Skip to main content

Immunobiology and Intraperitoneal Immunobiologics in Ovarian Cancer

  • Chapter
  • 592 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Advances continue to be made in tumor immunology and in strategies to integrate the growing number of bioimmunotherapeutic molecules into the treatment of ovarian cancer, as well as other malignancies. Extensive studies have provided support for antigen-driven T-cell activation in vivo. The number of known tumor antigen epitopes is expanding, although advances in this area remain behind that of melanoma. Evidence suggests that the tumor environment is contributing to a state of in vivo immunosuppression; however, in vitro experiments and laboratory correlative studies also show that immune suppressor activity might be reversible. These findings could lead to new approaches, such as the use of antibodies or cytokines to overcome the immunosuppressive effects, in addition to the more established surgical and chemotherapeutic debulking.

Both prophylactic and therapeutic bioimmunotherapeutic strategies require pharmacodynamic and immunologic end points that can guide each phase in the development of an effective approach. Review of systemic and intraperitoneal (IP) immunotherapy trials of interferon (IFN) α, IFNγ, and interleukin 2 (IL2), as well as newer agents such as IL12 and Flt3 ligand, overall continues to offer promise of a role for bioimmunotherapy in the treatment of ovarian cancer. Future developments lie in the improved target specificity of activated cells and cell-surface-binding molecules and in a systematic plan for combining chemotherapy with cytokines, growth factors, and polyvalent vaccines that are based on the in vivo dynamics of each agent. Another totally different approach, which could set a new paradigm, might be to target cells from the inflammatory immune system, which could contribute to tumor growth, invasion, and metastasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hwu P, Freedman RS. The immunotherapy of patients with ovarian cancer. J Immunother 2002;25(3):189–201.

    Article  PubMed  CAS  Google Scholar 

  2. Melichar B, Hu W, Patenia R, et al. rIFN-gamma-mediated growth suppression of platinumsensitive and-resistant ovarian tumor cell lines not dependent upon arginase inhibition. J Translational Med 2003;1(19):5.

    Article  Google Scholar 

  3. Pappas J, Jung WJ, Barda AK, et al. Substantial proportions of identical beta-chain t-cell receptor (TCR) transcripts are present in epithelial ovarian carcinoma tumors. Cell Immunol 2005;234:81–101.

    Article  PubMed  CAS  Google Scholar 

  4. Ioannides CG, Freedman RS, Platsoucas CD, et al. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells. J Immunol 1991;146:1700–1707.

    PubMed  CAS  Google Scholar 

  5. Ioannides CG, Platsoucas CD, Rashed S, et al. Tumor cytolysis by lymphocytes infiltrating ovarian malignant ascites. Cancer Res 1991;51:4257–4265.

    PubMed  CAS  Google Scholar 

  6. Peoples GE, Goedegebuure PS, Andrews JVR, et al. HLA-A2 presents shared tumorassociated antigens derived from endogenous proteins in ovarian cancer. J Immunol 1993;151:5481–5491.

    PubMed  CAS  Google Scholar 

  7. Peoples GE, Goedegebuure PS, Smith R, et al. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995; (2):432–436.

    Article  Google Scholar 

  8. Disis M, Schiffman K. Cancer vaccines targeting the HER2/neu oncogenic protein. Semin Oncol 2001;28:12–20.

    Article  PubMed  CAS  Google Scholar 

  9. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nature Med 2004;10(9):909–915.

    Article  PubMed  CAS  Google Scholar 

  10. Adiuri S, Helling F, Ogata S, et al. Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol Immunother 1995;41:185–192.

    Article  Google Scholar 

  11. Gordon IO, Freedman RS. Defective antitumor function of MO-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res 2006;12(5):1515–1524.

    Article  PubMed  CAS  Google Scholar 

  12. Nash MA, Ferrandina G, Gordinier M, et al. The role of cytokines in both the normal and malignant ovary. Endocr Related Cancer 1999;6:93–107.

    Article  CAS  Google Scholar 

  13. Rabinowich H, Suminami Y, Reichert TE, et al. Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. Int J Cancer 1996;68:276–284.

    Article  PubMed  CAS  Google Scholar 

  14. Woo EY, Chu CS, Goletz TJ, et al. Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766–4772.

    PubMed  CAS  Google Scholar 

  15. Loercher AE, Nash MA, Kavanagh JJ, et al. Identification of an IL-10 producing HLA-DR-negative MO subset in the malignant ascites of patients with ovarian carcinoma that inhibits cytokine protein expression and proliferation of autologous T cells. J Immunol 1999;163:6251–6260.

    PubMed  CAS  Google Scholar 

  16. Zou JP, Yamamoto N, Fujii T. Systemic administration of rhIL-12 induces complete tumor regression and protective immunity; response is correlated with a striking reversal of suppressed IFN-g production by anti-tumor T-cells. Int Immunol 1995;87:581–586.

    Google Scholar 

  17. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD 8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer 10.1073/pnas. 0509182102. PNAS 2005;102(51):18538–18543.

    Article  PubMed  CAS  Google Scholar 

  18. Greenburg PD. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol 1991;49:281–355.

    Article  Google Scholar 

  19. Kuss I, Rabinowich H, Gooding W, et al. Expression of zeta in T cells prior to interleukin-2 therapy as a predictor of response and survival in patients with ovarian carcinoma. Cancer Biother Radiopharm 2002;17(6):631–640.

    Article  PubMed  CAS  Google Scholar 

  20. Mitchell MS. Combining chemotherapy with biological response modifiers in treatment of cancer. J Nat Cancer Inst 1988;80(18):1445–1450.

    Article  PubMed  CAS  Google Scholar 

  21. Windbichler GH, Hausmaninger H, Stummvoil W, et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br J Cancer 2000;82:1138–1144.

    Article  PubMed  CAS  Google Scholar 

  22. D’Acquisto R, Markman M, Hakes T et al. A phase I trial of intraperitoneal recombinant gamma interferon in advanced ovarian carcinoma. J Clin Oncol 1988;6:685–689.

    Google Scholar 

  23. Willemse PHB, De Vries EGE, Mulder NH, et al. Intraperitoneal human recombinant interferon alpha-2b in minimum residual ovarian cancer. Eur J Cancer 1990;26:353–358.

    Article  PubMed  CAS  Google Scholar 

  24. Pujade-Lauraine E, Guastella JP, Colombo N, et al. Intraperitoneal recombinant interferongamma in ovarian cancer patients with residual disease at second-look laparotomy. J Clin Oncol 1996;14:343–350.

    PubMed  CAS  Google Scholar 

  25. Berek JS, Markman M, Stonebraker B, et al. Intraperitoneal interferon-a in residual ovarian carcinoma: A phase II gynecologic oncology group study. Gynecol Oncol 1999;75:10–14.

    Article  PubMed  CAS  Google Scholar 

  26. Markman M, Berek JS, Blessing JA, et al. Characteristics of patients with small-volume residual ovarian cancer unresponsive to cisplatin-based IP chemotherapy: lessons learned from a Gynecologic Oncology Group phase II trial of IP cisplatin and recombinant α-interferon. Gynecol Oncol 1992;45:3–8.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor D, Edwards R, Case C, et al. Modulation of CD3-zeta as a marker of clinical response to IL-2 therapy in ovarian cancer patients. Gynecol Oncol 2004;94(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  28. Freedman RS, Tomasovic B, Templin S, et al. Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J Immunol Meth 1994;167:145–160.

    Article  CAS  Google Scholar 

  29. Freedman RS, Edwards CL, Kavanagh JJ, et al. Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor infiltrating lymphocytes, A pilot trial. J Immunother 1994;16:198–210.

    Article  CAS  Google Scholar 

  30. Canevari S, Stoter G, Arienti F, et al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 1995;87:1463–1469.

    Article  PubMed  CAS  Google Scholar 

  31. Lenzi R, Rosenblum M, Verschraegen C, et al. Phase I study of intraperitoneal rhIL-12 in patients with mullerian carcinoma, gastrointestinal primary malignancies and mesothelioma. Clin Cancer Res 2002;8:3686–3695.

    PubMed  CAS  Google Scholar 

  32. Freedman RS, Vadhan-Raj S, Butts C, et al. Pilot study of Flt3 ligand comparing intraperitoneal with subcutaneous routes on hematologic and immunologic responses in patients with peritoneal carcinomatosis and mesotheliomas. Clin Cancer Res 2003;9(14):5228–5237.

    PubMed  CAS  Google Scholar 

  33. Apte S, Vadhan-Raj S, Cohen L, et al. Hemapoietic, immunomodulatory, antitumor, and toxicity profiles of sequential GM-CSF and IFNg1b biotherapy and carboplatin in recurrent ovarian carcinoma. Proc of ASCO 2005;23:5053a.

    Google Scholar 

  34. Wang E, Ngalame Y, Panelli MC, et al. Peritoneal and sub-peritoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res 2005;11(1):113–122.

    Article  PubMed  CAS  Google Scholar 

  35. Wang X, Wang E, Kavanagh JJ, et al. Ovarian cancer, the coagulation pathway, and inflammation. J Transl Med 2005;3:25.

    Article  PubMed  CAS  Google Scholar 

  36. Allavena P, Signorelli M, Chieppa M, et al. Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 2005;65(7):2964–2971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Freedman, R.S. (2007). Immunobiology and Intraperitoneal Immunobiologics in Ovarian Cancer. In: Helm, C.W., Edwards, R.P. (eds) Intraperitoneal Cancer Therapy. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-195-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-195-6_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-878-2

  • Online ISBN: 978-1-59745-195-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics