Skip to main content

Death Receptors

Mechanisms, Biology, and Therapeutic Potential

  • Chapter
Apoptosis, Cell Signaling, and Human Diseases

Summary

Apoptosis is a genetically controlled process that plays important roles in embryogenesis, metamorphosis, cellular homeostasis, and as a defensive mechanism to remove infected, damaged or mutated cells. Although a number of stimuli trigger apoptosis, it is mainly mediated through at least three major pathways that are regulated by (1) the death receptors, (2) the mitochondria, and (3) the ER (endoplasmic reticulum). Under certain conditions, these pathways may crosstalk to enhance apoptosis. Death receptor pathways are involved in immune-mediated neutralization of activated or autoreactive lymphocytes, virus-infected cells, and tumor cells. Consequently, dysregulation of death receptor pathway has been implicated in the development of autoimmune diseases, immunodeficiency, and cancer. Increasing evidence indicates that mitochondrial and ER pathways of apoptosis play a critical role in cytokine receptor-mediated apoptosis. Considerable evidence has accrued about the effects of dysregulation of these pathways on drug resistance. Recent data indicate that BH3-only proteins act as mediators that link various upstream signals, including death receptors and DNA damage signaling, to the mitochondrial and the ER pathway. Evidence suggests that these proteins may function as integrators of damage signals, and may be the final decision point as to whether a cell lives or dies. This chapter discusses the molecular mechanisms of apoptotic pathways regulated by the death receptors, mitochondria and endoplasmic reticulum and their potential applications to cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krammer PH. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol 1999;71:163–210.

    PubMed  CAS  Google Scholar 

  2. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996;271:12,687–12,690.

    PubMed  CAS  Google Scholar 

  3. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673–682.

    PubMed  CAS  Google Scholar 

  4. Golstein P. Cell death: TRAIL and its receptors. Curr Biol 1997;7:R750–R753.

    PubMed  CAS  Google Scholar 

  5. Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 1998;10:559–563.

    PubMed  CAS  Google Scholar 

  6. Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001;3:535–546.

    PubMed  CAS  Google Scholar 

  7. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science 2002;296: 1634–1635.

    PubMed  CAS  Google Scholar 

  8. Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84:299–308.

    PubMed  CAS  Google Scholar 

  9. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996;4:387–396.

    PubMed  CAS  Google Scholar 

  10. Ting AT, Pimentel-Muinos FX, Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 1996;15:6189–6196.

    PubMed  CAS  Google Scholar 

  11. Li X, Minden A. Pak4 functions in TNFalpha induced survival pathways by facilitating TRADD binding to the TNF receptor. J Biol Chem2005;280:41,192–41,200.

    PubMed  CAS  Google Scholar 

  12. Blonska M, Shambharkar PB, Kobayashi M, et al. TAK1 is recruited to TNF-alpha receptor 1 in a rip-dependent manner and cooperates with MEKK3 leading to NF-kappa B activation. J Biol Chem 2005;280:43,056–43,063.

    PubMed  CAS  Google Scholar 

  13. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114:181–190.

    PubMed  CAS  Google Scholar 

  14. Schneider-Brachert W, Tchikov V, Neumeyer J, et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 2004;21:415–428.

    PubMed  CAS  Google Scholar 

  15. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116:205–219.

    PubMed  CAS  Google Scholar 

  16. Schultz DR, Harrington WJ, Jr. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum 2003;32:345–369.

    PubMed  CAS  Google Scholar 

  17. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–490.

    PubMed  CAS  Google Scholar 

  18. Ivanov VN, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis. Oncogene 2003;22:3152–3161.

    PubMed  CAS  Google Scholar 

  19. Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA. Activation of caspase-3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol 1998;160:3480–3486.

    PubMed  CAS  Google Scholar 

  20. Leist M, Gantner F, Jilg S, Wendel A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol 1995;154:1307–1316.

    PubMed  CAS  Google Scholar 

  21. Pfeffer K, Matsuyama T, Kundig TM, et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 1993;73:457–467.

    PubMed  CAS  Google Scholar 

  22. Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992;90:196–203.

    PubMed  CAS  Google Scholar 

  23. Trautwein C, Rakemann T, Brenner DA, et al. Concanavalin A-induced liver cell damage: activation of intracellular pathways triggered by tumor necrosis factor in mice. Gastroenterology 1998;114:1035–1045.

    PubMed  CAS  Google Scholar 

  24. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alphainduced apoptosis by NF-kappaB. Science 1996;274:787–789.

    PubMed  Google Scholar 

  25. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274:782–784.

    PubMed  CAS  Google Scholar 

  26. Liu ZG, Hsu H, Goeddel DV, Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell1996;87:565–576.

    PubMed  CAS  Google Scholar 

  27. Wang CY, Mayo MW, Baldwin AS, Jr. TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 1996;274:784–787.

    PubMed  CAS  Google Scholar 

  28. Iimuro Y, Nishiura T, Hellerbrand C, et al. NF-kappaB prevents apoptosis and liver dysfunction during liver regeneration. J Clin Invest 1998;101:802–811.

    PubMed  CAS  Google Scholar 

  29. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995;376:167–170.

    PubMed  CAS  Google Scholar 

  30. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 1999;284:321–325.

    PubMed  CAS  Google Scholar 

  31. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002;9:401–410.

    PubMed  CAS  Google Scholar 

  32. Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 2000;12:301–311.

    PubMed  CAS  Google Scholar 

  33. Kucharczak J, Simmons MJ, Fan Y, Gelinas C. To be, or not to be: NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 2003;22:8961–8982.

    PubMed  CAS  Google Scholar 

  34. Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell 2004; 116:491–497.

    PubMed  CAS  Google Scholar 

  35. Curtin JF, Cotter TG. Live and let die: regulatory mechanisms in Fas-mediated apoptosis. Cell Signal 2003;15:983–992.

    PubMed  CAS  Google Scholar 

  36. Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model. Semin Immunol 2003;15:185–193.

    CAS  Google Scholar 

  37. Gupta S. Molecular steps of cell suicide: an insight into immune senescence. J Clin Immunol 2000;20:229–239.

    PubMed  CAS  Google Scholar 

  38. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281: 1305–1308.

    PubMed  CAS  Google Scholar 

  39. Takahashi T, Tanaka M, Brannan CI, et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994;76:969–976.

    PubMed  CAS  Google Scholar 

  40. Srivastava RK, Sasaki CY, Hardwick JM, Longo DL. Bcl-2-mediated drug resistance: inhibition of apoptosis by blocking nuclear factor of activated T lymphocytes (NFAT)-induced Fas ligand transcription. J Exp Med 1999;190:253–265.

    PubMed  CAS  Google Scholar 

  41. Ioachim HL, Decuseara R, Giancotti F, Dorsett BH. FAS and FAS-L expression by tumor cells and lymphocytes in breast carcinomas and their lymph node metastases. Pathol Res Pract 2005;200:743–751.

    PubMed  Google Scholar 

  42. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998;282:290–293.

    PubMed  CAS  Google Scholar 

  43. Sodeman T, Bronk SF, Roberts PJ, Miyoshi H, Gores GJ. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 2000;278:G992–G999.

    PubMed  CAS  Google Scholar 

  44. Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z. FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 2003;23:3623–3635.

    PubMed  CAS  Google Scholar 

  45. Augstein P, Dunger A, Salzsieder C, et al. Cell surface trafficking of Fas in NIT-1 cells and dissection of surface and total Fas expression. Biochem Biophys Res Commun 2002;290:443–451.

    PubMed  CAS  Google Scholar 

  46. Kawasaki Y, Saito T, Shirota-Someya Y, et al. Cell death-associated translocation of plasma membrane components induced by CTL. J Immunol 2000;164:4641–4648.

    PubMed  CAS  Google Scholar 

  47. O’Reilly LA, Divisekera U, Newton K, et al. Modifications and intracellular trafficking of FADD/MORT1 and caspase-8 after stimulation of T lymphocytes. Cell Death Differ 2004;11:724–736.

    PubMed  CAS  Google Scholar 

  48. Tsokos GC, Kovacs B, Liossis SN. Lymphocytes, cytokines, inflammation, and immune trafficking. Curr Opin Rheumatol 1997;9:380–386.

    PubMed  CAS  Google Scholar 

  49. Furuya Y, Fuse H, Masai M. Serum soluble Fas level for detection and staging of prostate cancer. Anticancer Res 2001;21:3595–3598.

    PubMed  CAS  Google Scholar 

  50. Mizutani Y, Yoshida O, Bonavida B. Prognostic significance of soluble Fas in the serum of patients with bladder cancer. J Urol 1998;160:571–576.

    PubMed  CAS  Google Scholar 

  51. Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin Cancer Res 2001;7:1282–1286.

    PubMed  CAS  Google Scholar 

  52. Cheng J, Zhou T, Liu C, et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994;263:1759–1762.

    PubMed  CAS  Google Scholar 

  53. Tanaka M, Itai T, Adachi M, Nagata S. Downregulation of Fas ligand by shedding. Nat Med 1998;4:31–36.

    PubMed  CAS  Google Scholar 

  54. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 1999;9:1441–1447.

    PubMed  CAS  Google Scholar 

  55. Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 1998;58: 5500–5506.

    PubMed  CAS  Google Scholar 

  56. Shigemasa K, Tanimoto H, Sakata K, et al. Induction of matrix metalloprotease-7 is common in mucinous ovarian tumors including early stage disease. Med Oncol 2000; 17:52–58.

    PubMed  CAS  Google Scholar 

  57. Yamamoto H, Adachi Y, Itoh F, et al. Association of matrilysin expression with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Cancer Res 1999;59: 3313–3316.

    PubMed  CAS  Google Scholar 

  58. Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM. Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 2001;3:459–468.

    PubMed  CAS  Google Scholar 

  59. Vargo-Gogola T, Fingleton B, Crawford HC, Matrisian LM. Matrilysin (matrix metalloproteinase-7) selects for apoptosis-resistant mammary cells in vivo. Cancer Res 2002;62: 5559–5563.

    PubMed  CAS  Google Scholar 

  60. Knox PG, Milner AE, Green NK, Eliopoulos AG, Young LS. Inhibition of metalloproteinase cleavage enhances the cytotoxicity of Fas ligand. J Immunol 2003;170:677–685.

    PubMed  CAS  Google Scholar 

  61. Takahashi T, Tanaka M, Inazawa J, Abe T, Suda T, Nagata S. Human Fas ligand:gene structure, chromosomal location and species specificity. Int Immunol 1994;6:1567–1574.

    PubMed  CAS  Google Scholar 

  62. Lynch DH, Watson ML, Alderson MR, et al. The mouse Fas-ligand gene is mutated in gld mice and is part of a TNF family gene cluster. Immunity 1994;1:131–136.

    PubMed  CAS  Google Scholar 

  63. Ni R, Tomita Y, Matsuda K, et al. Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp Cell Res 1994;215:332–337.

    PubMed  CAS  Google Scholar 

  64. Galle PR, Hofmann WJ, Walczak H, et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 1995;182:1223–1230.

    PubMed  CAS  Google Scholar 

  65. Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993;364:806–809.

    PubMed  CAS  Google Scholar 

  66. Strand S, Hofmann WJ, Grambihler A, et al. Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med 1998;4: 588–593.

    PubMed  CAS  Google Scholar 

  67. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997;277:815–818.

    PubMed  CAS  Google Scholar 

  68. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science 1997;276:111–113.

    PubMed  CAS  Google Scholar 

  69. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS Lett 1997;416:329–334.

    PubMed  CAS  Google Scholar 

  70. Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997;7:693–696.

    PubMed  CAS  Google Scholar 

  71. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997;277:818–821.

    PubMed  CAS  Google Scholar 

  72. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997;16:5386–5397.

    PubMed  CAS  Google Scholar 

  73. Degli-Esposti MA, Smolak PJ, Walczak H, et al. Cloning and characterization of TRAILR3, a novel member of the emerging TRAIL receptor family. J Exp Med 1997;186: 1165–1170.

    PubMed  CAS  Google Scholar 

  74. Degli-Esposti MA, Dougall WC, Smolak PJ, et al. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997;7:813–820.

    PubMed  CAS  Google Scholar 

  75. Marsters SA, Sheridan JP, Pitti RM, et al. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997;7:1003–1006.

    PubMed  CAS  Google Scholar 

  76. Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998;424:41–45.

    PubMed  CAS  Google Scholar 

  77. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998;273:14,363–14,367.

    PubMed  CAS  Google Scholar 

  78. Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene 2001;20: 2122–2133.

    PubMed  CAS  Google Scholar 

  79. Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 1999;l1:255–260.

    Google Scholar 

  80. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999;5:157–163.

    PubMed  CAS  Google Scholar 

  81. Chen X, Thakkar H, Tyan F, et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001;20:6073–6083.

    PubMed  CAS  Google Scholar 

  82. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 2003;63: 5390–5400.

    PubMed  CAS  Google Scholar 

  83. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003;10:66–75.

    PubMed  CAS  Google Scholar 

  84. French LE, Tschopp J. The TRAIL to selective tumor death. Nat Med 1999;5:146–147.

    PubMed  CAS  Google Scholar 

  85. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999;104:155–162.

    PubMed  CAS  Google Scholar 

  86. Chinnaiyan AM, Prasad U, Shankar S, et al. Combined effect of tumor necrosis factorrelated apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000;97:1754–1759.

    PubMed  CAS  Google Scholar 

  87. Singh TR, Shankar S, Srivastava RK. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005;24:4609–4623.

    PubMed  CAS  Google Scholar 

  88. Shabbeer S, Carducci MA. Focus on deacetylation for therapeutic benefit. IDrugs 2005;8: 144–154.

    PubMed  CAS  Google Scholar 

  89. Shankar S, Singh TR, Chen X, Thakkar H, Firnin J, Srivastava RK. The sequential treatment with ionizing radiation followed by TRAIL/Apo-2L reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice. Int J Oncol 2004;24:1133–1140.

    PubMed  CAS  Google Scholar 

  90. Shankar S, Singh TR, Srivastava RK. Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms. Prostate 2004; 61:35–49.

    PubMed  CAS  Google Scholar 

  91. Mitsiades CS, Treon SP, Mitsiades N, et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98:795–804.

    PubMed  CAS  Google Scholar 

  92. Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin Cancer Res 2001;7:1362–1369.

    PubMed  CAS  Google Scholar 

  93. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 2002;168:1356–1361.

    PubMed  CAS  Google Scholar 

  94. Sedger LM, Glaccum MB, Schuh JC, et al. Characterization of the in vivo function of TNFalpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 2002;32:2246–2254.

    PubMed  CAS  Google Scholar 

  95. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen H. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/-mice. Nat Immunol 2003;4: 255–260.

    PubMed  CAS  Google Scholar 

  96. Fanger NA, Maliszewski CR, Schooley K, Griffith TS. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999;190:1155–1164.

    PubMed  CAS  Google Scholar 

  97. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. Monocytemediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999;189:1343–1354.

    PubMed  CAS  Google Scholar 

  98. Kayagaki N, Yamaguchi N, Nakayama M, et al. Involvement of TNF-related apoptosisinducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol 1999;162: 2639–2647.

    PubMed  CAS  Google Scholar 

  99. Thomas WD, Hersey P. CD4 T cells kill melanoma cells by mechanisms that are independent of Fas (CD95). Int J Cancer 1998;75:384–390.

    PubMed  CAS  Google Scholar 

  100. Kayagaki N, Yamaguchi N, Nakayama M, et al. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 1999;163:1906–1913.

    PubMed  CAS  Google Scholar 

  101. Banner DW, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431–445.

    PubMed  CAS  Google Scholar 

  102. D’Arcy A, Banner DW, Janes W, et al. Crystallization and preliminary crystallographic analysis of a TNF-beta-55 kDa TNF receptor complex. J Mol Biol 1993;229:555–557.

    PubMed  CAS  Google Scholar 

  103. Karpusas M, Hsu YM, Wang JH, et al. 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure 1995;3:1031–1039.

    PubMed  CAS  Google Scholar 

  104. Bodmer JL, Meier P, Tschopp J, Schneider P. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 2000;275:20,632–20,637.

    PubMed  CAS  Google Scholar 

  105. Hymowitz SG, Christinger HW, Fuh G, et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999;4:563–571.

    PubMed  CAS  Google Scholar 

  106. Mongkolsapaya J, Grimes JM, Chen N, et al. Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 1999;6:1048–1053.

    PubMed  CAS  Google Scholar 

  107. Bodmer JL, Holler N, Reynard S, et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000;2:241–243.

    PubMed  CAS  Google Scholar 

  108. Hymowitz SG, O’Connell MP, Ultsch MH, et al. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 2000;39: 633–640.

    PubMed  CAS  Google Scholar 

  109. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem 1998;254:439–459.

    PubMed  CAS  Google Scholar 

  110. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A. Apo2L/ TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000;12:611–620.

    PubMed  CAS  Google Scholar 

  111. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3:E255–E263.

    PubMed  CAS  Google Scholar 

  112. Jin Z, McDonald ER, 3rd, Dicker DT, El-Deiry WS. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 2004;279:35,829–35,839.

    PubMed  CAS  Google Scholar 

  113. Sheikh MS, Huang Y. TRAIL death receptors, Bcl-2 protein family, and endoplasmic reticulum calcium pool. Vitam Horm 2004;67:169–188.

    PubMed  CAS  Google Scholar 

  114. He Q, Lee DI, Rong R, et al. Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 2002;21: 2623–2633.

    PubMed  CAS  Google Scholar 

  115. Rudner J, Lepple-Wienhues A, Budach W, et al. Wild-type, mitochondrial and ERrestricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptorinduced apoptosis. J Cell Sci 2001;114:4161–4172.

    PubMed  CAS  Google Scholar 

  116. Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 2005;103:1551–1560.

    PubMed  CAS  Google Scholar 

  117. Daniel PT, Schulze-Osthoff K, Belka C, Guner D. Guardians of cell death: the Bcl-2 family proteins. Essays Biochem2003;39:73–88.

    PubMed  CAS  Google Scholar 

  118. Green DR. Apoptotic pathways: the roads to ruin. Cell 1998;94:695–698.

    PubMed  CAS  Google Scholar 

  119. Green DR, Amarante-Mendes GP. The point of no return: mitochondria, caspases, and the commitment to cell death. Results Probl Cell Differ 1998;24:45–61.

    PubMed  CAS  Google Scholar 

  120. Kandasamy K, Srinivasula SM, Alnemri ES, et al. Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res 2003;63:1712–1721.

    PubMed  CAS  Google Scholar 

  121. Kroemer G. Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66:1–15.

    Google Scholar 

  122. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000;10:369–377.

    PubMed  CAS  Google Scholar 

  123. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000;6:513–519.

    PubMed  CAS  Google Scholar 

  124. Hegde R, Srinivasula SM, Zhang Z, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 2002;277:432–438.

    PubMed  CAS  Google Scholar 

  125. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta1998;1366:151–165.

    PubMed  CAS  Google Scholar 

  126. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102: 33–42.

    PubMed  CAS  Google Scholar 

  127. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001;2:REVIEWS3009.

    Google Scholar 

  128. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102: 43–53.

    PubMed  CAS  Google Scholar 

  129. Verhagen AM, Silke J, Ekert PG, et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 2002;277:445–454.

    PubMed  CAS  Google Scholar 

  130. Sun SY, Yue P, Zhou JY, et al. Overexpression of BCL2 blocks TNF-related apoptosisinducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. Biochem Biophys Res Commun 2001;280:788–797.

    PubMed  CAS  Google Scholar 

  131. Nimmanapalli R, Perkins CL, Orlando M, O’Bryan E, Nguyen D, Bhalla KN. Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 2001;61:759–763.

    PubMed  CAS  Google Scholar 

  132. Munshi A, Pappas G, Honda T, et al. TRAIL (APO-2L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. Oncogene 2001;20:3757–3765.

    PubMed  CAS  Google Scholar 

  133. Rokhlin OW, Guseva N, Tagiyev A, Knudson CM, Cohen MB. Bcl-2 oncoprotein protects the human prostatic carcinoma cell line PC3 from TRAIL-mediated apoptosis. Oncogene 2001;20:2836–2843.

    PubMed  CAS  Google Scholar 

  134. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ. BID: a novel BH3 domain-only death agonist. Genes Dev 1996;10:2859–2869.

    PubMed  CAS  Google Scholar 

  135. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–730.

    PubMed  CAS  Google Scholar 

  136. Grinberg M, Sarig R, Zaltsman Y, et al. tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem 2002;277:12,237–12,245.

    PubMed  CAS  Google Scholar 

  137. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491–501.

    PubMed  CAS  Google Scholar 

  138. Lindsten T, Ross AJ, King A, et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 2000;6:1389–1399.

    PubMed  CAS  Google Scholar 

  139. Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 2001;153: 1265–1276.

    PubMed  CAS  Google Scholar 

  140. Antonsson B. Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim the mitochondrion. Cell Tissue Res 2001;306:347–361.

    PubMed  CAS  Google Scholar 

  141. Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 2001; 276:18,361–18,374.

    PubMed  CAS  Google Scholar 

  142. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14:2060–2071.

    PubMed  CAS  Google Scholar 

  143. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911.

    PubMed  CAS  Google Scholar 

  144. Bouillet P, Strasser A. BH3-only proteins-evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 115:1567–1574.

    Google Scholar 

  145. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261–263.

    PubMed  CAS  Google Scholar 

  146. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17: 43–52.

    PubMed  CAS  Google Scholar 

  147. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990;63:1129–1136.

    PubMed  CAS  Google Scholar 

  148. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.

    PubMed  CAS  Google Scholar 

  149. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991;351:453–456.

    PubMed  CAS  Google Scholar 

  150. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.

    PubMed  CAS  Google Scholar 

  151. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 1990;348: 747–749.

    PubMed  CAS  Google Scholar 

  152. Harris CC. p53 tumor suppressor gene: from the basic research laboratory to the clinic-an abridged historical perspective. Carcinogenesis 1996;17:1187–1198.

    PubMed  CAS  Google Scholar 

  153. Oren M, Rotter V. Introduction: p53-the first twenty years. Cell Mol Life Sci 1999;55:9–11.

    PubMed  CAS  Google Scholar 

  154. Adimoolam S, Ford JM. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (Amst) 2003;2:947–954.

    CAS  Google Scholar 

  155. Offer H, Wolkowicz R, Matas D, Blumenstein S, Livneh Z, Rotter V. Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett 1999;450:197–204.

    PubMed  CAS  Google Scholar 

  156. Zhou J, Ahn J, Wilson SH, Prives CA. role for p53 in base excision repair. EMBO J 2001; 20:914–923.

    PubMed  CAS  Google Scholar 

  157. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–310.

    PubMed  CAS  Google Scholar 

  158. Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer 2002; 2:594–604.

    PubMed  CAS  Google Scholar 

  159. Morris SM. A role for p53 in the frequency and mechanism of mutation. Mutat Res 2002;511:45–62.

    PubMed  CAS  Google Scholar 

  160. Nayak BK, Das GM. Stabilization of p53 and transactivation of its target genes in response to replication blockade. Oncogene 2002;21:7226–7229.

    PubMed  CAS  Google Scholar 

  161. Nakamura S, Gomyo Y, Roth JA, Mukhopadhyay T. C-terminus of p53 is required for G(2) arrest. Oncogene 2002;21:2102–2107.

    PubMed  CAS  Google Scholar 

  162. Mirza A, McGuirk M, Hockenberry TN, et al. Human survivin is negatively regulated by wildtype p53 and participates in p53-dependent apoptotic pathway. Oncogene 2002;21: 2613–2622.

    PubMed  CAS  Google Scholar 

  163. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis-the p53 network. J Cell Sci 2003; 116:4077–4085.

    PubMed  CAS  Google Scholar 

  164. Mishra NC, Kumar S. Apoptosis: a mitochondrial perspective on cell death. Indian J Exp Biol 2005;43:25–34.

    PubMed  CAS  Google Scholar 

  165. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577–590.

    PubMed  CAS  Google Scholar 

  166. Mihara M, Moll UM. Detection of mitochondrial localization of p53. Methods Mol Biol 2003;234:203–209.

    PubMed  CAS  Google Scholar 

  167. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    PubMed  CAS  Google Scholar 

  168. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.

    PubMed  CAS  Google Scholar 

  169. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999;274:20,049–20,052.

    PubMed  CAS  Google Scholar 

  170. Aouad SM, Cohen LY, Sharif-Askari E, Haddad EK, Alam A, Sekaly RP. Caspase-3 is a component of Fas death-inducing signaling complex in lipid rafts and its activity is required for complete caspase-8 activation during Fas-mediated cell death. J Immunol 2004;172:2316–2323.

    PubMed  CAS  Google Scholar 

  171. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998;1:949–957.

    PubMed  CAS  Google Scholar 

  172. Keogh SA, Walczak H, Bouchier-Hayes L, Martin SJ. Failure of Bcl-2 to block cytochrome c redistribution during TRAIL-induced apoptosis. FEBS Lett 2000;471:93–98.

    PubMed  CAS  Google Scholar 

  173. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Ann Rev Physiol 1998;60:619–642.

    CAS  Google Scholar 

  174. Korsmeyer SJ. Programmed cell death and the regulation of homeostasis. Harvey Lect 1999;95:21–41.

    PubMed  CAS  Google Scholar 

  175. Yin XM, Wang K, Gross A, et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 1999;400:886–891.

    PubMed  CAS  Google Scholar 

  176. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318–1321.

    PubMed  CAS  Google Scholar 

  177. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 1997;16:6914–6925.

    PubMed  CAS  Google Scholar 

  178. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17: 2215–2223.

    PubMed  CAS  Google Scholar 

  179. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997;388:300–304.

    PubMed  CAS  Google Scholar 

  180. Ekert PG, Silke J, Vaux DL. Caspase inhibitors. Cell Death Differ 1999;6:1081–1086.

    PubMed  CAS  Google Scholar 

  181. Wang Z, Sampath J, Fukuda S, Pelus LM. Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res 2005;65:8224–8232.

    PubMed  CAS  Google Scholar 

  182. Yamaguchi Y, Shiraki K, Fuke H, et al. Targeting of X-linked inhibitor of apoptosis protein or survivin by short interfering RNAs sensitize hepatoma cells to TNF-related apoptosisinducing ligand-and chemotherapeutic agent-induced cell death. Oncol Rep 2005;14: 1311–1316.

    PubMed  CAS  Google Scholar 

  183. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998;17:37–49.

    PubMed  CAS  Google Scholar 

  184. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998;95:4997–5002.

    PubMed  CAS  Google Scholar 

  185. Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, Armstrong RC. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol Cell Biol 1998;18:608–615.

    PubMed  CAS  Google Scholar 

  186. Tamm I, Wang Y, Sausville E, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 1998;58:5315–5320.

    PubMed  CAS  Google Scholar 

  187. Hegde R, Srinivasula SM, Datta P, et al. The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. J Biol Chem 2003;278:38,699–38,706.

    PubMed  CAS  Google Scholar 

  188. Martins LM, Iaccarino I, Tenev T, et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002;277:439–444.

    PubMed  CAS  Google Scholar 

  189. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001;410:112–116.

    PubMed  CAS  Google Scholar 

  190. van Loo G, van Gurp M, Depuydt B, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 2002;9:20–26.

    PubMed  Google Scholar 

  191. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002;8:808–815.

    PubMed  CAS  Google Scholar 

  192. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121–141.

    PubMed  CAS  Google Scholar 

  193. Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 1999;9:40–48.

    PubMed  CAS  Google Scholar 

  194. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998;391:815–818.

    PubMed  CAS  Google Scholar 

  195. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391:811–814.

    PubMed  CAS  Google Scholar 

  196. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403: 41–45.

    PubMed  CAS  Google Scholar 

  197. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996;5:245–253.

    PubMed  Google Scholar 

  198. Lagger G, O’Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 2002;21:2672–2681.

    PubMed  CAS  Google Scholar 

  199. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol 2003;3:344–351.

    PubMed  CAS  Google Scholar 

  200. Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 2005;7:646–657.

    PubMed  CAS  Google Scholar 

  201. Fang JY. Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers. J Gastroenterol Hepatol 2005;20:988–994.

    PubMed  CAS  Google Scholar 

  202. Rosato RR, Wang Z, Gopalkrishnan RV, Fisher PB, Grant S. Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int J Oncol 2001;19:181–191.

    PubMed  CAS  Google Scholar 

  203. Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res 2001;262: 75–83.

    PubMed  CAS  Google Scholar 

  204. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005;115:538–546.

    PubMed  CAS  Google Scholar 

  205. Kwon SH, Ahn SH, Kim YK, et al. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 2002;277:2073–2080.

    PubMed  CAS  Google Scholar 

  206. Marks PA, Richon VM, Miller T, Kelly WK. Histone deacetylase inhibitors. Adv Cancer Res 2004;91:137–168.

    PubMed  CAS  Google Scholar 

  207. Boyle GM, Martyn AC, Parsons PG. Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res 2005;18:160–166.

    PubMed  CAS  Google Scholar 

  208. Butler LM, Agus DB, Scher HI, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000;60:5165–5170.

    PubMed  CAS  Google Scholar 

  209. Tang XX, Robinson ME, Riceberg JS, et al. Favorable neuroblastoma genes and molecular therapeutics of neuroblastoma. Clin Cancer Res 2004;10:5837–5844.

    PubMed  CAS  Google Scholar 

  210. Zhang Y, Adachi M, Zhao X, Kawamura R, Imai K. Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer 2004;110:301–308.

    PubMed  CAS  Google Scholar 

  211. Takimoto R, Kato J, Terui T, et al. Augmentation of Antitumor Effects of p53 Gene Therapy by Combination with HDAC Inhibitor. Cancer Biol Ther 2005;4:421–428.

    PubMed  CAS  Google Scholar 

  212. Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP. Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 2005;33:53–61.

    PubMed  CAS  Google Scholar 

  213. Bordin M, D’Atri F, Guillemot L, Citi S. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res 2004;2:692–701.

    PubMed  CAS  Google Scholar 

  214. Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004;101:18,030–18,035.

    PubMed  CAS  Google Scholar 

  215. Park JH, Jung Y, Kim TY, et al. Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin Cancer Res 2004;10: 5271–5281.

    PubMed  CAS  Google Scholar 

  216. Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477–483.

    PubMed  CAS  Google Scholar 

  217. McLaughlin F, La Thangue NB. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 2004;68:1139–1144.

    PubMed  CAS  Google Scholar 

  218. Nebbioso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005;11:77–84.

    PubMed  CAS  Google Scholar 

  219. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM. Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 2004;11Suppl 2:S193–S206.

    PubMed  CAS  Google Scholar 

  220. Facchetti F, Previdi S, Ballarini M, Minucci S, Perego P, La Porta CA. Modulation of proand anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 2004;9:573–582.

    PubMed  CAS  Google Scholar 

  221. Rosato RR, Almenara JA, Dai Y, Grant S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factorrelated apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003;2:1273–1284.

    PubMed  CAS  Google Scholar 

  222. Shetty S, Graham BA, Brown JG, et al. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 2005;25: 5404–5416.

    PubMed  CAS  Google Scholar 

  223. Goldsmith KC, Hogarty MD. Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett 2005;228:133–141.

    PubMed  CAS  Google Scholar 

  224. Vanoosten RL, Moore JM, Karacay B, Griffith TS. Histone Deacetylase Inhibitors Modulate Renal Cell Carcinoma Sensitivity to TRAIL/Apo-2L-induced Apoptosis by Enhancing TRAIL-R2 Expression. Cancer Biol Ther 2005;4:1104–1112.

    PubMed  CAS  Google Scholar 

  225. Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumorselective apoptosis through activation of the death receptor pathway. Nat Med 2005;11: 71–76.

    PubMed  CAS  Google Scholar 

  226. Insinga A, Minucci S, Pelicci PG. Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 2005;4:741–743.

    PubMed  CAS  Google Scholar 

  227. Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H. Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 2004;23: 3051–3060.

    PubMed  CAS  Google Scholar 

  228. Ruiz de Almodovar C, Lopez-Rivas A, Ruiz-Ruiz C. Interferon-gamma and TRAIL in human breast tumor cells. Vitam Horm 2004;67:291–318.

    Google Scholar 

  229. Oehadian A, Koide N, Mu MM, et al. Interferon (IFN)-beta induces apoptotic cell death in DHL-4 diffuse large B cell lymphoma cells through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Cancer Lett 2005;225:85–92.

    PubMed  CAS  Google Scholar 

  230. Wang SH, Mezosi E, Wolf JM, et al. IFNgamma sensitization to TRAIL-induced apoptosis in human thyroid carcinoma cells by upregulating Bak expression. Oncogene 2004;23: 928–935.

    PubMed  CAS  Google Scholar 

  231. Langaas V, Shahzidi S, Johnsen JI, Smedsrod B, Sveinbjornsson B. Interferon-gamma modulates TRAIL-mediated apoptosis in human colon carcinoma cells. Anticancer Res 2001;21:3733–3738.

    PubMed  CAS  Google Scholar 

  232. Fulda S, Debatin KM. IFNgamma sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 2002;21:2295–2308.

    PubMed  CAS  Google Scholar 

  233. Park SY, Seol JW, Lee YJ, et al. W. IFN-gamma enhances TRAIL-induced apoptosis through IRF-1. Eur J Biochem 2004;271:4222–4228.

    PubMed  CAS  Google Scholar 

  234. Ortiz MA, Bayon Y, Lopez-Hernandez FJ, Piedrafita FJ. Retinoids in combination therapies for the treatment of cancer:mechanisms and perspectives. Drug Resist Updat 2002;5: 162–175.

    PubMed  CAS  Google Scholar 

  235. Cuello M, Coats AO, Darko I, et al. N-(4-hydroxyphenyl) retinamide (4HPR) enhances TRAIL-mediated apoptosis through enhancement of a mitochondrial-dependent amplification loop in ovarian cancer cell lines. Cell Death Differ 2004;11:527–541.

    PubMed  CAS  Google Scholar 

  236. Sun SY, Yue P, Hong WK, Lotan R. Augmentation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by the synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) through up-regulation of TRAIL receptors in human lung cancer cells. Cancer Res 2000;60:7149–7155.

    PubMed  CAS  Google Scholar 

  237. Sun SY, Yue P, Lotan R. Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells. Oncogene 2000;19:4513–4522.

    PubMed  CAS  Google Scholar 

  238. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 2001;7:680–686.

    PubMed  CAS  Google Scholar 

  239. Wajant H, Gerspach J, Pfizenmaier K. Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev 2005;16:55–76.

    PubMed  CAS  Google Scholar 

  240. Gliniak B, Le T. Tumor necrosis factor-related apoptosis-inducing ligand’s antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 1999;59:6153–6158.

    PubMed  CAS  Google Scholar 

  241. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL. Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 2000;20:205–212.

    PubMed  CAS  Google Scholar 

  242. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999;59:734–741.

    PubMed  CAS  Google Scholar 

  243. Hotta T, Suzuki H, Nagai S, et al. Chemotherapeutic agents sensitize sarcoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand-induced caspase-8 activation, apoptosis and loss of mitochondrial membrane potential. J Orthop Res 2003;21:949–957.

    PubMed  CAS  Google Scholar 

  244. Shankar S, Chen X, Srivastava RK. Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 2005;62:165–186.

    PubMed  CAS  Google Scholar 

  245. Shankar S, Srivastava RK. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 2004;7:139–156.

    PubMed  CAS  Google Scholar 

  246. Marini P, Schmid A, Jendrossek V, et al. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer 2005;5:5.

    PubMed  Google Scholar 

  247. Rezacova M, Vavrova J, Vokurkova D, Tichy A, Knizek J, Psutka J. The importance of abrogation of G(2)-phase arrest in combined effect of TRAIL and ionizing radiation. Acta Biochim Pol 2005;52:889–895.

    PubMed  CAS  Google Scholar 

  248. Wendt J, von Haefen C, Hemmati P, Belka C, Dorken B, Daniel PT. TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 2005;24:4052–4064.

    PubMed  CAS  Google Scholar 

  249. Hamasu T, Inanami O, Asanuma T, Kuwabara M. Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists. J Radiat Res (Tokyo) 2005;46:103–110.

    CAS  Google Scholar 

  250. Ciusani E, Croci D, Gelati M, et al. In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J Neurooncol 2005;71:19–25.

    PubMed  CAS  Google Scholar 

  251. Morrison BH, Tang Z, Jacobs BS, Bauer JA, Lindner DJ. Apo2L/TRAIL induction and nuclear translocation of inositol hexakisphosphate kinase 2 during IFN-beta-induced apoptosis in ovarian carcinoma. Biochem J 2005;385:595–603.

    PubMed  CAS  Google Scholar 

  252. Gong B, Chen Q, Endlich B, Mazumder S, Almasan A. Ionizing radiation-induced, Baxmediated cell death is dependent on activation of cysteine and serine proteases. Cell Growth Differ 1999;10:491–502.

    PubMed  CAS  Google Scholar 

  253. Yoshida T, Maeda A, Tani N, Sakai T. Promoter structure and transcription initiation sites of the human death receptor 5/TRAIL-R2 gene. FEBS Lett 2001;507:381–385.

    PubMed  CAS  Google Scholar 

  254. Chen X, Kandasamy K, Srivastava RK. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res 2003;63:1059–1066.

    PubMed  CAS  Google Scholar 

  255. Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002;21:231–255.

    PubMed  CAS  Google Scholar 

  256. Cal C, Garban H, Jazirehi A, Yeh C, Mizutani Y, Bonavida B. Resveratrol and cancer: chemoprevention, apoptosis, and chemo-immunosensitizing activities. Curr Med Chem Anti-Canc Agents 2003;3:77–93.

    CAS  Google Scholar 

  257. Gusman J, Malonne H, Atassi G. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 2000;22:1111–1117.

    Google Scholar 

  258. Fulda S, Debatin KM. Sensitization for tumor necrosis factor-related apoptosis-inducing ligandinduced apoptosis by the chemopreventive agent resveratrol. Cancer Res 2004;64:337–346.

    PubMed  CAS  Google Scholar 

  259. Fulda S, Debatin KM. Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling. Eur J Cancer 2005;41:786–798.

    PubMed  CAS  Google Scholar 

  260. Delmas D, Jannin B, Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing. Mol Nutr Food Res 2005;49:377–395.

    PubMed  CAS  Google Scholar 

  261. Ulrich S, Wolter F, Stein JM. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol Nutr Food Res 2005;49:452–461.

    PubMed  CAS  Google Scholar 

  262. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004;24:2783–2840.

    PubMed  CAS  Google Scholar 

  263. Mitchell SH, Zhu W, Young CY. Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Res 1999;59:5892–5895.

    PubMed  CAS  Google Scholar 

  264. Hsieh TC, Wu JM. Grape-derived chemopreventive agent resveratrol decreases prostatespecific antigen (PSA) expression in LNCaP cells by an androgen receptor (AR)-independent mechanism. Anticancer Res 2000;20:225–228.

    PubMed  CAS  Google Scholar 

  265. Bhat KP, Pezzuto JM. Resveratrol exhibits cytostatic and antiestrogenic properties with human endometrial adenocarcinoma (Ishikawa) cells. Cancer Res 2001;61:6137–6144.

    PubMed  CAS  Google Scholar 

  266. Jang DS, Kang BS, Ryu SY, Chang IM, Min KR, Kim Y. Inhibitory effects of resveratrol analogs on unopsonized zymosan-induced oxygen radical production. Biochem Pharmacol 1999;57:705–712.

    PubMed  CAS  Google Scholar 

  267. Narayanan BA, Narayanan NK, Re GG, Nixon DW. Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer 2003;104:204–212.

    PubMed  CAS  Google Scholar 

  268. Fulda S, Debatin KM. Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene 2004;23:6702–6711.

    PubMed  CAS  Google Scholar 

  269. Deeb D, Jiang H, Gao X, et al. Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther 2004;3:803–812.

    PubMed  CAS  Google Scholar 

  270. Deeb D, Xu YX, Jiang H, et al. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2003;2:95–103.

    PubMed  CAS  Google Scholar 

  271. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005;10:927–939.

    PubMed  CAS  Google Scholar 

  272. Jung EM, Lim JH, Lee TJ, Park JW, Choi KS, Kwon TK. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis 2005;26:1905–1913.

    PubMed  CAS  Google Scholar 

  273. Ramachandran C, Rodriguez S, Ramachandran R, et al. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 2005;25:3293–3302.

    PubMed  CAS  Google Scholar 

  274. Sah NK, Munshi A, Kurland JF, McDonnell TJ, Su B, Meyn RE. Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosisinducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 2003;278: 20,593–20,602.

    PubMed  CAS  Google Scholar 

  275. Whanger PD. Selenium and its relationship to cancer: an update dagger. Br J Nutr 2004;91: 11–28.

    PubMed  CAS  Google Scholar 

  276. Sinha R, El-Bayoumy K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr Cancer Drug Targets 2004;4:13–28.

    PubMed  CAS  Google Scholar 

  277. Gopee NV, Johnson VJ, Sharma RP. Sodium selenite-induced apoptosis in murine B-lymphoma cells is associated with inhibition of protein kinase C-delta, nuclear factor kappaB, and inhibitor of apoptosis protein. Toxicol Sci 2004;78:204–214.

    PubMed  CAS  Google Scholar 

  278. Klein EA. Selenium and vitamin E cancer prevention trial. Ann N Y Acad Sci 2004;1031: 234–241.

    PubMed  CAS  Google Scholar 

  279. Klein EA. Selenium: epidemiology and basic science. J Urol 2004;171:S50–S53; discussion S53.

    PubMed  CAS  Google Scholar 

  280. Klein EA, Thompson IM. Update on chemoprevention of prostate cancer. Curr Opin Urol 2004;14:143–149.

    PubMed  Google Scholar 

  281. Dennis LK, Cohen MB. On the chemoprevention TRAIL. Cancer Biol Ther, 2002;1:291–292.

    PubMed  Google Scholar 

  282. Allen JG, Steele P, Masters HG, D’Antuono MF. A study of nutritional myopathy in weaner sheep. Aust Vet J 1986;63:8–13.

    PubMed  CAS  Google Scholar 

  283. Yamaguchi K, Uzzo RG, Pimkina J, et al. Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Oncogene 2005;24:5868–5877.

    PubMed  CAS  Google Scholar 

  284. Shi RX, Ong CN, Shen HM. Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells. Cancer Res 2005;65:7815–7823.

    PubMed  CAS  Google Scholar 

  285. Leverkus M, Neumann M, Mengling T, et al. Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 2000;60:553–559.

    PubMed  CAS  Google Scholar 

  286. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 1998;161:2833–2840.

    PubMed  CAS  Google Scholar 

  287. Griffith TS, Rauch CT, Smolak PJ, et al. Functional analysis of TRAIL receptors using monoclonal antibodies. J Immunol 1999;162:2597–2605.

    PubMed  CAS  Google Scholar 

  288. Kim CH, Gupta S. Expression of TRAIL (Apo2L), DR4 (TRAIL receptor 1), DR5 (TRAIL receptor 2) and TRID (TRAIL receptor 3) genes in multidrug resistant human acute myeloid leukemia cell lines that overexpress MDR 1 (HL60/Tax) or MRP (HL60/AR). Int J Oncol 2000;16:1137–1139.

    PubMed  CAS  Google Scholar 

  289. Holen I, Cross SS, Neville-Webbe HL, et al. Osteoprotegerin (OPG) Expression by Breast Cancer Cells in vitro and Breast Tumours in vivo-A Role in Tumour Cell Survival? Breast Cancer Res Treat 2005;92:207–215.

    PubMed  CAS  Google Scholar 

  290. Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 2002;62:1619–1623.

    PubMed  CAS  Google Scholar 

  291. Shipman CM, Croucher PI. Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 2003;63:912–916.

    PubMed  CAS  Google Scholar 

  292. Kandasamy K, Srivastava RK. Role of the phosphatidylinositol 3¢-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 2002;62:4929–4937.

    PubMed  CAS  Google Scholar 

  293. Wang J, Zheng L, Lobito A, et al. Inherited human Caspase-10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999;98:47–58.

    PubMed  CAS  Google Scholar 

  294. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997;388:190–195.

    PubMed  CAS  Google Scholar 

  295. Zhang L, Zhu H, Teraishi F, et al. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line. Neoplasia 2005;7: 594–602.

    PubMed  CAS  Google Scholar 

  296. Rippo MR, Moretti S, Vescovi S, et al. FLIP overexpression inhibits death receptor-induced apoptosis in malignant mesothelial cells. Oncogene 2004;23:7753–7760.

    PubMed  CAS  Google Scholar 

  297. Suh WS, Kim YS, Schimmer AD, et al. Synthetic triterpenoids activate a pathway for apoptosis in AML cells involving downregulation of FLIP and sensitization to TRAIL. Leukemia 2003;17:2122–2129.

    PubMed  CAS  Google Scholar 

  298. Nam SY, Jung GA, Hur GC, et al. Upregulation of FLIP(S) by Akt, a possible inhibition mechanism of TRAIL-induced apoptosis in human gastric cancers. Cancer Sci 2003;94: 1066–1073.

    PubMed  CAS  Google Scholar 

  299. Kim JH, Ajaz M, Lokshin A, Lee YJ. Role of antiapoptotic proteins in tumor necrosis factor-related apoptosis-inducing ligand and cisplatin-augmented apoptosis. Clin Cancer Res 2003;9:3134–3141.

    PubMed  CAS  Google Scholar 

  300. Wajant H, Haas E, Schwenzer R, et al. Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J Biol Chem 2000;275:24,357–24,366.

    PubMed  CAS  Google Scholar 

  301. Ganten TM, Koschny R, Haas TL, et al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 2005;42:588–597.

    PubMed  CAS  Google Scholar 

  302. Arch EM, Goodman BK, Van Wesep RA, et al. Deletion of PTEN in a patient with Bannayan-Riley-Ruvalcaba syndrome suggests allelism with Cowden disease. Am J Med Genet 1997;71:489–493.

    PubMed  CAS  Google Scholar 

  303. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997;275:1943–1947.

    PubMed  CAS  Google Scholar 

  304. Tashiro H, Blazes MS, Wu R, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997;57:3935–3940.

    PubMed  CAS  Google Scholar 

  305. Ittmann MM. Chromosome 10 alterations in prostate adenocarcinoma (review). Oncol Rep 1998;5:1329–1335.

    PubMed  CAS  Google Scholar 

  306. Whang YE, Wu X, Suzuki H, et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 1998;95:5246–5250.

    PubMed  CAS  Google Scholar 

  307. Neri LM, Borgatti P, Tazzari PL, et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 2003;1:234–246.

    PubMed  CAS  Google Scholar 

  308. Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998;95:29–39.

    PubMed  CAS  Google Scholar 

  309. Sekulic A, Hudson CC, Homme JL, et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000;60:3504–3513.

    PubMed  CAS  Google Scholar 

  310. Bortul R, Tazzari PL, Cappellini A, et al. Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 2003;17:379–389.

    PubMed  CAS  Google Scholar 

  311. Cappellini A, Tabellini G, Zweyer M, et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003;17:2157–2167.

    PubMed  CAS  Google Scholar 

  312. Martelli AM, Tazzari PL, Tabellini G, et al. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 2003;17:1794–1805.

    PubMed  CAS  Google Scholar 

  313. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS. Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 2001;276:10,767–10,774.

    PubMed  CAS  Google Scholar 

  314. Puduvalli VK, Sampath D, Bruner JM, Nangia J, Xu R, Kyritsis AP. TRAIL-induced apoptosis in gliomas is enhanced by Akt-inhibition and is independent of JNK activation. Apoptosis 2005;10:233–243.

    PubMed  CAS  Google Scholar 

  315. Yoshida S, Narita T, Koshida S, Ohta S, Takeuchi Y. TRAIL/Apo2L ligands induce apoptosis in malignant rhabdoid tumor cell lines. Pediatr Res 2003;54:709–717.

    PubMed  CAS  Google Scholar 

  316. Kim KU, Wilson SM, Abayasiriwardana KS, et al. A Novel In Vitro Model of Human Mesothelioma for Studying Tumor Biology and Apoptotic Resistance. Am J Respir Cell Mol Biol 2005;33:541–548.

    PubMed  CAS  Google Scholar 

  317. Kang JQ, Chong ZZ, Maiese K. Akt1 protects against inflammatory microglial activation through maintenance of membrane asymmetry and modulation of cysteine protease activity. J Neurosci Res 2003;74:37–51.

    PubMed  CAS  Google Scholar 

  318. Alladina SJ, Song JH, Davidge ST, Hao C, Easton AS. TRAIL-induced apoptosis in human vascular endothelium is regulated by phosphatidylinositol 3-kinase/Akt through the short form of cellular FLIP and Bcl-2. J Vasc Res 2005;42:337–347.

    PubMed  CAS  Google Scholar 

  319. Rychahou PG, Murillo CA, Evers BM. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery 2005;138:391–397.

    PubMed  Google Scholar 

  320. Yuan XJ, Whang YE. PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 2002;21:319–327.

    PubMed  CAS  Google Scholar 

  321. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 1995;9:2723–2735.

    PubMed  CAS  Google Scholar 

  322. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell 1996;87:13–20.

    PubMed  CAS  Google Scholar 

  323. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 1998;16:225–260.

    PubMed  CAS  Google Scholar 

  324. Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109 (Suppl):S81–S96.

    PubMed  CAS  Google Scholar 

  325. DiDonato J, Mercurio F, Rosette C, et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol 1996;16:1295–1304.

    PubMed  CAS  Google Scholar 

  326. Makarov SS. NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res 2001;3:200–206.

    PubMed  CAS  Google Scholar 

  327. Vincenti MP, Coon CI, Brinckerhoff CE. Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts. Arthritis Rheum 1998;41:1987–1994.

    PubMed  CAS  Google Scholar 

  328. Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 2002;4:157–164.

    PubMed  CAS  Google Scholar 

  329. Catley MC, Chivers JE, Cambridge LM, et al. IL-1beta-dependent activation of NFkappaB mediates PGE2 release via the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. FEBS Lett 2003;547:75–79.

    PubMed  CAS  Google Scholar 

  330. Crofford LJ, Tan B, McCarthy CJ, Hla T. Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum 1997;40:226–236.

    PubMed  CAS  Google Scholar 

  331. Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun 1993;191:1301–1308.

    PubMed  CAS  Google Scholar 

  332. Eberhardt W, Kunz D, Pfeilschifter J. Pyrrolidine dithiocarbamate differentially affects interleukin 1 beta-and cAMP-induced nitric oxide synthase expression in rat renal mesangial cells. Biochem Biophys Res Commun 1994;200:163–170.

    PubMed  CAS  Google Scholar 

  333. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3:409–416.

    PubMed  CAS  Google Scholar 

  334. Jeremias I, Debatin KM. TRAIL induces apoptosis and activation of NFkappaB. Eur Cytokine Netw 1998;9:687–688.

    PubMed  CAS  Google Scholar 

  335. Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Murai M. Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 2001;20:3888–3896.

    PubMed  CAS  Google Scholar 

  336. Eid MA, Lewis RW, Abdel-Mageed AB, Kumar MV. Reduced response of prostate cancer cells to TRAIL is modulated by NFkappaB-mediated inhibition of caspases and Bid activation. Int J Oncol 2002;21:111–117.

    PubMed  CAS  Google Scholar 

  337. Hu WH, Johnson H, Shu HB. Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-kappaB and JNK activation and apoptosis through distinct pathways. J Biol Chem 1999;274:30,603–30,610.

    PubMed  CAS  Google Scholar 

  338. Shetty S, Gladden JB, Henson ES, et al. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in epithelial derived cell lines. Apoptosis 2002;7: 413–420.

    PubMed  CAS  Google Scholar 

  339. Ichikawa K, Liu W, Fleck M, et al. TRAIL-R2 (DR5) mediates apoptosis of synovial fibroblasts in rheumatoid arthritis. J Immunol 2003;171:1061–1069.

    PubMed  CAS  Google Scholar 

  340. Kaliberov S, Stackhouse MA, Kaliberova L, Zhou T, Buchsbaum DJ. Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells. Gene Ther 2004;11:658–667.

    PubMed  CAS  Google Scholar 

  341. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T. Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 2003;22:2034–2044.

    PubMed  CAS  Google Scholar 

  342. Takeda K, Yamaguchi N, Akiba H, et al. Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 2004;199:437–448.

    PubMed  CAS  Google Scholar 

  343. Voelkel-Johnson C. An antibody against DR4 (TRAIL-R1) in combination with doxorubicin selectively kills malignant but not normal prostate cells. Cancer Biol Ther 2003;2: 283–290.

    PubMed  CAS  Google Scholar 

  344. Georgakis GV, Li Y, Humphreys R, et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin-and bortezomibinduced cell death. Br J Haematol 2005;130:501–510.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shankar, S., Srivastava, R.K. (2006). Death Receptors. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-199-4_11

Download citation

Publish with us

Policies and ethics