Skip to main content

Mediators of Insulin Resistance

  • Chapter
Book cover Insulin Resistance

Part of the book series: Contemporary Endocrinology ((COE))

  • 1028 Accesses

Metabolic syndrome (MS) is characterized by resistance to insulin action on skeletal muscle, liver, and fat. Though the pathophysiology of insulin resistance in human disease is still poorly understood, a number of circulating factors that modulate insulin action have now been identified. Most of these factors are secreted by adipose tissue, and indeed, adipose tissue is now recognized to be an endocrine organ, with a central role in the regulation of insulin action and whole-body glucose and lipid metabolism. Adipose tissue dysfunction associated with obesity is believed to be an underlying defect in the development of insulin resistance accompanying MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bierman EL, Dole VP, Roberts TN. An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes 1957; 6 (6): 475–479.

    PubMed  CAS  Google Scholar 

  2. Roden M. Non-invasive studies of glycogen metabolism in human skeletal muscle using nuclear magnetic resonance spectroscopy. Curr Opin Clin Nutr Metab Care 2001; 4 (4): 261–266.

    PubMed  CAS  Google Scholar 

  3. Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X et al. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88 (3): 960–966.

    PubMed  CAS  Google Scholar 

  4. Homko CJ, Cheung P, Boden G. Effects of free fatty acids on glucose uptake and utilization in healthy women. Diabetes 2003; 52 (2): 487–491.

    PubMed  CAS  Google Scholar 

  5. Kovacs P, Stumvoll M. Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 2005; 19 (4): 625–635.

    PubMed  CAS  Google Scholar 

  6. Koutsari C, Jensen MD. Thematic review series: patient-oriented research Free. fatty acid metabolism in human obesity. J Lipid Res 2006; 47 (8): 1643–1650.

    PubMed  CAS  Google Scholar 

  7. Randle PJ, Hales CN, Garland PB, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1: 786–789.

    Google Scholar 

  8. Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 2004; 19: 92–96.

    Google Scholar 

  9. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994; 93 (6): 2438–2446.

    PubMed  CAS  Google Scholar 

  10. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 1999; 103 (2): 253–259.

    PubMed  CAS  Google Scholar 

  11. Perseghin G, Scifo P, De CF, Pagliato E, Battezzati A, Arcelloni C et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48 (8): 1600–1606.

    PubMed  CAS  Google Scholar 

  12. Kelley DE, Goodpaster BH, Storlien L. Muscle triglyceride and insulin resistance. A nnu Rev Nutr 2002; 22: 325–346.

    Google Scholar 

  13. Petersen KF, Shulman GI. Etiology of insulin resistance. A m J Med 2006; 119 (5 Suppl 1): S10–S16.

    Google Scholar 

  14. Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance. Diabet Med 2005; 22 (6): 674–682.

    PubMed  CAS  Google Scholar 

  15. Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49 (2 Suppl 1): 27–29.

    PubMed  CAS  Google Scholar 

  16. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002; 51 (7): 2005–2011.

    PubMed  CAS  Google Scholar 

  17. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48 (6): 1270–1274.

    PubMed  CAS  Google Scholar 

  18. Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 2002; 283 (1): E12–E19.

    PubMed  CAS  Google Scholar 

  19. Clore JN, Glickman PS, Nestler JE, Blackard WG. In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am J Physiol 1991; 261 (4 Pt 1): E425–E429.

    PubMed  CAS  Google Scholar 

  20. Boden G, Chen X, Capulong E, Mozzoli M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001; 50 (4): 810–816.

    PubMed  CAS  Google Scholar 

  21. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T-3L1 adipocytes. Mol Endocrinol 2004; 18 (8): 2024–2034.

    PubMed  CAS  Google Scholar 

  22. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280 (42): 35361–35371.

    PubMed  CAS  Google Scholar 

  23. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257 (1): 79–83.

    PubMed  CAS  Google Scholar 

  24. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20 (6): 1595–1599.

    PubMed  CAS  Google Scholar 

  25. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86 (5): 1930–1935.

    PubMed  CAS  Google Scholar 

  26. Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 2002; 87 (6): 2764–2769.

    PubMed  CAS  Google Scholar 

  27. Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 2002; 51 (9): 2734–2741.

    PubMed  CAS  Google Scholar 

  28. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 2003; 148 (3): 293–300.

    PubMed  CAS  Google Scholar 

  29. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care 2003; 26 (8): 2442–2450.

    PubMed  CAS  Google Scholar 

  30. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 2003; 107 (5): 671–674.

    PubMed  CAS  Google Scholar 

  31. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003; 46 (4): 459–469.

    PubMed  CAS  Google Scholar 

  32. Imagawa A, Funahashi T, Nakamura T, Moriwaki M, Tanaka S, Nishizawa H et al. Elevated serum concentration of adipose-derived factor, adiponectin, in patients with type 1 diabetes. Diabetes Care 2002; 25 (9): 1665–1666.

    PubMed  Google Scholar 

  33. Perseghin G, Lattuada G, Danna M, Sereni LP, Maffi P, Cobelli FD et al. Insulin resistance, intramyocellular lipid content and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 2003; 285 (6): E1174–E1181.

    PubMed  CAS  Google Scholar 

  34. Stenvinkel P, Marchlewska A, PecoitsFilho R, Heimburger O, Zhang Z, Hoff C et al. Adiponectin in renal disease: relationship to phenotype and genetic variation in the gene encoding adiponectin. Kidney Int 2004; 65 (1): 274–281.

    PubMed  CAS  Google Scholar 

  35. Schalkwijk CG, Chaturvedi N, Schram MT, Fuller JH, Stehouwer CD. Adiponectin is inversely associated with renal function in type 1 diabetic patients. J Clin Endocrinol Metab 2006; 91 (1): 129–135.

    PubMed  CAS  Google Scholar 

  36. Frystyk J, Tarnow L, Krarup HT, Parving HH, Flyvbjerg A. Increased serum adiponectin levels in type 1 diabetic patients with microvascular complications. Diabetologia 2005; 48 (9): 1911–1918.

    PubMed  CAS  Google Scholar 

  37. Hadjadj S, Aubert R, Fumeron F, Pean F, Tichet J, Roussel R et al. Increased plasma adiponectin concentrations are associated with microangiopathy in type 1 diabetic subjects. Diabetologia 2005; 48 (6): 1088–1092.

    PubMed  CAS  Google Scholar 

  38. Saraheimo M, Forsblom C, Fagerudd J, Teppo AM, Pettersson-Fernholm K, Frystyk J et al. Serum adiponectin is increased in type 1 diabetic patients with nephropathy. Diabetes Care 2005; 28 (6): 1410–1414.

    PubMed  CAS  Google Scholar 

  39. Maahs DM, Ogden LG, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D et al. Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation 2005; 111 (6): 747–753.

    PubMed  CAS  Google Scholar 

  40. Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004; 291 (14): 1730–1737.

    PubMed  CAS  Google Scholar 

  41. Costacou T, Zgibor JC, Evans RW, Otvos J, Lopes-Virella MF, Tracy RP et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 2005; 48 (1): 41–48.

    PubMed  CAS  Google Scholar 

  42. Hug C, Lodish HF. The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr Opin Pharmacol 2005; 5 (2): 129–134.

    PubMed  CAS  Google Scholar 

  43. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005; 96 (9): 939–949.

    PubMed  CAS  Google Scholar 

  44. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116 (7): 1784–1792.

    PubMed  CAS  Google Scholar 

  45. Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 2006; 110 (3): 267–278.

    CAS  Google Scholar 

  46. Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. Adiponectin–a key adipokine in the metabolic syndrome. Diabetes Obes Metab 2006; 8 (3): 264–280.

    PubMed  CAS  Google Scholar 

  47. Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006; 580 (12): 2917–2921.

    PubMed  CAS  Google Scholar 

  48. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol 2007; 27 (5): 996–1003.

    PubMed  CAS  Google Scholar 

  49. Han SH, Quon MJ, Kim JA, Koh KK. Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol 2007; 49 (5): 531–538.

    PubMed  CAS  Google Scholar 

  50. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 2002; 51 (6): 1884–1888.

    PubMed  CAS  Google Scholar 

  51. Tschritter O, Fritsche A, Thamer C, Haap M, Shirkavand F, Rahe S et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 2003; 52 (2): 239–243.

    PubMed  CAS  Google Scholar 

  52. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7 (8): 941–946.

    PubMed  CAS  Google Scholar 

  53. Yokoyama H, Emoto M, Mori K, Araki T, Teramura M, Koyama H et al. Plasma adiponectin level is associated with insulin-stimulated nonoxidative glucose disposal. J Clin Endocrinol Metab 2006; 91 (1): 290–294.

    PubMed  CAS  Google Scholar 

  54. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50 (5): 1126–1133.

    PubMed  CAS  Google Scholar 

  55. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002; 360 (9326): 57–58.

    PubMed  CAS  Google Scholar 

  56. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003; 361 (9353): 226–228.

    PubMed  CAS  Google Scholar 

  57. Daimon M, Oizumi T, Saitoh T, Kameda W, Hirata A, Yamaguchi H et al. Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: the Funagata study. Diabetes Care 2003; 26 (7): 2015–2020.

    PubMed  CAS  Google Scholar 

  58. Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 2003; 26 (12): 3226–3229.

    PubMed  Google Scholar 

  59. Lihn AS, Ostergard T, Nyholm B, Pedersen SB, Richelsen B, Schmitz O. Adiponectin expression in adipose tissue is reduced in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 2003; 284 (2): E443–E448.

    PubMed  CAS  Google Scholar 

  60. Okamoto Y, Arita Y, Nishida M, Muraguchi M, Ouchi N, Takahashi M et al. An adipocyte- derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 2000; 32 (2): 47–50.

    PubMed  CAS  Google Scholar 

  61. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999; 100 (25): 2473–2476.

    PubMed  CAS  Google Scholar 

  62. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, M atsui J et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002; 277 (29): 25863–25866.

    PubMed  CAS  Google Scholar 

  63. Maahs D, Ogden L, Snell-Bergeon J, Kinney G, Wadwa R, Hokanson J et al. Determinants of serum adiponectin in persons with and without type 1 diabetes. Am J Epidemiol 2007; 166 (6): 731–740 .

    PubMed  Google Scholar 

  64. Zoccali C, Mallamaci F, Panuccio V, Tripepi G, Cutrupi S, Parlongo S et al. Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int Suppl 2003; (84): S98–S102.

    Google Scholar 

  65. Havel PJ. Update on adipocyte hormones: regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 2004; 53 (Suppl 1): S143–S151.

    PubMed  CAS  Google Scholar 

  66. Richards AA, Stephens T, Charlton HK, Jones A, Macdonald GA, Prins JB et al. Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol Endocrinol 2006; 20 (7): 1673–1687.

    PubMed  CAS  Google Scholar 

  67. Wang Y, Lam KS, Chan L, Chan KW, Lam JB, Lam MC et al. Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J Biol Chem 2006; 281 (24): 16391–16400.

    PubMed  CAS  Google Scholar 

  68. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H et al. Adiponectin, an adipocyte- derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMPdependent pathway. Circulation 2000; 102 (11): 1296–1301.

    PubMed  CAS  Google Scholar 

  69. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001; 103 (8): 1057–1063.

    PubMed  CAS  Google Scholar 

  70. Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 2002; 277 (40): 37487–37491.

    PubMed  CAS  Google Scholar 

  71. Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, Janke J et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes 2003; 52 (4): 942–947.

    PubMed  CAS  Google Scholar 

  72. Fernandez-Real JM, Lopez-Bermejo A, Casamitjana R, Ricart W. Novel interactions of adiponectin with the endocrine system and inflammatory parameters. J Clin Endocrinol Metab 2003; 88 (6): 2714–2718.

    PubMed  CAS  Google Scholar 

  73. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 2003; 285 (3): E527–E533.

    PubMed  CAS  Google Scholar 

  74. von Eynatten M, Schneider JG, Humpert PM, Rudofsky G, Schmidt N, Barosch P et al. Decreased plasma lipoprotein lipase in hypoadiponectinemia: an association independent of systemic inflammation and insulin resistance. Diabetes Care 2004; 27 (12): 2925–2929.

    PubMed  CAS  Google Scholar 

  75. Schneider JG, von Eynatten M, Schiekofer S, Nawroth PP, Dugi KA. Low plasma adiponectin levels are associated with increased hepatic lipase activity in vivo. Diabetes Care 2005; 28 (9): 2181–2186.

    PubMed  CAS  Google Scholar 

  76. Stefan N, Bunt JC, Salbe AD, Funahashi T, Matsuzawa Y, Tataranni PA. Plasma adiponectin concentrations in children: relationships with obesity and insulinemia. J Clin Endocrinol Metab 2002; 87 (10): 4652–4656.

    PubMed  CAS  Google Scholar 

  77. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 2003; 362 (9388): 951–957.

    PubMed  CAS  Google Scholar 

  78. Huang KC, Chen CL, Chuang LM, Ho SR, Tai TY, Yang WS. Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 2003; 88 (9): 4130–4134.

    PubMed  CAS  Google Scholar 

  79. Nemet D, Wang P, Funahashi T, Matsuzawa Y, Tanaka S, Engelman L et al. Adipocytokines, body composition, and fitness in children. Pediatr Res 2003; 53 (1): 148–152.

    PubMed  CAS  Google Scholar 

  80. Morales A, Wasserfall C, Brusko T, Carter C, Schatz D, Silverstein J et al. Adiponectin and leptin concentrations may aid in discriminating disease forms in children and adolescents with type 1 and type 2 diabetes. Diabetes Care 2004; 27 (8): 2010–2014.

    PubMed  CAS  Google Scholar 

  81. Tsou PL, Jiang YD, Chang CC, Wei JN, Sung FC, Lin CC et al. Sex-related differences between adiponectin and insulin resistance in schoolchildren. Diabetes Care 2004; 27 (2): 308–313.

    PubMed  CAS  Google Scholar 

  82. Bottner A, Kratzsch J, Muller G, Kapellen TM, Bluher S, Keller E et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab 2004; 89 (8): 4053–4061.

    PubMed  Google Scholar 

  83. Ong KK, Frystyk J, Flyvbjerg A, Petry CJ, Ness A, Dunger DB. Sex-discordant associations with adiponectin levels and lipid profiles in children. Diabetes 2006; 55 (5): 1337–1341.

    PubMed  CAS  Google Scholar 

  84. Punthakee Z, Delvin EE, O ’ loughlin J, Paradis G, Levy E, Platt RW et al. Adiponectin, adiposity, and insulin resistance in children and adolescents. J Clin Endocrinol Metab 2006; 91 (6): 2119–2125.

    PubMed  CAS  Google Scholar 

  85. Martin LJ, Woo JG, Daniels SR, Goodman E, Dolan LM. The relationships of adiponectin with insulin and lipids are strengthened with increasing adiposity. J Clin Endocrinol Metab 2005; 90 (7): 4255–4259.

    PubMed  CAS  Google Scholar 

  86. Winer JC, Zern TL, Taksali SE, Dziura J, Cali AM, Wollschlager M et al. Adiponectin in childhood and adolescent obesity and its association with inflammatory markers and components of the metabolic syndrome. J Clin ndocrinol Metab 2006; 91 (11): 4415–4423.

    CAS  Google Scholar 

  87. Bloch CA, Clemons P, Sperling MA. Puberty decreases insulin sensitivity. J Pediatr 1987; 110 (3): 481–487.

    PubMed  CAS  Google Scholar 

  88. Moran A, Jacobs DR Jr , Steinberger J, Hong CP, Prineas R, Luepker R et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes 1999; 48 (10): 2039–2044.

    PubMed  CAS  Google Scholar 

  89. Hannon TS, Janosky J, Arslanian SA. Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 2006; 60 (6): 759–763.

    PubMed  CAS  Google Scholar 

  90. Lee S, Bacha F, Gungor N, Arslanian SA. Racial differences in adiponectin in youth: relationship to visceral fat and insulin sensitivity. Diabetes Care 2006; 29 (1): 51–56.

    PubMed  CAS  Google Scholar 

  91. Bush NC, Darnell BE, Oster RA, G oran MI, Gower BA. Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents. Diabetes 2005; 54 (9): 2772–2778.

    PubMed  CAS  Google Scholar 

  92. Schulze MB, Shai I, Rimm EB, Li T, Rifai N, Hu FB. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes 2005; 54 (2): 534–539.

    PubMed  CAS  Google Scholar 

  93. Singhal A, Jamieson N, Fewtrell M, Deanfield J, Lucas A, Sattar N. Adiponectin predicts insulin resistance but not endothelial function in young, healthy adolescents. J Clin Endocrinol Metab 2005; 90 (8): 4615–4621.

    PubMed  CAS  Google Scholar 

  94. Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001; 98 (4): 2005–2010.

    PubMed  CAS  Google Scholar 

  95. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin Implications fpr metabolic regulation and bioactivity. J Biol Chem 2003; 278 (11): 9073–9085.

    PubMed  CAS  Google Scholar 

  96. Bluher M, Brennan AM, Kelesidis T, Kratzsch J, Fasshauer M, Kralisch S et al. Total and high-molecular weight adiponectin in relation to metabolic variables at baseline and in response to an exercise treatment program: comparative evaluation of three assays. Diabetes Care 2007; 30 (2): 280–285.

    PubMed  Google Scholar 

  97. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7 (8): 947–953.

    PubMed  CAS  Google Scholar 

  98. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8 (11): 1288–1295.

    PubMed  CAS  Google Scholar 

  99. Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang CC, Itani SI et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 2002; 99 (25): 16309–16313.

    PubMed  CAS  Google Scholar 

  100. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423 (6941): 762–769.

    PubMed  CAS  Google Scholar 

  101. Tsao TS, Tomas E, Murrey HE, Hug C, Lee DH, Ruderman NB et al. Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J Biol Chem 2003; 278 (50): 50810–50817.

    PubMed  CAS  Google Scholar 

  102. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002; 51 (10): 2968–2974.

    PubMed  CAS  Google Scholar 

  103. Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25 (2): 376–380.

    PubMed  CAS  Google Scholar 

  104. Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 2004; 279 (13): 12152–12162.

    PubMed  CAS  Google Scholar 

  105. Furuhashi M, Ura N, Higashiura K, Murakami H, Tanaka M, Moniwa N et al. Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension 2003; 42 (1): 76–81.

    PubMed  CAS  Google Scholar 

  106. Koh KK, Quon MJ, Han SH, Ahn JY, Jin DK, Kim HS et al. Vascular and metabolic effects of combined therapy with ramipril and simvastatin in patients with type 2 diabetes. Hypertension 2005; 45 (6): 1088–1093.

    PubMed  CAS  Google Scholar 

  107. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415 (6869): 339–343.

    PubMed  CAS  Google Scholar 

  108. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387 (6636): 903–908.

    PubMed  CAS  Google Scholar 

  109. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341 (12): 879–884.

    PubMed  CAS  Google Scholar 

  110. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401 (6748): 73–76.

    PubMed  CAS  Google Scholar 

  111. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002; 346 (8): 570–578.

    PubMed  CAS  Google Scholar 

  112. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334 (5): 292–295.

    PubMed  CAS  Google Scholar 

  113. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392 (6674): 398–401.

    PubMed  CAS  Google Scholar 

  114. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 1999; 282 (16): 1568–1575.

    PubMed  CAS  Google Scholar 

  115. Hotamisligil GS, Shargill NS, Spiegelman BM. A dipose expression of tumor necrosis factor- α : direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Google Scholar 

  116. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95 (5): 2111–2119.

    PubMed  CAS  Google Scholar 

  117. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994; 91 (11): 4854–4858.

    PubMed  CAS  Google Scholar 

  118. Grunfeld C, Pang M, Doerrler W, Shigenaga JK, Jensen P, Feingold KR. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab 1992; 74 (5): 1045–1052.

    PubMed  CAS  Google Scholar 

  119. Sica A, Wang JM, Colotta F, Dejana E, Mantovani A, Oppenheim JJ et al. Monocyte chemotactic and activating factor gene expression induced in endothelial cells by IL-1 and tumor necrosis factor. J Immunol 1990; 144 (8): 3034–3038.

    PubMed  CAS  Google Scholar 

  120. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 2006; 354 (24): 2552–2563.

    PubMed  CAS  Google Scholar 

  121. Lee DC, Lee JW, Im JA. A ssociation of serum retinol binding protein 4 and insulin resistance in apparently healthy adolescents. Metabolism 2007; 56 (3): 327–331.

    PubMed  CAS  Google Scholar 

  122. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436 (7049): 356–362.

    PubMed  CAS  Google Scholar 

  123. Gavi S, Stuart LM, Kelly P, Melendez MM, Mynarcik DC, Gelato MC et al. Retinol-binding protein 4 is associated with insulin resistance and body fat distribution in nonobese subjects without type 2 diabetes. J Clin Endocrinol Metab 2007; 92 (5): 1886–1890.

    PubMed  CAS  Google Scholar 

  124. Cho YM, Youn BS, Lee H, Lee N, Min SS, Kwak SH et al. Plasma retinol-binding protein-4 concentrations are elevated in human subjects with impaired glucose tolerance and type 2 diabetes. Diabetes Care 2006; 29 (11): 2457–2461.

    PubMed  CAS  Google Scholar 

  125. Broch M, Vendrell J, Ricart W, Richart C, Fernandez-Real JM. Circulating retinol binding protein 4, insulin sensitivity, insulin secretion and insulin disposition index in obese and nonobese subjects. Diabetes Care 2007; 30 (7): 1802–1806.

    PubMed  CAS  Google Scholar 

  126. Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W et al. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. EMBO J 2000; 19 (15): 4046–4055.

    PubMed  CAS  Google Scholar 

  127. Rajala MW, Obici S, Scherer PE, Rossetti L. Adipose-derived resistin and gut-derived resistin- like molecule-beta selectively impair insulin action on glucose production. J Clin Invest 2003; 111 (2): 225–230.

    PubMed  CAS  Google Scholar 

  128. Chen L, Nyomba BL. G lucose intolerance and resistin expression in rat offspring exposed to ethanol in utero: modulation by postnatal high-fat diet. Endocrinology 2003; 144 (2): 500–508.

    PubMed  CAS  Google Scholar 

  129. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV et al. Resistin/ Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptorgamma action in humans. Diabetes 2001; 50 (10): 2199–2202.

    PubMed  CAS  Google Scholar 

  130. Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Resistin gene expression in human adipocytes is not related to insulin resistance. Obes Res 2002; 10 (1): 1–5.

    PubMed  CAS  Google Scholar 

  131. Nagaev I, Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun 2001; 285 (2): 561–564.

    PubMed  CAS  Google Scholar 

  132. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005; 307 (5708): 426–430.

    PubMed  CAS  Google Scholar 

  133. Berndt J, Kloting N, Kralisch S, Kovacs P, Fasshauer M, Schon MR et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes 2005; 54 (10): 2911–2916.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Pereira, R.I., Maahs, D.M. (2008). Mediators of Insulin Resistance. In: Zeitler, P.S., Nadeau, K.J. (eds) Insulin Resistance. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-192-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-192-5_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-875-1

  • Online ISBN: 978-1-59745-192-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics