Skip to main content

Convection-Enhanced Delivery

  • Chapter
High-Grade Gliomas

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Drug delivery is thought to be one of the limitations of therapies for brain tumors. Systemic administration of potential drugs requires high dosages to achieve therapeutic levels within the tumor itself and in the surrounding brain tissue because of the limited/selective flow across the blood-brain barrier. In spite of high systemic dosages, however, some of these drugs not only fail to penetrate into the tumor and brain tissue, they cause undesirable systemic toxicity with little or no therapeutic effect.

Convection-enhanced delivery shows promise of effectively transporting drugs selectively to the tumor. It is a novel approach for delivering drugs into brain tumors and the surrounding brain, and is based on continuous infusion of drugs via intratumoral or intraparenchymal catheters, enabling convective distribution of high-drug concentrations over large tissue volumes while avoiding systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tremont-Lukats IW, Gilbert MR. Advances in molecular therapies in patients with brain tumors. Cancer Control 2003;10(2):125–137.

    PubMed  Google Scholar 

  2. Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 1998;42(5):1083–99; discussion 99-100.

    Article  PubMed  CAS  Google Scholar 

  3. Hall WA. Targeted toxin therapy for malignant astrocytoma. Neurosurgery 2000;46(3):544–551; discussion 552.

    Article  PubMed  CAS  Google Scholar 

  4. Sampson JH, Akabani G, Archer GE, et al. Progress report of aPhase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-3 8 (TP-3 8) for the treatment of malignant brain tumors. J Neurooncol 2003;65(1):27–35.

    Article  PubMed  Google Scholar 

  5. Pardridge WM, Oldendorf WH, Cancilla P, Frank HJ. Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med 1986;105(1):82–95.

    PubMed  CAS  Google Scholar 

  6. Henry TR, Votaw JR, Pennell PB, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neurology 1999;52(6):1166–1173.

    PubMed  CAS  Google Scholar 

  7. Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release 2001;74(1–3):63–67.

    Article  PubMed  CAS  Google Scholar 

  8. Guerin C, Olivi A, Weingart JD, Lawson HC, Brem H. Recent advances in brain tumor therapy: local intrac-erebral drug delivery by polymers. Invest New Drugs 2004;22(1):27–37.

    Article  PubMed  CAS  Google Scholar 

  9. Kleinberg LR, Weingart J, Burger P, et al. Clinical course and pathologic findings after Gliadel and radiotherapy for newly diagnosed malignant glioma: implications for patient management. Cancer Invest 2004;22(1):1–9.

    Article  PubMed  Google Scholar 

  10. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91(6):2076–2080.

    Article  PubMed  CAS  Google Scholar 

  11. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 1995;82(6):1021–1029.

    PubMed  CAS  Google Scholar 

  12. Morrison PF, Laske DW, Bobo H, Oldfield EH, Dedrick RL. High-flow microinfusion: tissue penetration and pharmacodynamics. Am J Physiol 1994;266(1 Pt 2):R292–R305.

    PubMed  CAS  Google Scholar 

  13. Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt E A. Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 1996;38(4):746–752; discussion 752-754.

    Article  PubMed  CAS  Google Scholar 

  14. Broaddus WC, Prabhu SS, Gillies GT, et al. Distribution and stability of antisense phosphorothioate oligonucleotides in rodent brain following direct intraparenchymal controlled-rate infusion. J Neurosurg 1998;88(4):734–742.

    PubMed  CAS  Google Scholar 

  15. Kaiser MG, Parsa AT, Fine RL, Hall JS, Chakrabarti I, Bruce JN. Tissue distribution and antitumor activity of topotecan delivered by intracerebral clysis in a rat glioma model. Neurosurgery 2000;47(6):1391–1398; discussion 1398-1399.

    Article  PubMed  CAS  Google Scholar 

  16. Bruce JN, Falavigna A, Johnson JP, et al. Intracerebral clysis in a rat glioma model. Neurosurgery 2000;46(3):683–691.

    Article  PubMed  CAS  Google Scholar 

  17. Fenstermacher J, Kaye T. Drug “ediffusion”e within the brain. Ann N Y Acad Sci 1988;531:29–39.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenberg GA, Kyner WT, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 1980;238(1):F42–F49.

    PubMed  CAS  Google Scholar 

  19. Kroin JS, Penn RD. Intracerebral chemotherapy: chronic microinfusion of cisplatin. Neurosurgery 1982;010(3):349–354.

    Article  CAS  Google Scholar 

  20. Sendelbeck SL, Urquhart J. Spatial distribution of dopamine, methotrexate and antipyrine during continuous intracerebral microperfusion. Brain Res 1985;328(2):251–258.

    Article  PubMed  CAS  Google Scholar 

  21. Morrison PF, Dedrick RL. Transport of cisplatin in rat brain following microinfusion: an analysis. J Pharm Sci 1986;75(2):120–128.

    Article  PubMed  CAS  Google Scholar 

  22. Jain RK. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 1989;81(8):570–576.

    Article  PubMed  CAS  Google Scholar 

  23. Blasberg RG, Patlak C, Fenstermacher JD. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975;195(1):73–83.

    PubMed  CAS  Google Scholar 

  24. Reulen HJ, Graham R, Spatz M, Klatzo I. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 1977;46(1):24–35.

    Article  PubMed  CAS  Google Scholar 

  25. Cserr HF, Cooper DN, Milhorat TH. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 1977;25 Suppl:461–473.

    PubMed  Google Scholar 

  26. Marmarou A, Takagi H, Shulman K. Biomechanics of brain edema and effects on local cerebral blood flow. Adv Neurol 1980;28:345–358.

    PubMed  CAS  Google Scholar 

  27. Ohata K, Marmarou A. Clearance of brain edema and macromolecules through the cortical extracellular space. J Neurosurg 1992;77(3):387–396.

    PubMed  CAS  Google Scholar 

  28. Laske DW, Morrison PF, Lieberman DM, et al. Chronic interstitial infusion of protein to primate brain: determination of drug distribution and clearance with single-photon emission computerized tomography imaging. J Neurosurg 1997;87(4):586–594.

    PubMed  CAS  Google Scholar 

  29. Viola JJ, Agbaria R, Walbridge S, et al. In situ cyclopentenyl cytosine infusion for the treatment of experimental brain tumors. Cancer Res 1995;55(6):1306–1309.

    PubMed  CAS  Google Scholar 

  30. Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 1997;3(12):1362–1368.

    Article  PubMed  CAS  Google Scholar 

  31. Lonser RR, Gogate N, Morrison PF, Wood JD, Oldfield EH. Direct convective delivery of macromolecules to the spinal cord. J Neurosurg 1998;89(4):616–622.

    PubMed  CAS  Google Scholar 

  32. Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 1999;90(2):315–320.

    PubMed  CAS  Google Scholar 

  33. Groothuis DR, Ward S, Itskovich AC, et al. Comparison of 14C-sucrose delivery to the brain by intravenous, intraventricular, and convection-enhanced intracerebral infusion. J Neurosurg 1999;90(2):321–331.

    PubMed  CAS  Google Scholar 

  34. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 2000;6(6):2157–2165.

    PubMed  CAS  Google Scholar 

  35. Groothuis DR, Benalcazar H, Allen CV, et al. Comparison of cytosine arabinoside delivery to rat brain by intravenous, intrathecal, intraventricular and intraparenchymal routes of administration. Brain Res 2000;856(1–2):281–290.

    Article  PubMed  CAS  Google Scholar 

  36. Pastan I, FitzGerald D. Recombinant toxins for cancer treatment. Science 1991;254(5035):1173–1177.

    Article  PubMed  CAS  Google Scholar 

  37. Kunwar S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl 2003;88:105–111.

    PubMed  CAS  Google Scholar 

  38. Weber FW, Floeth F, Asher A, et al. Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. Acta Neurochir Suppl 2003;88:93–103.

    PubMed  CAS  Google Scholar 

  39. Puri RK, Hoon DS, Leland P, et al. Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytoma. Cancer Res 1996;56(24):5631–5637.

    PubMed  CAS  Google Scholar 

  40. Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol 2003;65(1):37–48.

    Article  PubMed  Google Scholar 

  41. Husain SR, Joshi BH, Puri RK. Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer 2001;92(2):168–175.

    Article  PubMed  CAS  Google Scholar 

  42. Voges J, Reszka R, Gossmann A, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 2003;54(4):479–487.

    Article  PubMed  CAS  Google Scholar 

  43. Wakabayashi T, Yoshida J, Mizuno M, Kajita Y. Intratumoral microinfusion of nimustine (ACNU) for recur rent glioma. Brain Tumor Pathol 2001;18(1):23–28.

    Article  PubMed  CAS  Google Scholar 

  44. Lidar Z, Mardor Y, Jonas T, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 2004;100(3):472–479.

    PubMed  CAS  Google Scholar 

  45. Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J Neurooncol 2003;65(1):3–13.

    Article  PubMed  Google Scholar 

  46. Hall WA, Godal A, Juell S, Fodstad O. In vitro efficacy of transferrin-toxin conjugates against glioblastoma multiforme. J Neurosurg 1992;76(5):838–844.

    Google Scholar 

  47. Martell LA, Agrawal A, Ross DA, Muraszko KM. Efficacy of transferrin receptor-targeted immunotoxins in brain tumor cell lines and pediatric brain tumors. Cancer Res 1993;53(6):1348–1353.

    PubMed  CAS  Google Scholar 

  48. Patel S. Ann Oncol 2002;13:Abstract.

    Google Scholar 

  49. Lonser RR, Walbridge S, Garmestani K, et al. Successful and safe perfusion of the primate brainstem: in vivo magnetic resonance imaging of macromolecular distribution during infusion. J Neurosurg 2002;97(4):905–913.

    PubMed  Google Scholar 

  50. Nguyen TT, Pannu YS, Sung C, et al. Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J Neurosurg 2003;98(3):584–590.

    PubMed  CAS  Google Scholar 

  51. Saito R, Bringas JR, Mc Knight TR, et al. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 2004;64(7):2572–2579.

    Article  PubMed  CAS  Google Scholar 

  52. Sampson JH et al. Abstract #TA-49. Neuro-Oncol 2004;6(4).

    Google Scholar 

  53. Mardor Y, Roth Y, Lidar Z, et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res 2001;61(13):4971–4973.

    PubMed  CAS  Google Scholar 

  54. Mamot C, Nguyen JB, Pourdehnad M, et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 2004;68(1):1–9.

    Article  PubMed  Google Scholar 

  55. Rainov NG, Heidecke V. Long term survival in a patient with recurrent malignant glioma treated with intratumoral infusion of an IL4-targeted toxin (NBI-3001). J Neurooncol 2004;66(1–2):197–201.

    Article  PubMed  CAS  Google Scholar 

  56. Cunningham J, Oiwa Y, Nagy D, Podsakoff G, Colosi P, Bankiewicz KS. Distribution of AAV-TK following intracranial convection-enhanced delivery into rats. Cell Transplant 2000;9(5):585–594.

    PubMed  CAS  Google Scholar 

  57. Heimberger AB, Archer GE, McLendon RE, et al. Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Clin Cancer Res 2000;6(10):4148–4153.

    PubMed  CAS  Google Scholar 

  58. Yang W, Barth RF, Adams DM, et al. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res 2002;62(22):6552–6558.

    PubMed  CAS  Google Scholar 

  59. Degen JW, Walbridge S, Vortmeyer AO, Oldfield EH, Lonser RR. Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J Neurosurg 2003;99(5):893–898.

    PubMed  CAS  Google Scholar 

  60. Saito R, Bringas JR, Panner A, et al. Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblas-toma xenograft model. Cancer Res 2004;64(19):6858–6862.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kanner, A.A. (2007). Convection-Enhanced Delivery. In: Barnett, G.H. (eds) High-Grade Gliomas. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-185-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-185-7_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-511-8

  • Online ISBN: 978-1-59745-185-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics