Skip to main content

Angiogenesis and Angiogenesis Inhibition in Sarcomas

  • Chapter
Antiangiogenic Agents in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1684 Accesses

Summary

Sarcomas are mesoderm-derived malignancies that include tumors arising from the soft tissues, skeleton, and vascular elements. These tumors share a common mesenchymal origin with the vasculature. Many of the signaling pathways involved in angiogenesis also drive sarcoma tumor cell growth. Autocrine and paracrine vascular endothelial growth factor (VEGF)- and platelet-derived growth factor (PDGF)-mediated growth plays a role in the pathogenesis of several sarcoma subtypes. Inhibition of signaling pathways common to sarcoma growth and angiogenesis has been shown to be an effective therapeutic strategy for some patients with sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Onisto M, Slongo ML, Gregnanin L, Gastaldi T, Carli M, Rosolen A. Expression and activity of vascular endothelial growth factor and metalloproteinases in alveolar and embryonal rhabdomyosarcoma cell lines. Int J Oncol 2005; 27:791–8.

    PubMed  CAS  Google Scholar 

  2. Gee MF, Tsuchida R, Eichler-Jonsson C, Das B, Baruchel S, Malkin D. Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene 2005; 24:8025–37.

    Article  PubMed  CAS  Google Scholar 

  3. Barber TD, Barber MC, Tomescu O, Barr FG, Ruben S, Friedman TB. Identification of target genes regulated by PAX3 and PAX3-FKHR in embryogenesis and alveolar rhabdomyosarcoma. Genomics 2002; 79:278–84.

    Article  PubMed  CAS  Google Scholar 

  4. Gerber HP, Kowalski J, Sherman D, Eberhard DA, Ferrara N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 2000; 60:6253–8.

    PubMed  CAS  Google Scholar 

  5. Genini M, Schwalbe P, Scholl FA, Schafer BW. Isolation of genes differentially expressed in human primary myoblasts and embryonal rhabdomyosarcoma. Int J Cancer 1996; 66:571–7.

    Article  PubMed  CAS  Google Scholar 

  6. Detwiller KY, Fernando NT, Segal NH, Ryeom SW, D’Amore PA, Yoon SS. Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on RNA interference of vascular endothelial cell growth factor A. Cancer Res 2005; 65:5881–9.

    Article  PubMed  CAS  Google Scholar 

  7. Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 1999; 59:1592–8.

    PubMed  CAS  Google Scholar 

  8. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 2003; 63:3919–22.

    PubMed  CAS  Google Scholar 

  9. Griffin RJ, Williams BW, Wild R, Cherrington JM, Park H, Song CW. Simultaneous inhibition of the receptor kinase activity of vascular endothelial, fibroblast, and platelet-derived growth factors suppresses tumor growth and enhances tumor radiation response. Cancer Res 2002; 62:1702–6.

    PubMed  CAS  Google Scholar 

  10. Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59:99–106.

    PubMed  CAS  Google Scholar 

  11. Zhang L, Yu D, Hu M, et al. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res 2000; 60:3655–61.

    PubMed  CAS  Google Scholar 

  12. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol 2004; 22:3813–25.

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi R, Tanaka S, Kitadai Y, et al. Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. Oncology 2003; 64:266–74.

    Article  PubMed  CAS  Google Scholar 

  14. Antonescu CR, Viale A, Sarran L, et al. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clin Cancer Res 2004; 10:3282–90.

    Article  PubMed  CAS  Google Scholar 

  15. Yoon SS, Segal NH, Park PJ, et al. Angiogenic profile of soft tissue sarcomas based on analysis of circulating factors and microarray gene expression. J Surg Res 2006; 135:282–90.

    Article  PubMed  CAS  Google Scholar 

  16. Kaya M, Wada T, Akatsuka T, et al. Vascular endothelial growth factor expression in untreated osteosarcoma is predictive of pulmonary metastasis and poor prognosis. Clin Cancer Res 2000; 6:572–7.

    PubMed  CAS  Google Scholar 

  17. Lee YH, Tokunaga T, Oshika Y, et al. Cell-retained isoforms of vascular endothelial growth factor (VEGF) are correlated with poor prognosis in osteosarcoma. Eur J Cancer 1999; 35:1089–93.

    Article  PubMed  CAS  Google Scholar 

  18. Wolf M, El-Rifai W, Tarkkanen M, et al. Novel findings in gene expression detected in human osteosarcoma by cDNA microarray. Cancer Genet Cytogenet 2000; 123:128–32.

    Article  PubMed  CAS  Google Scholar 

  19. Dutour A, Monteil J, Paraf F, et al. Endostatin cDNA/cationic liposome complexes as a promising therapy to prevent lung metastases in osteosarcoma: study in a human-like rat orthotopic tumor. Mol Ther 2005; 11:311–9.

    Article  PubMed  CAS  Google Scholar 

  20. Mori S, Ueda T, Kuratsu S, Hosono N, Izawa K, Uchida A. Suppression of pulmonary metastasis by angiogenesis inhibitor TNP-470 in murine osteosarcoma. Int J Cancer 1995; 61:148–52.

    Article  PubMed  CAS  Google Scholar 

  21. Bolontrade MF, Zhou RR, Kleinerman ES. Vasculogenesis plays a role in the growth of ewing’s sarcoma in vivo. Clin Cancer Res 2002; 8:3622–7.

    PubMed  Google Scholar 

  22. Fuchs B, Inwards CY, Janknecht R. Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing’s sarcoma. Clin Cancer Res 2004; 10:1344–53.

    Article  PubMed  CAS  Google Scholar 

  23. Dalal S, Berry AM, Cullinane CJ, et al. Vascular endothelial growth factor: a therapeutic target for tumors of the Ewing’s sarcoma family. Clin Cancer Res 2005; 11:2364–78.

    Article  PubMed  CAS  Google Scholar 

  24. Guan H, Zhou Z, Wang H, Jia SF, Liu W, Kleinerman ES. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing’s sarcoma growth in a xenograft mouse model. Clin Cancer Res 2005; 11:2662–9.

    Article  PubMed  CAS  Google Scholar 

  25. Arbiser JL, Larsson H, Claesson-Welsh L, et al. Overexpression of VEGF 121 in immortalized endothelial cells causes conversion to slowly growing angiosarcoma and high level expression of the VEGF receptors VEGFR-1 and VEGFR-2 in vivo. Am J Pathol 2000; 156:1469–76.

    PubMed  CAS  Google Scholar 

  26. Hashimoto M, Ohsawa M, Ohnishi A, et al. Expression of vascular endothelial growth factor and its receptor mRNA in angiosarcoma. Lab Invest 1995; 73:859–63.

    PubMed  CAS  Google Scholar 

  27. Zietz C, Rossle M, Haas C, et al. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol 1998; 153:1425–33.

    PubMed  CAS  Google Scholar 

  28. Brown LF, Dezube BJ, Tognazzi K, Dvorak HF, Yancopoulos GD. Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 2000; 156:2179–83.

    PubMed  CAS  Google Scholar 

  29. Yamamoto T, Umeda T, Yokozeki H, Nishioka K. Expression of basic fibroblast growth factor and its receptor in angiosarcoma. J Am Acad Dermatol 1999; 41:127–9.

    Article  PubMed  CAS  Google Scholar 

  30. Arbiser JL, Panigrathy D, Klauber N, et al. The antiangiogenic agents TNP-470 and 2-methoxyestradiol inhibit the growth of angiosarcoma in mice. J Am Acad Dermatol. 1999; 40:925–9.

    Article  PubMed  CAS  Google Scholar 

  31. Bellan C, De Falco G, Lazzi S, Leoncini L. Pathologic aspects of AIDS malignancies. Oncogene 2003; 22:6639–45.

    Article  PubMed  CAS  Google Scholar 

  32. Antman K, Chang Y. Kaposi’s sarcoma. N Engl J Med 2000; 342:1027–38.

    Article  PubMed  CAS  Google Scholar 

  33. Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E. Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature 1998; 394:588–92.

    Article  PubMed  CAS  Google Scholar 

  34. Albini A, Soldi R, Giunciuglio D, et al. The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 1996; 2:1371–5.

    Article  PubMed  CAS  Google Scholar 

  35. Cornali E, Zietz C, Benelli R, et al. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi’s sarcoma. Am J Pathol 1996; 149:1851–69.

    PubMed  CAS  Google Scholar 

  36. Brown LF, Tognazzi K, Dvorak HF, Harrist TJ. Strong expression of kinase insert domain-containing receptor, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 1996; 148:1065–74.

    PubMed  CAS  Google Scholar 

  37. Masood R, Cai J, Zheng T, Smith DL, Naidu Y, Gill PS. Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc Natl Acad Sci USA 1997; 94:979–84.

    Article  PubMed  CAS  Google Scholar 

  38. Hatva E, Bohling T, Jaaskelainen J, Persico MG, Haltia M, Alitalo K. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas. Am J Pathol 1996; 148:763–75.

    PubMed  CAS  Google Scholar 

  39. Dietzmann K, von Bossanyi P, Warich-Kirches M, Kirches E, Synowitz HJ, Firsching R. Immunohistochemical detection of vascular growth factors in angiomatous and atypical meningiomas, as well as hemangiopericytomas. Pathol Res Pract 1997; 193:503–10.

    PubMed  CAS  Google Scholar 

  40. Gordon MS, Margolin K, Talpaz M, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 2001; 19:843–50.

    PubMed  CAS  Google Scholar 

  41. Margolin K, Gordon MS, Holmgren E, et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol 2001; 19:851–6.

    PubMed  CAS  Google Scholar 

  42. D’Adamo DR, Anderson SE, Albritton K, et al. Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas. J Clin Oncol 2005; 23:7135–42.

    Article  PubMed  CAS  Google Scholar 

  43. Jordan K, Kegel T, Mueller L, Kinitz I, Schmoll H. Feasibility of a combination of high dose chemotherapy ifosfamide, carboplatin, etoposide (ICE) plus stem cells and bevacizumab in refractory sarcoma and germ cell tumors, American Society of Clinical Oncology, 2005.

    Google Scholar 

  44. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002; 99:11393–8.

    Article  PubMed  CAS  Google Scholar 

  45. Dupont J, Rothenberg M, Spriggs D, et al. Safety and pharmacokinetics of intravenous VEGF Trap in a phase I clinical trial of patients with advanced solid tumors, American Society of Clinical Oncology, 2005.

    Google Scholar 

  46. Levine AM, Tulpule A, Quinn DI, et al. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol 2006; 24:1712–9.

    Article  PubMed  CAS  Google Scholar 

  47. Weng DE, Masci PA, Radka SF, et al. A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther. 2005; 4:948–55.

    Article  PubMed  CAS  Google Scholar 

  48. Stopeck A, Sheldon M, Vahedian M, Cropp G, Gosalia R, Hannah A. Results of a Phase I dose-escalating study of the antiangiogenic agent, SU5416, in patients with advanced malignancies. Clin Cancer Res 2002; 8:2798–805.

    PubMed  CAS  Google Scholar 

  49. O’Donnell A, Padhani A, Hayes C, et al. A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points. Br J Cancer 2005; 93:876–83.

    Article  PubMed  CAS  Google Scholar 

  50. Kuenen BC, Tabernero J, Baselga J, et al. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin Cancer Res 2003; 9:1648–55.

    PubMed  CAS  Google Scholar 

  51. Heymach JV, Desai J, Manola J, et al. Phase II study of the antiangiogenic agent SU5416 in patients with advanced soft tissue sarcomas. Clin Cancer Res 2004; 10:5732–40.

    Article  PubMed  CAS  Google Scholar 

  52. Sessa C, Vigano L, Grasselli G, et al. Phase I clinical and pharmacological evaluation of the multi-tyrosine kinase inhibitor SU006668 by chronic oral dosing. Eur J Cancer 2006; 42:171–8.

    Article  PubMed  CAS  Google Scholar 

  53. Kuenen BC, Giaccone G, Ruijter R, et al. Dose-finding study of the multitargeted tyrosine kinase inhibitor SU6668 in patients with advanced malignancies. Clin Cancer Res 2005; 11:6240–6.

    Article  PubMed  CAS  Google Scholar 

  54. Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006; 24:25–35.

    Article  PubMed  CAS  Google Scholar 

  55. Demetri G, George S, Heinrich M, et al. Clinical activity and tolerability of the multi-targeted tyrosine kinase inhibitor SU11248 in patients (pts) with metastatic gastrointestinal stromal tumor (GIST) refractory to imatinib mesylate, American Society of Clinical Oncology, 2003.

    Google Scholar 

  56. Demetri G, Desai J, Fletcher J, et al. SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genomic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST), American Society of Clinical Oncology, 2004.

    Google Scholar 

  57. Demetri GD, van Oosterom AT, Blackstein M, et al. Phase 3, multicenter, randomized, double-blind, placebo-controlled trial of SU11248 in patients (pts) following failure of imatinib for metastatic GIST. J Clin Oncol (Meeting Abstracts) 2005; 23:4000.

    Google Scholar 

  58. Davis D, McConkey J, Heymach J, et al. Pharmacodynamic analysis of target receptor tyrosine kinase activity and apoptosis in GIST tumors responding to therapy with SU11248, American Society of Clinical Oncology, 2005.

    Google Scholar 

  59. Rosen L, Mulay M, Long J, et al. Phase I trial of SU011248, a novel tyrosine kinase inhibitor in advanced solid tumors, American Society of Clinical Oncology, 2004.

    Google Scholar 

  60. Strumberg D, Richly H, Hilger RA, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005; 23:965–72.

    Article  PubMed  CAS  Google Scholar 

  61. Drevs J, Medinger M, Mross K, et al. Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors, American Society of Clinical Oncology, 2005.

    Google Scholar 

  62. Thomas AL, Morgan B, Horsfield MA, et al. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 2005; 23:4162–71.

    Article  PubMed  CAS  Google Scholar 

  63. Eder JP, Jr., Supko JG, Clark JW, et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002; 20:3772–84.

    Article  PubMed  CAS  Google Scholar 

  64. Herbst RS, Hess KR, Tran HT, et al. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2002; 20:3792–803.

    Article  PubMed  CAS  Google Scholar 

  65. Thomas JP, Arzoomanian RZ, Alberti D, et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2003; 21:223–31.

    Article  PubMed  CAS  Google Scholar 

  66. Hansma AH, Broxterman HJ, van der Horst I, et al. Recombinant human endostatin administered as a 28-day continuous intravenous infusion, followed by daily subcutaneous injections: a phase I and pharmacokinetic study in patients with advanced cancer. Ann Oncol 2005; 16:1695–701.

    Article  PubMed  CAS  Google Scholar 

  67. Hoekstra R, de Vos FY, Eskens FA, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced cancer. J Clin Oncol 2005; 23:5188–97.

    Article  PubMed  CAS  Google Scholar 

  68. Gordon M, Mendelson D, Guirguis M, et al. ABT-510, an anti-angiogenic, thrombospondin-1 (TSP-1) mimetic peptide, exhibits favorable safety profile and early signals of activity in a randomized phase IB trial, American Society of Clinical Oncology, 2003.

    Google Scholar 

  69. Hoekstra R, de Vos FY, Eskens FA, et al. Phase I study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with 5-fluorouracil and leucovorin: a safe combination. Eur J Cancer 2006; 42:467–72.

    Article  PubMed  CAS  Google Scholar 

  70. Baker L, Demetri G, Mendelson D, et al. A Randomized Phase 2 Study of the thrombospondin-mimetic peptide ABT-510 in patients with advanced soft tissue sarcoma (STS), American Society of Clinical Oncology, 2005.

    Google Scholar 

  71. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 1997; 57:1829–34.

    PubMed  CAS  Google Scholar 

  72. Rustin GJ, Galbraith SM, Anderson H, et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 2003; 21:2815–22.

    Article  PubMed  CAS  Google Scholar 

  73. Stevenson JP, Rosen M, Sun W, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 2003; 21:4428–38.

    Article  PubMed  CAS  Google Scholar 

  74. Dowlati A, Robertson K, Cooney M, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 2002; 62:3408–16.

    PubMed  CAS  Google Scholar 

  75. Bhargava P, Marshall JL, Rizvi N, et al. A Phase I and pharmacokinetic study of TNP-470 administered weekly to patients with advanced cancer. Clin Cancer Res 1999; 5:1989–95.

    PubMed  CAS  Google Scholar 

  76. Herbst RS, Madden TL, Tran HT, et al. Safety and pharmacokinetic effects of TNP-470, an angiogenesis inhibitor, combined with paclitaxel in patients with solid tumors: evidence for activity in non-small-cell lung cancer. J Clin Oncol 2002; 20:4440–7.

    Article  PubMed  CAS  Google Scholar 

  77. Tran HT, Blumenschein GR, Jr., Lu C, et al. Clinical and pharmacokinetic study of TNP-470, an angiogenesis inhibitor, in combination with paclitaxel and carboplatin in patients with solid tumors. Cancer Chemother Pharmacol 2004; 54:308–14.

    Article  PubMed  CAS  Google Scholar 

  78. Dezube BJ, Von Roenn JH, Holden-Wiltse J, et al. Fumagillin analog in the treatment of Kaposi’s sarcoma: a phase I AIDS Clinical Trial Group study. AIDS Clinical Trial Group No. 215 Team. J Clin Oncol 1998; 16:1444–9.

    PubMed  CAS  Google Scholar 

  79. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91:4082–5.

    Article  PubMed  CAS  Google Scholar 

  80. Yi-Shin Kuo D, Timmins P, Blank SV, et al. Phase II trial of thalidomide for advanced and recurrent gynecologic sarcoma: a brief communication from the New York Phase II consortium. Gynecol Oncol 2006; 100:160–5.

    Article  PubMed  CAS  Google Scholar 

  81. Fife K, Howard MR, Gracie F, Phillips RH, Bower M. Activity of thalidomide in AIDS-related Kaposi’s sarcoma and correlation with HHV8 titre. Int J STD AIDS 1998; 9:751–5.

    Article  PubMed  CAS  Google Scholar 

  82. Little RF, Wyvill KM, Pluda JM, et al. Activity of thalidomide in AIDS-related Kaposi’s sarcoma. J Clin Oncol 2000; 18:2593–602.

    PubMed  CAS  Google Scholar 

  83. Chintagumpala M, Blaney SM, Bomgaars LR, et al. Phase I and pharmacokinetic study of thalidomide with carboplatin in children with cancer. J Clin Oncol 2004; 22:4394–400.

    Article  PubMed  CAS  Google Scholar 

  84. Tsai YC, Wu CT, Hong RL. Response of refractory osteosarcoma to thalidomide and celecoxib. Lancet Oncol 2005; 6:997–9.

    Article  PubMed  Google Scholar 

  85. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002; 8:128–35.

    Article  PubMed  CAS  Google Scholar 

  86. Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 2005; 352:1317–23.

    Article  PubMed  CAS  Google Scholar 

  87. Hidalgo M, Rowinsky E, Erlichman C, et al. CCI-779, a rapamycin analog and multifaceted inhibitor of signal transduction: a Phase I study, American Society of Clinical Oncology, 2000.

    Google Scholar 

  88. Raymond E, Alexandre J, Depenbrock H, et al. CCI-779, a rapamycin analog with antitumor activity: a Phase I study utilizing a weekly schedule, American Society of Clinical Oncology, 2000.

    Google Scholar 

  89. Mita M, Rowinsky E, Goldston M, et al. Phase I, pharmacokinetic (PK), and pharmacodynamic (PD) study of AP23573, an mTOR Inhibitor, administered IV daily X 5 every other week in patients (pts) with refractory or advanced malignancies, American Society of Clinical Oncology, 2004.

    Google Scholar 

  90. Chawla S, Sankhala K, Chua V, et al. A phase II study of AP23573 (an mTOR inhibitor) in patients (pts) with advanced sarcomas, American Society of Clinical Oncology, 2005.

    Google Scholar 

  91. Hao D, Hammond LA, Eckhardt SG, et al. A Phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin Cancer Res 2003; 9:2465–71.

    PubMed  CAS  Google Scholar 

  92. Bhargava P, Marshall JL, Dahut W, et al. A phase I and pharmacokinetic study of squalamine, a novel antiangiogenic agent, in patients with advanced cancers. Clin Cancer Res 2001; 7:3912–9.

    PubMed  CAS  Google Scholar 

  93. Tulpule A, Scadden DT, Espina BM, et al. Results of a randomized study of IM862 nasal solution in the treatment of AIDS-related Kaposi’s sarcoma. J Clin Oncol 2000; 18:716–23.

    PubMed  CAS  Google Scholar 

  94. Noy A, Scadden DT, Lee J, et al. Angiogenesis inhibitor IM862 is ineffective against AIDS-Kaposi’s sarcoma in a phase III trial, but demonstrates sustained, potent effect of highly active antiretroviral therapy: from the AIDS Malignancy Consortium and IM862 Study Team. J Clin Oncol 2005; 23:990–8.

    Article  PubMed  CAS  Google Scholar 

  95. Gutheil JC, Campbell TN, Pierce PR, et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 2000; 6:3056–61.

    PubMed  CAS  Google Scholar 

  96. Patel SR, Jenkins J, Papadopolous N, et al. Pilot study of vitaxin–an angiogenesis inhibitor-in patients with advanced leiomyosarcomas. Cancer 2001; 92:1347–8.

    Article  PubMed  CAS  Google Scholar 

  97. McNeel DG, Eickhoff J, Lee FT, et al. Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 2005; 11:7851–60.

    Article  PubMed  CAS  Google Scholar 

  98. Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000; 105:R15–24.

    Article  PubMed  CAS  Google Scholar 

  99. Reichle A, Bross K, Vogt T, et al. Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 2004; 101:2247–56.

    Article  PubMed  CAS  Google Scholar 

  100. Vogt T, Hafner C, Bross K, et al. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 2003; 98:2251–6.

    Article  PubMed  CAS  Google Scholar 

  101. Kieran MW, Turner CD, Rubin JB, et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005; 27:573–81.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

DuBois, S., Demetri, G. (2008). Angiogenesis and Angiogenesis Inhibition in Sarcomas. In: Teicher, B.A., Ellis, L.M. (eds) Antiangiogenic Agents in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-184-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-184-0_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-870-6

  • Online ISBN: 978-1-59745-184-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics