang ZQ, Angel P, Wagner EF. JunB is essential for mammalian placentation. EMBO J 1999;18(4):934–948.

    PubMed  CAS  Google Scholar 

  105. Passegue E, Wagner EF, Weissman IL. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 2004;119(3):431–443.

    PubMed  CAS  Google Scholar 

  106. Holtschke T, Lohler J, Kanno Y, et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996;87(2):307–317.

    PubMed  CAS  Google Scholar 

  107. Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000;20(4):1149–1161.

    PubMed  CAS  Google Scholar 

  108. Hoover RR, Gerlach MJ, Koh EY, Daley GQ. Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene 2001;20(41): 5826–5835.

    PubMed  CAS  Google Scholar 

  109. Huettner CS, Zhang P, Van Etten RA, Tenen DG. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 2000;24(1):57–60.

    PubMed  CAS  Google Scholar 

  110. McCulloch EA. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood 1983;62(1):1–13.

    PubMed  CAS  Google Scholar 

  111. Cline MJ. The molecular basis of leukemia. N Engl J Med 1994;330(5):328–336.

    PubMed  CAS  Google Scholar 

  112. Trott, KR. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother Oncol 1994;30:1–5.

    PubMed  CAS  Google Scholar 

  113. Kummermehr, J, Trott, KR. In: Potten CS, ed., Stem Cells. 363–399 New York: Academic Press; 1997:363–399.

    Google Scholar 

  114. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 2000;95(3):1007–1013.

    PubMed  CAS  Google Scholar 

  115. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.

    PubMed  CAS  Google Scholar 

  116. Hope KJ, Jin L, Dick JE. Human acute myeloid leukemia stem cells. Arch Med Res 2003;34(6):507–514.

    PubMed  CAS  Google Scholar 

  117. Mauro MJ, Druker BJ. Chronic myelogenous leukemia. Curr Opin Oncol 2001;13:3–7.

    PubMed  CAS  Google Scholar 

  118. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351(7):657–667.

    PubMed  CAS  Google Scholar 

  119. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLLassociated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003;17(24):3029–3035.

    PubMed  CAS  Google Scholar 

  120. Gunsilius E, Duba HC, Petzer AL, et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000;355:1688–1691.

    PubMed  CAS  Google Scholar 

  121. Fang B, Zheng C, Liao L, et al. Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics. Blood 2005;105(7):2733–2740.

    PubMed  CAS  Google Scholar 

  122. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorogenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–3988.

    PubMed  CAS  Google Scholar 

  123. Singh SK. Identification of a cancer stem cell in human brain tumours. Cancer Res 2003;63:5821–5828.

    PubMed  CAS  Google Scholar 

  124. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3(12):895–902.

    PubMed  CAS  Google Scholar 

  125. Silver RT, Woolf SH, Hehlmann R, et al. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 1999;94:1517–1536.

    PubMed  CAS  Google Scholar 

  126. Goldman JM, Druker BJ. Chronic myeloid leukemia: current treatment options. Blood 2001;98(7):2039–2042.

    PubMed  CAS  Google Scholar 

  127. Talpaz M, Kantarjian HM, McCredie KB, et al. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukemia. N Engl J Med 1986;314:1065–1069.

    PubMed  CAS  Google Scholar 

  128. Salesse S, Verfaillie CM. BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene 2002;21(56):8547–8559.

    PubMed  CAS  Google Scholar 

  129. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411:355–365.

    PubMed  CAS  Google Scholar 

  130. Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995;267:1782–1788.

    PubMed  CAS  Google Scholar 

  131. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ. The sequence of the human genome. Science 2001;291:1304–1351.

    PubMed  CAS  Google Scholar 

  132. Uehara Y, Hori M, Takeuchi T, Umezawa H. Screening of agents which convert “transformed morphology” of Rous sarcoma virus-infected rat kidney cells to ‘normal morphology’: identification of an active agent as herbimycin and its inhibition of intracellular src kinase. Jpn. J. Cancer Res 1985;76:672–675.

    PubMed  CAS  Google Scholar 

  133. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S. Genistein, a specific inhibitor of tyrosine specific protein kinases. J Biol Chem 1987;262:5592–5595.

    PubMed  CAS  Google Scholar 

  134. Umezawa H, Imoto M, Sawa T, Isshiki K, Matsuda N. Studies on a new epidermal growth factor-receptor kinase inhibitor, erbstatin, produced by MH435-hF3. J Antibiot 1986;39: 170–173.

    PubMed  CAS  Google Scholar 

  135. Carlo-Stella C, Dotti G, Mangoni L, Regazzi E, Garau D. Selection of myeloid progenitors lackingBCR/ABL mRNA in chronic myelogenous leukemia patients after in vitro treatment with the tyrosine kinase inhibitor genistein. Blood 1996;88:3091–3100.

    PubMed  CAS  Google Scholar 

  136. Kawada M, Tawara J, Tsuji T, Honma Y, Hozumi M. Inhibition of Abelson oncogene function by erbstatin analogues. Drugs Exp Clin Res 1993;19:235–241.

    PubMed  CAS  Google Scholar 

  137. Yaish P, Gazit A, Gilon C, Levitzki A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 1988;242:933–935.

    PubMed  CAS  Google Scholar 

  138. Levitzki A. Tyrosine kinases as targets for cancer therapy. Eur J Cancer 2002;38(Suppl 5):S11–S18.

    PubMed  Google Scholar 

  139. Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996;56(1): 100–104.

    PubMed  CAS  Google Scholar 

  140. Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HD, Moore CW. Biochemical and cellular effects of c-Src kinase-selective pyrido[2, 3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol 2000;60(7):885–898.

    PubMed  CAS  Google Scholar 

  141. Dorsey JF, Jove R, Kraker AJ, Wu J. The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells. Cancer Res 2000;60(12):3127–3131.

    PubMed  CAS  Google Scholar 

  142. Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005;7(2):129–141.

    PubMed  CAS  Google Scholar 

  143. Savage DG, Antman KH. Imatinib mesylate-a new oral targeted therapy. N Engl J Med 2002;346(9):683–693

    PubMed  CAS  Google Scholar 

  144. Druker BJ, Sawyers CL, Capdeville R, Ford JM, Baccarani M, Goldman JM. Chronic myelogenous leukemia. Hematology (Am Soc Hematol Educ Program). 2001;87–112. Review.

    Google Scholar 

  145. Mauro MJ, O’Dwyer M, Heinrich MC, Druker BJ. STI571: a paradigm of new agents for cancer therapeutics. J Clin Oncol 2002;20(1):325–334.

    PubMed  CAS  Google Scholar 

  146. Okuda K, Weisberg E, Gilliland DG, Griffin JD. ARG tyrosine kinase activity is inhibited by STI571. Blood 2001;97:2440–2448.

    PubMed  CAS  Google Scholar 

  147. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000;289(5486):1938–1942.

    PubMed  CAS  Google Scholar 

  148. Fang G, Kim CN, Perkins CL, Ramadevi N, Winton E, Wittmann S, Bhalla KN. CGP57148B (STI-571) induces differentiation and apoptosis and sensitizes Bcr-Abl-positive human leukemia cells to apoptosis due to antileukemic drugs. Blood 2000;96(6):2246–2253.

    PubMed  CAS  Google Scholar 

  149. Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM, Melo JV. BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res 2000;60(7):2049–2055.

    PubMed  CAS  Google Scholar 

  150. Buchdunger E, O’Reilly T, Wood J. Pharmacology of imatinib (STI571). Eur J Cancer 2002;38(Suppl 5):S28–S36.

    PubMed  Google Scholar 

  151. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–1037.

    PubMed  CAS  Google Scholar 

  152. Druker BJ, O’Brien SG, Cortes J, Radich J. Chronic myelogenous leukemia. Hematology 2002;111–135. Review.

    Google Scholar 

  153. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001;344: 1038–1042.

    PubMed  CAS  Google Scholar 

  154. Mitelman F. The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma 1993;11:11–15.

    PubMed  Google Scholar 

  155. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293: 876–880.

    PubMed  CAS  Google Scholar 

  156. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2:117–125.

    PubMed  CAS  Google Scholar 

  157. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A. Detection of BCRABL mutations in imatinib-treated CML patients is virtually always accompanied by clinical resistance and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003;102:276–283.

    PubMed  CAS  Google Scholar 

  158. Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002;2(2):117–125.

    PubMed  CAS  Google Scholar 

  159. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000;289(5486):1938–1942.

    PubMed  CAS  Google Scholar 

  160. Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003;112:831–843.

    PubMed  CAS  Google Scholar 

  161. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002;16:2190–2196.

    PubMed  CAS  Google Scholar 

  162. Takeda N, Shibuya M, Maru Y. The BCR-ABL oncoprotein potentially interacts with the xeroderma pigmentosum group B protein. Proc Natl Acad Sci USA 1999;96:203–207.

    PubMed  CAS  Google Scholar 

  163. Tomlinson GE, Chen TT, Stastny VA, Virmani AK, Spillman MA. Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res 1998;58:3237–3242

    PubMed  CAS  Google Scholar 

  164. Deutsch E, Jarrousse S, Buet D, Dugray A, Bonnet ML. Down-regulation of BRCA1 in BCR-ABL-expressing hematopoietic cells. Blood 2003;101:4583–4588.

    PubMed  CAS  Google Scholar 

  165. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic cells. Science 1988;241:58–62.

    PubMed  CAS  Google Scholar 

  166. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002;99:319–325.

    PubMed  CAS  Google Scholar 

  167. Chu S, Xu H, Shah NP, et al. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005;05(5):2093–2098.

    Google Scholar 

  168. Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003;101(12):4701–4707.

    PubMed  CAS  Google Scholar 

  169. Wisniewski D, Lambek CL, Liu C, Strife A, Veach DR. Characterization of potent inhibitors of the Bcr-Abl and the c-kit receptor tyrosine kinases. Cancer Res 2002;62: 4244–4255.

    PubMed  CAS  Google Scholar 

  170. Huang M, Dorsey JF, Epling-Burnette PK, Nimmanapalli R, Landowski TH. Inhibition of Bcr-Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 2002;21:8804–8816.

    PubMed  CAS  Google Scholar 

  171. Huron DR, Gorre ME, Kraker AJ, Sawyers CL, Rosen N, Moasser MM. A novel pyridopyrimidine inhibitor of Abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clin Cancer Res 2003;9:1267–1273.

    PubMed  CAS  Google Scholar 

  172. Rapozzi V, Burm BE, Cogoi S, van derMarel GA, van Boom JH. Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Res 2002;30:3712–3721.

    PubMed  CAS  Google Scholar 

  173. Wilda M, Fuchs U, Wossmann W, Borkhardt A. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002;21:5716–5724.

    PubMed  CAS  Google Scholar 

  174. Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 1991;253:562–565.

    PubMed  CAS  Google Scholar 

  175. Lange W, Cantin EM, Finke J, Dolken G. In vitro in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA. Leukemia 1993;7:1786–1794.

    PubMed  CAS  Google Scholar 

  176. Wright L, Wilson SB, Milliken S, Biggs J, Kearney P. Ribozyme-mediated cleavage of the bcr/abl transcript expressed in chronic myeloid leukemia. Exp Hematol 1993;21:1714–1718.

    PubMed  CAS  Google Scholar 

  177. Choo Y, Sanchez-Garcia I, Klug A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 1994;372(6507):642–645.

    PubMed  CAS  Google Scholar 

  178. Cobaleda C, Sanchez-Garcia I. RNase P: from biological function to biotechnological applications. Trends Biotechnol 2001;19(10):406–411.

    PubMed  CAS  Google Scholar 

  179. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002;8(4 Suppl):S55–S61.

    PubMed  CAS  Google Scholar 

  180. Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002;2(1):3–24.

    PubMed  CAS  Google Scholar 

  181. Nimmanapalli R, O’Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001;61(5):1799–1804.

    PubMed  CAS  Google Scholar 

  182. Perkins C, Kim CN, Fang G, Bhalla, KN. Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bclx(L). Blood 2000;95:1014–1022.

    PubMed  CAS  Google Scholar 

  183. Yu C, Krystal G, Varticovksi L, McKinstry R, Rahmani M, Dent P, Grant S. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells. Cancer Res 2002;62(1):188–199.

    PubMed  CAS  Google Scholar 

  184. Becker MW, Clarke MF. SLUGging away at cell death. Cancer Cell 2002;2(4):249–251.

    PubMed  CAS  Google Scholar 

  185. Inoue A, Seidel MG, Wu W, et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002;2(4):279–288.

    PubMed  Google Scholar 

  186. Castilla LH, Wijmenga C, Wang Q, et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFBMYH11. Cell 1996;87:687–696.

    PubMed  CAS  Google Scholar 

  187. Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell. 1996;85:853–861.

    PubMed  CAS  Google Scholar 

  188. Yergeau DA, Hetherington CJ, Wang Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nature Genet 1997;15:303–306.

    PubMed  CAS  Google Scholar 

  189. Okuda T, Cai Z, Yang S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998;91:3134–3143.

    PubMed  CAS  Google Scholar 

  190. Forster A, Pannell R, Drynan LF, et al. The invertor knock-in conditional chromosomal translocation mimic. Nat Methods 2005;2:27–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pérez-Caro, M., Sánchez-Garcia, I. (2007). BCR-ABL and Human Cancer. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-200-7_1

Download citation

Publish with us

Policies and ethics