Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1701 Accesses

Summary

The recognition that blood vessel growth is a critical process in developing tumors has led to the increased study of tumor vasculature. Originally, it was considered that only nearby host vasculature provided the necessary cellular components that comprise blood vessels, endothelial cells (EC), and pericytes. Data gathered in recent years have supported the notion that endothelial precursor cells (EPC) exist postnatal and that EPC can also contribute to both physiological and pathological angiogenic processes including wound healing and cancer. EPC possess or can acquire many of the characteristics of mature, fully differentiation EC such as the ability to form tubes, to incorporate into developing vasculature, and to express many EC markers such as vascular endothelial growth factor 2 (VEGFR2) or von Willebrand factor (vWF). The most primitive EPC exhibit properties of progenitor cells that are denoted by expression of the hematopoietic stem cell marker CD34 and typically co-expressing CD133. Experiments in genetically engineered mice have demonstrated recruitment of cells from bone marrow to tumor vasculature. Studies in humans have also proven the existence of EPC. Although EPC represent a small percentage of the EC population, these progenitor cells offer new insights into tumor biology and may reveal novel targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, and Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302): 964–967, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, and Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228, 1999.

    PubMed  CAS  Google Scholar 

  3. Shi Q, Rafii S, Wu M, Wijelath E, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage L, Moore M, Storb R, and Hammond W. Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2): 362–367, 1998.

    PubMed  CAS  Google Scholar 

  4. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88(2): 167–174, 2001.

    PubMed  CAS  Google Scholar 

  5. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, and Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97(7): 3422–3427, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, and Imaizumi T. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Folkman MJ. Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186, 1971.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman MJ. Tumor angiogenesis. Adv Cancer Res 19: 331–358, 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman MJ and Cotran R. Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 16: 207–248, 1976.

    PubMed  CAS  Google Scholar 

  10. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, and Buck DW. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90(12): 5013–5021, 1997.

    PubMed  CAS  Google Scholar 

  11. Yin AH, Miraglia S, Zanjani ED, Almeida-Poradda G, Ogawa M, Leary AG, Olweus J, Kearney J, and Buck DW. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90(12): 5002–5012, 1997.

    PubMed  CAS  Google Scholar 

  12. Hristov M, Erl W, and Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23(7): 1185–1189, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Goussetis E, Theodosaki M, Paterakis G, Peristeri J, Petropoulos D, Kitra V, Papassarandis C, and Graphakos S. A functional hierarchy among the CD34+ hematopoietic cells based on in vitro proliferative and differentiative potential of AC133+CD34bright and AC133dim/-CD34+ human cord blood cells. J Hematother Stem Cell Res 9: 827–840, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, and Deliliers GL. Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. Br J Haemotol 115: 186–194, 2001.

    Article  CAS  Google Scholar 

  15. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker, PH, and Verfaillie CM. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3): 337–346, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Bagley RG, Walter-Yohrling J, Cao X, Weber W, Simons B, Cook BP, Chartrand SD, Wang C, Madden SL, Teicher BA. Endothelial precursor cells as a model of tumor endothelium: characterization and comparison with mature endothelial cells. Cancer Res 63: 5866–5873, 2003.

    PubMed  CAS  Google Scholar 

  17. Kanayasu-Toyoda T, Yamaguchi T, Oshizawa T, and Hayakawa T. CD31 (PECAM-1)-bright cells derived from AC133-positive cells in human peripheral blood as endothelial-precursor cells. J Cell Physiol 195: 119–129, 2003.

    Article  PubMed  CAS  Google Scholar 

  18. Salven P, Mustjoki S, Alitalo R, Alitalo K, and Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101(1): 168–172, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, and Imaizumi T. Transplanted cord blood-derived endothelial precursor cells augment postnatal vascularization. J Clin Invest 105(11): 1527–1536, 2000.

    PubMed  CAS  Google Scholar 

  20. Boyer M, Townsend LE, Vogel LM, Falk J, Reitz-Vick D, Trevor KT, Villalba M, Bendick PJ, and Glover JL. Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vasc Surg 31: 181–189, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Forraz N, Pettengell R, Deglesne P, and McGuckin CP. AC133+ umbilical cord blood progenitors demonstrate rapid self-renewal and low apoptosis. Br J Haematol 119: 516–524, 2002.

    Article  PubMed  CAS  Google Scholar 

  22. Bhatia M. AC133 expression in human stem cells. Leukemia 15: 1685–1688, 2001.

    PubMed  CAS  Google Scholar 

  23. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MAS, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95(3): 952–958, 2000.

    PubMed  CAS  Google Scholar 

  24. Hristov M, Erl W, and Weber PC. Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13(5): 201–206, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, and Isner JM. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14): 3964–3972, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, and Asahara T. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732–738, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi S, Isner JM, Asahara T. Vascular endothelial growth factor165 gene transfer augments circulating endothelial precursor cells in human subjects. Circ Res 86: 1198–1202, 2000.

    PubMed  CAS  Google Scholar 

  28. Hilbe W, Dirnhofer S, Oberwasserlechner F, Schmid T, Gunsilius E, Hilbe G, Woll E, and Kahler CM. CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non-small cell lung cancer. J Clin Pathol 57: 965–969, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, and Daniel WG. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49: 671–680, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169, 2003.

    Article  PubMed  Google Scholar 

  31. Pujol BF, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte M, Adamkiewicz J, Elsasser H, Muller R, and Havemann K. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65: 287–300, 2000.

    Article  CAS  Google Scholar 

  32. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett N, Crystal RG, Moore MAS, Hajjar KA, Manova K, Benezra R, and Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11): 1194–1201, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Ruzinova M, Schoer R, Gerald W, Egan J, Pandolfi P, Rafii S, Manova K, Mittal V, and Benezra R. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4: 277–289, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang H, Vakil V, Braunstein M, Smith E, Maroney J, Chen L, Dai K, Berenson J, Hussain M, Klueppelberg U, Norin A, Akman H, Ozcelike T, and Batuman O. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105 (8): 3286–3294.

    Google Scholar 

  35. Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S, Kenessey I, Ostoros G, Magyar M, Ladanyi A, Bogos K, and Tovari J. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66: 7341–7347, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Raida M, Weiss T, Leo C, Lenz D, Tarnok A, Ameri K, Harris A, Hockel M, and Niederwieser D. Circulating endothelial progenitor cells are inversely correlated with the median oxygen tension in the tumor tissue of patients with cervical cancer. Oncology Rep 16: 597–601, 2006.

    CAS  Google Scholar 

  37. Gothert J, Gustin S, van Eekelen A, Schmidt U, Hall M, Jane S, Green A, Gottgens B, Izon D, and Begley C. Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104(6): 1769–1777, 2004.

    Article  PubMed  CAS  Google Scholar 

  38. Larrivee B, Niessen K, Pollet I, Corbel S, Long M, Rossie F, Olive P, and Karsan A. Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. J Immunol 175:2890–2899, 2005.

    PubMed  CAS  Google Scholar 

  39. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, and Lengauer C. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11(3): 261–262, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Li H, Gerald W, and Benezra R. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res 64: 6137–6143, 2004.

    Article  PubMed  CAS  Google Scholar 

  41. Bolontrade MF, Zhou R, and Kleinerman ES. Vasculogenesis plays a role in the growth of Ewing’s sarcoma in vivo. Clin Cancer Res 8: 3622–3627, 2002.

    PubMed  Google Scholar 

  42. Ganss R and Hanahan D. Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res 58: 4673–4681, 1998.

    PubMed  CAS  Google Scholar 

  43. Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR, Vajkoczy P, Hofmann WK, Peters C, Pennacchio LA, Abolmaali ND, Chavakis E, Reinheckel T, Zeiher AM, and Dimmeler S. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 11, 206–213, 2005.

    Article  PubMed  CAS  Google Scholar 

  44. Spring H, Schuler T, Arnold B, Hammerling G, and Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 102(50): 18111–18116, 2005.

    Article  PubMed  CAS  Google Scholar 

  45. Hammerling GJ and Ganss R. Vascular integration of endothelial progenitors during multistep tumor progression. Cell Cycle 5(5): 509–551, 2006.

    PubMed  Google Scholar 

  46. Udani V, Santarelli J, Yung Y, Cheshier S, Andrews A, Kasad Z, Tse V. Differential expression of angiopoietin-1 and angiopoietin-2 may enhance recruitment of bone-marrow-derived endothelial expression precursor cells into brain tumors. Neurol Res 27(8): 801–806, 2005.

    Article  PubMed  CAS  Google Scholar 

  47. Santarelli J, Udani V, Yung Y, Cheshier S, Wagers A, Brekken R, Weissman I, and Tse V. Incorporation of bone marrow-derived Flk-1-expressing CD34+ cells in the endothelium of tumor vessels in the mouse brain. Neurosurgery 59(2): 374–382, 2006.

    Article  PubMed  Google Scholar 

  48. Machein MR, Renninger S, de Lima-Hahn E, Plate KH. Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 13: 582–597, 2003.

    Article  PubMed  CAS  Google Scholar 

  49. Shaked Y, Bertolini F, Man S, Rogers MS, Cervi D, Foutz T, Rawn K, Voskas D, Dumont DJ, Ben-David Y, Lawler J, Henkin J, Huber J, Hicklin DJ, D’Amato RJ, and Kerbel RS. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7(1): 101–111, 2005.

    PubMed  CAS  Google Scholar 

  50. Bagley RG, Weber W, Rouleau C, and Teicher BA. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy. Cancer Res 65(21): 9741–9750, 2005.

    Article  PubMed  CAS  Google Scholar 

  51. Bono P, Wasenuis V, Heikkila P, Lundin J, Jackson DG, Joensuu H. High LYVE-1 positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res 10: 7144–7149, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Shirakawa K, Furuhata S, Watanabe I, Hayase H, Shimizu A, Ikarashi Y, Yoshida T, Terada M, Hashimoto D, and Wakasugi H. Induction of vasculogenesis in breast cancer models. Br J Cancer 87(12): 1454–1461, 2002.

    Article  PubMed  CAS  Google Scholar 

  53. Shirakawa K, Shibuya M, Heike Y, Takashima S, Watanabe I, Konishi F, Kasumi F, Goldman CK, Thomas KA, Bett A, Terada M, and Wakasugi H. Tumor-infiltrating endothelial cells and endothelial precursor cells in inflammatory breast cancer. Int J Cancer 99: 344–351, 2002.

    Article  PubMed  CAS  Google Scholar 

  54. Ito H, Rovira II, Bloom ML, Takeda K, Ferrans VJ, Quyyumi AA, and Finkel T. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 59: 5875–5877, 1999.

    PubMed  CAS  Google Scholar 

  55. Capillo M, Mancuso P, Gobbi A, Monestiroli S, Pruneri G, Dell’Agnola C, Martinelli G, Shultz L, and Bertolini F. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 9: 377–382, 2003.

    PubMed  CAS  Google Scholar 

  56. Schuch G, Heymach JV, Nomi M, Machluf M, Force J, Atala A, Eder J, Folkman J, and Soker S. Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res 63: 8345–8350, 2003.

    PubMed  CAS  Google Scholar 

  57. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, and Kerbel RS. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63: 4342–4346, 2003.

    PubMed  CAS  Google Scholar 

  58. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R, and Kerbel RS. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313(5793):1785–1787, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. de Bont ESJM, Guikema JEJ, Scherpen F, Meeuwsen T, Kamps WA, Vellenga E, and Bos NA. Mobilized human CD34+ hematopoietic stem cells enhance tumor growth in a nonobese diabetic/severe combined immunodeficient mouse model of human non-Hodgkin’s lymphoma. Cancer Res 61: 7654–7659, 2001.

    PubMed  Google Scholar 

  60. Furstenberger G, von Moos R, Senn H, and Boneberg E. Real-time PCR of CD146 mRNA in peripheral blood enables the relative quantification of circulating endothelial cells and is an indicator of angiogenesis. Br J Cancer 93: 793–798, 2005.

    Article  PubMed  CAS  Google Scholar 

  61. Furstenberger G, von Moos R, Lucas R, Thurlimann B, Senn H, Hamacher J, and Boneberg E. Circulating endothelial cells and angiogenic serum factors during neoadjuvent chemotherapy of primary breast cancer. Br J Cancer 94: 524–531, 2006.

    Article  PubMed  CAS  Google Scholar 

  62. Monestiroli S, Mancuso P, Burlini A, Pruneri G, Dell’Agnola C, Gobbi A, Martinelli G, and Bertolini F. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 61: 4341–4344, 2001.

    PubMed  CAS  Google Scholar 

  63. Davies G, Cunnick GH, Mansel RE, Mason MD, and Jiang WG. Levels of expression of endothelial markers specific to tumour-associated endothelial cells and their correlation with prognosis in patients with breast cancer. Clin Exp Metastasis 21: 31–37, 2004.

    Article  PubMed  CAS  Google Scholar 

  64. Mancoso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, and Bertolini F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97(11): 3658–3661, 2001.

    Article  Google Scholar 

  65. Sussman LK, Upalakalin JN, Roberts MJ, Kocher O, and Benjamin LE. Blood markers for vasculogenesis increase with tumor progression in patients with breast carcinoma. Cancer Biol Ther 2(3): 255–256, 2003.

    PubMed  CAS  Google Scholar 

  66. Rabascio C, Muratori E, Mancuso P, Calleri A, Raia V, Foutz T, Cinieri S, Veronesi G, Pruneri G, Lampertico P, Iavarone M, Martinelli G, Goldhirsch A, and Bertolini F. Assessing tumor angiogenesis: increased circulating VE-cadherin RNA in patients with cancer indicates viability of circulating endothelial cells. Cancer Res 64: 4373–4377, 2004.

    Article  PubMed  CAS  Google Scholar 

  67. Cabioglu N, Summy J, Miller C, Parikh NU, Sahin A, Tuzlali S, Pumiglia K, Gallick GE, and Price JE. CXCL-12/stromal cell-derived factor-1-α transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65(15): 6493–6498, 2005.

    Article  PubMed  CAS  Google Scholar 

  68. Woerner BM, Warrington NM, Kung AL, Perry A, Rubin JB. Widespread CXCR4 activation in astrocytomas revealed by phospho-CXCR4-specific antibodies. Cancer Res 65(24): 11392–11399, 2005.

    Article  PubMed  CAS  Google Scholar 

  69. Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, Kawaguchi M, Kobayashi H, Doi R, Hori T, Fujii N, and Imamura M. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 6: 3530–3535, 2000.

    PubMed  CAS  Google Scholar 

  70. Su L, Zhang J, Xu H, Wang Y, Chu Y, Liu R, and Xiong S. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res 11(23): 8273–8279, 2005.

    Article  PubMed  CAS  Google Scholar 

  71. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali, MA, Melamed J, and Semenza GL. Stromal cell-derived factor-1 and CXCR4 expression in hemangioblastoma and clear cell-renal cell carcinoma: von Hippel-Lindau loss-of-function induces expression of a ligand and its receptor. Cancer Res 65(14): 6178–6188, 2005.

    Article  PubMed  CAS  Google Scholar 

  72. Kuhlmann CRW, Schaefer CA, Reinhold L, Tillmans H, and Erdogan A. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration. BBRC 335: 1107–1114, 2005.

    PubMed  CAS  Google Scholar 

  73. Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OMZ, Anver MR, Kleinman HK, Murphy WJ, and Oppenheim JJ. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells. Am J Pathol 154(4): 1125–1135, 1999.

    PubMed  CAS  Google Scholar 

  74. Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, and Tosato G. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal derived factor-1. Blood 99(8): 2703–2711, 2002.

    Article  PubMed  CAS  Google Scholar 

  75. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, and Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107: 1322–1328, 2003.

    Article  PubMed  CAS  Google Scholar 

  76. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, and Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8): 858–864, 2004.

    Article  PubMed  CAS  Google Scholar 

  77. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, and Weinberg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348, 2005.

    Article  PubMed  CAS  Google Scholar 

  78. Guleng B, Tateishi K, Ohta M, Kanai F, Jazag A, Ijichi H, Tanaka Y, Washida M, Morikane K, Fukushima Y, Yamori T, Tsuruo T, Kawabe T, Miyagishi M, Taira K, Sata M, and Omata M. Blockade of the stromal cell-derived factor-1/CXCR4 axis attenuates in vivo tumor growth by inhibiting angiogenesis in a vascular endothelial growth factor-independent manner. Cancer Res 65(13): 5864–5872, 2005.

    Article  PubMed  CAS  Google Scholar 

  79. Smadja D, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, and Gaussem P. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Aterioscler Thromb Vasc Biol 25: 2321–2327, 2005.

    Article  CAS  Google Scholar 

  80. Asahara T and Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287: C572–C579, 2004.

    Article  PubMed  CAS  Google Scholar 

  81. De Palma M, Naldini L. Role of haematopoietic cells and endothelial progenitors in tumor angiogenesis. BBA 1766: 159–166, 2006.

    PubMed  Google Scholar 

  82. Garmy-Susini B and Varner JA. Circulating endothelial progenitor cells. Br J Cancer 93: 855–858, 2005.

    Article  PubMed  CAS  Google Scholar 

  83. Goon, P, Lip G, Boos C, Stonelake P, and Blann A. Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8(2): 79–88, 2006.

    Article  PubMed  CAS  Google Scholar 

  84. Jain RK and Duda DG. Role of bone marrow-derived cells in tumor angiogenesis and treatment. Cancer Cell 3: 515–516, 2003.

    Article  PubMed  CAS  Google Scholar 

  85. Lutton A, Carmeliet G, and Carmeliet P. Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 12(2): 88–96, 2002.

    Article  Google Scholar 

  86. Nishikawa S. A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Cell Biol 13: 673–678, 2001.

    Article  PubMed  CAS  Google Scholar 

  87. Rafii S. Circulating endothelial precursors: mystery, reality, and promise. J Clin Invest 105(1): 17–19, 2000.

    PubMed  CAS  Google Scholar 

  88. Rafii S, Lyden D, Benezra R, Hattori K, and Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature 2: 826–835, 2002.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Bagley, R.G. (2008). Endothelial Precursor Cells. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics