Skip to main content

Neuroprotective Factors and Retinal Degenerations

  • Chapter
Book cover Retinal Degenerations

Part of the book series: Ophthalmology Research ((OPHRES))

  • 1128 Accesses

Abstract

Mammalian neurons are postmitotic and, in general, are nonrenewable, so an individual cell must be capable of surviving a wide range of environmental conditions for many decades, if not a lifetime. Retinal neurons are isolated to some extent from fluctuations in levels of many circulating molecules by a specific blood-retinal barrier, a structure analogous to the blood-brain barrier elsewhere in the central nervous system (CNS). This barrier provides protection to the retina by selectively transporting those molecules required for normal metabolism and filtering out components that could be detrimental to the health of the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas DR, Newhouse JP. Toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 1957;58:193–201.

    CAS  Google Scholar 

  2. Olney JW. Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acute developing lesion. J Neuropathol Exp Neurol 1969;28:455–474.

    PubMed  CAS  Google Scholar 

  3. Aizenman E, Frosch MP, Lipton SA. Responses mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat. J Physiol 1988;396:75–91.

    PubMed  CAS  Google Scholar 

  4. Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 1997;37:3483–3493.

    Article  PubMed  CAS  Google Scholar 

  5. Quigley HA. Neuronal death in glaucoma. Prog Ret Eye Res 1998;18:39–57.

    Article  Google Scholar 

  6. Lam TT, Abler AS, Kwong JMK, Tso MOM. N-methyl-D-aspartate (NMDA)-induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 1999;40:2391–2397.

    PubMed  CAS  Google Scholar 

  7. Budd SL, Tenneti L, Lishnak T, Lipton SA. Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA 2000;97:6161–6166.

    Article  PubMed  CAS  Google Scholar 

  8. Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993;364:626–632.

    Article  PubMed  CAS  Google Scholar 

  9. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 1995;92:7162–7166.

    Article  PubMed  CAS  Google Scholar 

  10. Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 2000;20:5037–5044.

    PubMed  CAS  Google Scholar 

  11. Manabe S, Lipton SA. NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest Ophthalmol Vis Sci 2003;44:385–392.

    Article  PubMed  Google Scholar 

  12. Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, et al. Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res 2005;1044:227–240.

    Article  PubMed  CAS  Google Scholar 

  13. Osborne NN, Quack G. Memantine stimulates inositol phosphates production in neurones andnullifies N-methyl-D-aspartate-induced destruction of retinal neurones. Neurochem Int1992;21:329–336.

    Article  PubMed  CAS  Google Scholar 

  14. Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J Physiol1997;499(Pt1):27–46.

    Google Scholar 

  15. Lipton SA. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol2003;48Suppl1:S38–S46.

    Article  Google Scholar 

  16. Marin P, Maus M, Desagher S, Glowinski J, Premont J. Nicotine protects cultured striatal neurones against N-methyl-D-aspartate receptor-mediated neurotoxicity. Neuroreport1994;5:1851–1855.

    Article  Google Scholar 

  17. Shimohama S, Akaike A, Kimura J. Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann NYAcad Sci1996;17:356–361.

    Article  Google Scholar 

  18. Kaneko S, Maeda T, Kume T, et al. Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res1997;765:135–140.

    Article  PubMed  CAS  Google Scholar 

  19. Dajas-Bailador FA, Lima PA, Wonnacott S. The alpha/nicotinic receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharm2000;39:2799–2807.

    Article  CAS  Google Scholar 

  20. Wehrwein E, Thompson SA, Coulibaly SF, Linn DM, Linn CL. Acetylcholine protects isolated adult pig retinal ganglion cells from glutamate-induced excitotoxicity. Invest Ophthalmol Vis Sci2004;45:1531–1543.

    Article  PubMed  Google Scholar 

  21. Kihara T, Shimohama S, Sawada H, et al. Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem2001;276:13,541–13,546.

    PubMed  CAS  Google Scholar 

  22. Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha? nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci2001;21:4125–4133.

    PubMed  CAS  Google Scholar 

  23. Troadec JD, Marien M, Darios F, et al. Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem2001;79:200–210.

    Article  PubMed  CAS  Google Scholar 

  24. Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Rev2004;45:38–78.

    Article  PubMed  CAS  Google Scholar 

  25. Veyrac A, Didier A, Colpaert F, Jourdan F, Marien M. Activation of noradrenergic transmission by alpha2-adrenoceptor antagonists counteracts deafferentation-induced neuronal death and cell proliferation in the adult mouse olfactory bulb. Exp Neurol2005;194:444–456.

    Article  PubMed  CAS  Google Scholar 

  26. Srinivasan J, Schmidt WJ. Treatment with alpha2-adrenoceptor antagonist, 2-methoxy idazoxan, protects 6-hydroxydopamine-induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence. Behav Brain Res2004;154:353–363.

    Article  PubMed  CAS  Google Scholar 

  27. Wheeler LA, Gil DW, WoldeMussie E. Role of alpha-2 adrenergic receptors in neuroprotection and glaucoma. Surv Ophthalmol2001;45Suppl3:S290–S294.

    Article  Google Scholar 

  28. Donello JE, Padillo EU, Webster ML, Wheeler LA, Gil DW. Alpha(2)-adrenoceptor agonists inhibit vitreal glutamate and aspartate accumulation and preserve retinal function after transient ischemia. J Pharmacol Exp Ther2001;296:216–223.

    PubMed  CAS  Google Scholar 

  29. Wilensky JT. The role of brimonidine in the treatment of open-angle glaucoma. Surv Ophthalmol1996;41Suppl1:S3–S7.

    Google Scholar 

  30. Gao H, Qiao X, Cantor LB, WuDunn D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol2002;120:797–803.

    PubMed  CAS  Google Scholar 

  31. Toran-Allerand CD. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res1976;106:407–412.

    Article  PubMed  CAS  Google Scholar 

  32. Toran-Allerand CD. Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res1980;189:413–427.

    Article  PubMed  CAS  Google Scholar 

  33. Behl C, Widmann M, Trapp T, Holsboer F. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun1995;216:473–482.

    Article  PubMed  CAS  Google Scholar 

  34. Simpkins JW, Green PS, Gridley KE, Singh M, deFiebre NC, Rajakumar G. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease. Am J Med1997;103:19S–25S.

    Article  PubMed  CAS  Google Scholar 

  35. Singer CA, Rogers KL, Strickland TM, Dorsa DM. Estrogen protects primary cortical neurons from glutamate toxicity. Neurosci Lett1996;212:13–16.

    Article  PubMed  CAS  Google Scholar 

  36. Dubai DB, Kashon ML, Pettigrew LC, et al. Estradiol protects against ischemic injury. J Cereb Blood Flow Metab1998;18:1253–1258.

    Google Scholar 

  37. Simpkins JW, Rajakumar G, Zhang YQ, et al. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J. Neurosurg1997;87:724–730.

    Article  PubMed  CAS  Google Scholar 

  38. Snow KK, Seddon JM. Age-related eye diseases: impact of hormone replacement therapy, and reproductive and other risk factors. Int J Fertil Womens Med2000;45:301–313.

    PubMed  CAS  Google Scholar 

  39. Alkayed NJ, Goto S, Sugo N, et al. Estrogen and Bcl-2: gene induction and effect of transgene in experimental stroke. J Neurosci2001;21:7543–7550.

    PubMed  CAS  Google Scholar 

  40. Chiueh C, Lee S, Andoh T, Murphy D. Induction of antioxidative and antiapoptotic thioredoxin supports neuroprotective hypothesis of estrogen. Endocrine2003;21:27–31.

    Article  PubMed  CAS  Google Scholar 

  41. Bryant DN, Bosch MA, Ronnekleiv OK, Dorsa DM. 17-Beta estradiol rapidly enhances extracellular signal-regulated kinase 2 phosphorylation in the rat brain. Neuroscience2005;133:343–352.

    Article  PubMed  CAS  Google Scholar 

  42. Dhandapani KM, Wade FM, Mahesh VB, Brann DW. Astrocyte-derived transforming growth factor-ta mediates the neuroprotective effects of 17ta-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology2005;146:2749–2759.

    Google Scholar 

  43. Singh M. Mechanisms of progesterone-induced neuroprotection. Ann N Y Acad Sci2005;1052:145–151.

    Article  PubMed  CAS  Google Scholar 

  44. Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinology2002;143:205–212.

    Article  PubMed  CAS  Google Scholar 

  45. Chen H, Anderson RE. Comparison of uptake and incorporation of docosahexaenoic and arachidonic acids by frog retinas. Curr Eye Res1993;12:851–860.

    PubMed  CAS  Google Scholar 

  46. Bazan NG. Neuroprotectin D1(NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol2005;15:159–166.

    Article  PubMed  CAS  Google Scholar 

  47. Kawasaki A, Han M-H, Wei J-Y, Hirata K, Otori Y, Barnstable CJ. Arachidonic acid protects rat retinal ganglion cells from glutamate neurotoxicity. Invest Ophthalmol Vis Sci2002;43:1835–1842.

    PubMed  Google Scholar 

  48. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA2004;101:8491–8496.

    Article  PubMed  CAS  Google Scholar 

  49. Lukiw WJ, Cui JG, Marcheselli VL, et al. A role for docosahexaenoic acid-derived neuroprotection D1 in neural cell survival and Alzheimer disease. J Clin Invest2005;115:2774–2783.

    Article  PubMed  CAS  Google Scholar 

  50. Marcheselli VL, Hong S, Lukiw WJ, et al. Novel docosanoids inhibit brain ischemiareperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem2003;278:43,807–43,817.

    Article  PubMed  CAS  Google Scholar 

  51. Geller HM, Cheng KY, Goldsmith NK, et al. Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J Neurochem2001;78:265–275.

    Article  PubMed  CAS  Google Scholar 

  52. See V, Loeffler JP. Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. J Biol Chem2001;276:35,049–35,059.

    Article  PubMed  CAS  Google Scholar 

  53. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis1999;5:32.

    PubMed  CAS  Google Scholar 

  54. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol2000;45:115–134.

    Article  PubMed  CAS  Google Scholar 

  55. Bouillaud F, Ricquier D, Thibault J, Weissenbach J. Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc Natl Acad Sci USA1985;82:445–448.

    Article  PubMed  CAS  Google Scholar 

  56. Fleury C, Neverova M, Collins S, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet1997;15:269–272.

    Article  PubMed  CAS  Google Scholar 

  57. Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett1997;408:39–42.

    Article  PubMed  CAS  Google Scholar 

  58. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun1997;235:79–82.

    Article  PubMed  CAS  Google Scholar 

  59. Mao W, Yu XX, Zhong A, et al. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett1999;443:326–330.

    Article  PubMed  CAS  Google Scholar 

  60. Sanchis D, Fleury C, Chomiki N, et al. BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem1998;273:34,611–34,615.

    Article  PubMed  CAS  Google Scholar 

  61. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature2000;404:652–660.

    PubMed  CAS  Google Scholar 

  62. Negre-Salvayre A, Hirtz C, Carrera G, et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEBJ1997;11:809–815.

    CAS  Google Scholar 

  63. Nicholls DG, Locke RM. Thermogenic mechanism in brown fat. Physiol Rev1984;64:1–64.

    PubMed  CAS  Google Scholar 

  64. Diano S, Matthews RT, Patrylo P, et al. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology.2003;144:5014–5021.

    Article  PubMed  CAS  Google Scholar 

  65. Horvath TL, Diano S, Leranth C, et al. Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson’s disease. Endocrinology2003;144:2757–2760.

    Article  PubMed  CAS  Google Scholar 

  66. Barnstable CJ, Li M, Reddy R, Horvath TL. Mitochondrial uncoupling proteins: regulators of retinal cell death.In:LaVail MM, Hollyfield JG, Anderson RE, eds.Retinal Degeneration 2002. KluwerAcademic/PlenumPress, 2003:269–275.

    Google Scholar 

  67. Garcia M, Forster V, Hicks D, Vecino E. vivo expression of neurotrophins and neurotrophin receptors is conserved in adult porcine retina in vitro. Invest Ophthalmol Vis Sci2003;44:4532–4541.

    Article  PubMed  Google Scholar 

  68. Walsh N, Valter K, Stone J. Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp Eye Res2001;72:495–501.

    Article  PubMed  CAS  Google Scholar 

  69. Karlsson M, Lindqvist N, Mayordomo R, Hallbook F. Overlapping and specific patterns of GDNF, c-ret and GFR alpha mRNA expression in the developing chicken retina. Mech Dev2002;114:161–165.

    Article  PubMed  CAS  Google Scholar 

  70. Jomary C, Darrow RM, Wong P, Organisciak DT, Jones SE. Expression of neurturin, glial cell line-derived neurotrophic factor, and their receptor components in light-induced retinal degeneration. Invest Ophthalmol Vis Sci2004;45:1240–1246.

    Article  PubMed  Google Scholar 

  71. Tombran-Tink J, Barnstable CJ. PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci2003;4:628–636.

    Article  PubMed  CAS  Google Scholar 

  72. Otori Y, Wei JY, Barnstable CJ. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci1998;39:972–981.

    PubMed  CAS  Google Scholar 

  73. Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, et al. Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res2005;1044:227–240.

    Article  PubMed  CAS  Google Scholar 

  74. Nicole O, Ali C, Docagne F, et al. Neuroprotection mediated by glial cell line derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci2001;21:3024–3033.

    PubMed  CAS  Google Scholar 

  75. Delyfer MN, Simonutti M, Neveux N, Leveillard T, Sahel JA. Does GDNF exert its neuroprotective effects on photoreceptors in the rd1 retina through the glial glutamate transporter GLAST?Mol Vis2005;11:677–687.

    PubMed  CAS  Google Scholar 

  76. Cao W, Tombran-Tink J, Chen W, Mrazek D, Elias R, McGinnis JF. Pigment epitheliumderived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res1999;57:789–800.

    Article  PubMed  CAS  Google Scholar 

  77. Okoye G, Zimmer J, Sung J, et al. Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J Neurosci2003;23:4164–4172.

    PubMed  CAS  Google Scholar 

  78. Unoki K, LaVail MM. Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci1994;35:907–915.

    PubMed  CAS  Google Scholar 

  79. Castillo B Jr, delCerro M, Breakefield XO, et al. Retinal ganglion cell survival is promoted by genetically modified astrocytes designed to secrete brain-derived neurotrophic factor (BDNF). Brain Res1994;647:30–36.

    Article  PubMed  CAS  Google Scholar 

  80. Gabaizadeh R, Staecker H, Liu W, Van De Water TR. BDNF protection of auditory neurons from cisplatin involves changes in intracellular levels of both reactive oxygen species and glutathione. Mol Brain Res1997;50:71–78.

    Article  PubMed  CAS  Google Scholar 

  81. Yamagata T, Satoh T, Ishikawa Y, et al. Brain-derived neurotropic factor prevents superoxide anion-induced death of PC12h cells stably expressing TrkB receptor via modulation of reactive oxygen species. Neurosci Res1999;35:9–17.

    Article  PubMed  CAS  Google Scholar 

  82. Cheng H, Fu YS, Guo JW. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus2004;14:77–86.

    Article  PubMed  CAS  Google Scholar 

  83. Iwata E, Asanuma M, Nishibayashi S, et al. Different effects of oxidative stress on activation of transcription factors in primary cultured rat neuronal and glial cells. Brain Res Mol Brain Res1997;50:213–220.

    Article  PubMed  CAS  Google Scholar 

  84. Faktorovich EG, Steinberg RH, Yasumura D. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature1990;347:83–86.

    Article  PubMed  CAS  Google Scholar 

  85. Cayouette M, Smith SB, Becerra SP, Gravel C. Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis1999;6:523–532.

    Article  PubMed  CAS  Google Scholar 

  86. Frasson M, Picaud S, Leveillard T, et al. Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci1999;40:2724–2734.

    PubMed  CAS  Google Scholar 

  87. McGeeSanftner LH, Abel H, Hauswirth WW, Flannery JG. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther2001;4:622–629.

    Article  CAS  Google Scholar 

  88. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci1992;12:3554–3567.

    PubMed  CAS  Google Scholar 

  89. LaVail MM, Unoki K, Yasumura D, Matthes MT, Yancopoulos GD, Steinberg RH. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA1992;89:11,249–11,253.

    Article  PubMed  CAS  Google Scholar 

  90. Cao W, Tombran-Tink J, Elias R, Sezate S, Mrazek D, McGinnis JF. Invivo protection of photoreceptors from light damage by pigment epithelium-derived factor. Invest Ophthalmol Vis Sci2001;42:1646–1652.

    PubMed  CAS  Google Scholar 

  91. Zeiss CJ, Allore HG, Towle V, Tao W. CNTF induces dose-dependent alterations in retinal morphology in normal and rcd-1 canine retina. Exp Eye Res2006;82:395–404.

    Article  PubMed  CAS  Google Scholar 

  92. Mattson MP. Lose weight STAT: CNTF tops leptin. Trends Neurosci2001;24:313–314.

    Article  PubMed  CAS  Google Scholar 

  93. Rohrer B, Korenbrot JI, LaVail MM, Reichardt LF, Xu B. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci1999;19:8919–8930.

    PubMed  CAS  Google Scholar 

  94. Rhee KD, Yang XJ. Expression of cytokine signal transduction components in the postnatal mouse retina. Mol Vis2003;9:715–722.

    PubMed  CAS  Google Scholar 

  95. Valter K, Bisti S, Stone J. Location of CNTFR alpha on outer segments: evidence of the site of action of CNTF in rat retina. Brain Res2003;985:169–175.

    Article  PubMed  CAS  Google Scholar 

  96. Sarup V, Patil K, Sharma SC. Ciliary neurotrophic factor and its receptors are differentially expressed in the optic nerve transected adult rat retina. Brain Res2004;1013:152–158.

    Article  PubMed  CAS  Google Scholar 

  97. Zhang SSM, Wei JY, Kano R, et al. Stat3 but not MAPK signaling controls neural precursor fate in mouse retina. Invest Ophthalmol Vis Sci2004;45:2407–2412.

    Article  PubMed  Google Scholar 

  98. Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Ret Eye Res2004;23:561–577.

    Article  CAS  Google Scholar 

  99. Karlsson M, Lindqvist N, Mayordomo R, Hallbook F. Overlapping and specific patterns of GDNF, c-ret and GFR alpha mRNA expression in the developing chicken retina. Mech Dev2002;114:161–165.

    Article  PubMed  CAS  Google Scholar 

  100. Harada C, Harada T, Quah HM, et al. Potential role of glial cell line-derived neurotrophic factor receptors in Muller glial cells during light-induced retinal degeneration. Neuroscience2003;122:229–235.

    Article  PubMed  CAS  Google Scholar 

  101. Jomary C, Darrow RM, Wong P, Organisciak DT, Jones SE. Expression of neurturin, glial cell line-derived neurotrophic factor, and their receptor components in light-induced retinal degeneration. Invest Ophthalmol Vis Sci2004;45:1240–1246.

    Article  PubMed  Google Scholar 

  102. Zhang J, Geula C, Lu C, Koziel H, Hatcher LM, Roisen FJ. Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Exp Neurol2003;183:469–481.

    Article  PubMed  CAS  Google Scholar 

  103. Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP. Elevated glial brain-derived neurotrophic factor in Parkinson’s diseased nigra. Parkinsonism Relat Disord2002;8:329–341.

    Article  PubMed  CAS  Google Scholar 

  104. Hackett SF, Friedman Z, Freund J, et al. A splice variant of trkB and brain-derived neurotrophic factor are co-expressed in retinal pigmented epithelial cells and promote differentiated characteristics. Brain Res1998;789:201–212.

    Article  PubMed  CAS  Google Scholar 

  105. Liu ZZ, Zhu LQ, Eide FF. Critical role of TrkB and brain-derived neurotrophic factor in the differentiation and survival of retinal pigment epithelium. J Neurosci1997;17:8749–8755.

    PubMed  CAS  Google Scholar 

  106. Malchiodi-Albedi F, Feher J, Caiazza S, et al. PEDF (pigment epithelium-derived factor) promotes increase and maturation of pigment granules in pigment epithelial cells in neonatal albino rat retinal cultures. IntJDevNeurosci1998;16:423–432.

    CAS  Google Scholar 

  107. Donovan MJ, Lin MI, Wiegn P, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development2000;127:4531–4540.

    PubMed  CAS  Google Scholar 

  108. Kim H, Li Q, Hempstead BL, Madri JA. Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem2004;279:33,538–33,546.

    Article  PubMed  CAS  Google Scholar 

  109. Salimi K, Moser K, Zassler B, et al. Glial cell line-derived neurotrophic factor enhances survival of GM-CSF dependent rat GMIR1-microglial cells. Neurosci Res2002;43:221–229.

    Article  PubMed  CAS  Google Scholar 

  110. Igarashi Y, Chiba H, Utsumi H, et al. Expression of receptors for glial cell line-derived neurotrophic factor (GDNF) and neurturin in the inner blood-retinal barrier of rats. Cell Struct Funct2000;25:237–241.

    Article  PubMed  CAS  Google Scholar 

  111. Bouck N. PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med2002;8:330–334.

    Article  PubMed  CAS  Google Scholar 

  112. Tombran-Tink J, Barnstable CJ. Therapeutic prospects for PEDF: more than a promising angiogenesis inhibitor. Trends Mol Med2003;9:244–250.

    Article  PubMed  CAS  Google Scholar 

  113. Stellmach V, Crawford SE, Zhou W, Bouck N. Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Natl Acad Sci USA98:2593–2597.

    Google Scholar 

  114. Sawant S, Aparicio S, Tink AR, Lara N, Barnstable CJ, Tombran-Tink J. Regulation of factors controlling angiogenesis in liver development: a role for PEDF in the formation and maintenance of normal vasculature. Biochem. Biophys. Res. Comm2004;325:408–413.

    Article  PubMed  CAS  Google Scholar 

  115. Petersen SV, Valnickova Z, Enghild JJ. Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization. Biochem J2003;374(Pt1):199–206.

    Article  PubMed  CAS  Google Scholar 

  116. Nutt JG, Burchiel KJ, Comella CL, et al. Randomized, double-blind trial of glial cell linederived neurotrophic factor (GDNF) in PD. Neurology2003;60:69–73.

    PubMed  CAS  Google Scholar 

  117. Saltzman WM, Olbricht WL. Building drug delivery into tissue engineering. Nat Rev Drug Discov2002;1:177–186.

    Article  PubMed  CAS  Google Scholar 

  118. Cypes SH, Saltzman WM, Giannelis EP. Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. J Control Release2003;90:163–169.

    Article  PubMed  CAS  Google Scholar 

  119. Haller MF, Saltzman WM. Nerve growth factor delivery systems. JControlRelease1998;53:1–6.

    CAS  Google Scholar 

  120. Mahoney MJ, Saltzman WM. Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc Natl Acad Sci USA1999;96:4536–4539.

    Article  PubMed  CAS  Google Scholar 

  121. Davies JB, Ciavatta VT, Boatright JH, Nickerson JM. Delivery of several forms of DNA, DNA-RNA hybrids, and dyes across human sclera by electrical fields. Mol Vis2003;9:569–578.

    PubMed  CAS  Google Scholar 

  122. Bilak MM, Becerra SP, Vincent AM, Moss BH, Aymerich MS, Kuncl RW. Identification of the neuroprotective molecular region of pigment epithelium-derived factor and its binding sites on motor neurons. J Neurosci.2002;22:9378–9386.

    PubMed  CAS  Google Scholar 

  123. Tombran-Tink J, Aparicio S, Xu X, et al. PEDF and the Serpins: phylogeny, sequence conservation, and functional domains. J Struct Biol2005;151:130–150.

    Article  PubMed  CAS  Google Scholar 

  124. Cayouette M, Gravel C. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum Gene Ther1997;8:423–430.

    Article  PubMed  CAS  Google Scholar 

  125. Ng TF, Streilein JW. Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci2001;42:3301–3310.

    PubMed  CAS  Google Scholar 

  126. Cayouette M, Behn D, Sendtner M, Lachapelle P, Gravel C. Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci1998;18:9282–9293.

    PubMed  CAS  Google Scholar 

  127. Liang FQ, Dejneka NS, Cohen DR, et al. AAV-mediated delivery of ciliary neurotrophic factor prolongs photoreceptor survival in the rhodopsin knockout mouse. Mol Ther2001;3:241–248.

    Article  PubMed  CAS  Google Scholar 

  128. vanAdel BA, Kostic C, Deglon N, Ball AK, Arsenijevic Y. Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther2003;14:103–115.

    Article  PubMed  CAS  Google Scholar 

  129. Auricchio A, Behling KC, Maguire AM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents. Mol Ther2002;6:490–494.

    Article  PubMed  CAS  Google Scholar 

  130. Duh EJ, Yang HS, Suzuma I. Pigment epithelium-derived factor suppresses ischemiainduced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci2002;43:821–829.

    PubMed  Google Scholar 

  131. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci2002;43:2428–2434.

    PubMed  Google Scholar 

  132. Raisler BJ, Berns KI, Grant MB, Beliaev D, Hauswirth WW. Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization. Proc Natl Acad Sci USA2002;99:8909–8914.

    Article  PubMed  CAS  Google Scholar 

  133. Takita H, Yoneya S, Gehlbach PL, Duh EJ, Wei LL, Mori K. Retinal neuroprotection against ischemic injury mediated by intraocular gene transfer of pigment epitheliumderived factor. Invest Ophthalmol Vis Sci2003;44:4497–4504.

    Article  PubMed  Google Scholar 

  134. Semkova I, Kreppel F, Welsandt G, et al. Autologous transplantation of genetically modified iris pigment epithelial cells: a promising concept for the treatment of age-related macular degeneration and other disorders of the eye. Proc Natl Acad Sci USA2002;99:13,090–13,095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tombran-Tink, J., Barnstable, C.J. (2007). Neuroprotective Factors and Retinal Degenerations. In: Tombran-Tink, J., Barnstable, C.J. (eds) Retinal Degenerations. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-186-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-186-4_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-620-7

  • Online ISBN: 978-1-59745-186-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics