Skip to main content

Resistance to Enfuvirtide and Other HIV Entry Inhibitors

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

At the turn of the twenty-fi rst century, only three classes of antiretrovirals were available for the treatment of HIV: nucleoside reverse transcriptase inhibitors (nRTIs), nonnucleoside RTIs, and protease inhibitors (PIs). Although combinations of these agents often provided potent suppression of HIV-1 RNA, and had dramatically improved clinical outcomes for many patients (1), the limitations of highly active antiretroviral therapy based on the available compounds had becoming increasingly apparent and problematic. Those limitations included adverse effects associated with treatment (2, 3), signifi cant drug-drug interactions (4), and the selection of drug-resistant viruses with extensive intraclass cross-resistance (5). Consequently, there was a clear need for new classes of antiretroviral agents with both improved safety and tolerability profi les, and which act on alternative targets and thereby circumvent the problems associated with intraclass cross-resistance. The fi rst such drug to be introduced in the new millennium was the HIV-1 fusion inhibitor enfuvirtide (formerly known as T-20), which became available in 2003. Enfuvirtide, when used in combination with previously available antiretrovirals, provided signifi cant virological and immunological benefi ts to patients with few remaining treatment options (6, 7). As of early 2007, the entry inhibitors maraviroc and vicriviroc, which target CCR5 binding, were under review for regulatory approval or were in late-stage clinical trials (8-10). Although not discussed in this chapter, compounds targeting the viral integrase had also shown promising results in Phase 2 clinical studies and were in the late stages of clinical development (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palella, F.J., Jr., K.M. Delaney, A.C. Moorman, et al., Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med 1998; 338(13):853–60.

    Article  PubMed  Google Scholar 

  2. Fellay, J., K. Boubaker, B. Ledergerber, et al., Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV cohort study. Lancet 2001; 358(9290):1322–7.

    Article  PubMed  CAS  Google Scholar 

  3. Yeni, P.G., S.M. Hammer, M.S. Hirsch, et al., Treatment for adult HIV infection: 2004 recommendations of the international AIDS society — USA panel. JAMA 2004; 292(2):251–65.

    Article  PubMed  CAS  Google Scholar 

  4. Kosel, B. and F. Aweeka, Drug interactions of antiretroviral agents. AIDS Clinical Review, eds. P. Volberding and M. Jacobsen. 2000, New York: Marcel Dekker, pp. 193–227.

    Google Scholar 

  5. Shafer, R.W., M.A. Winters, S. Palmer, et al., Multiple concurrent reverse transcriptase and protease mutations and multidrug resistance of HIV-1 isolates from heavily treated patients. Ann Intern Med 1998; 128(11):906–11.

    PubMed  CAS  Google Scholar 

  6. Lalezari, J.P., K. Henry, M. O'Hearn, et al., Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 2003; 348(22):2175–85.

    Article  PubMed  CAS  Google Scholar 

  7. Lazzarin, A., B. Clotet, D. Cooper, et al., Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 2003; 348(22):2186–95.

    Article  PubMed  CAS  Google Scholar 

  8. Lalezari, J., J. Goodrich, E. DeJesus, et al., Efficacy and safety of maraviroc plus optimized background therapy in viremic ART-experienced patients infected with CCR5-tropic HIV-1: 24-week results of a phase 2b/3 study in the US and Canada. 14th Conference on Retroviruses and Opportunistic Infections. 2007. Los Angeles, CA.

    Google Scholar 

  9. Nelson, M., G. Fätkenheuer, I. Konourina, et al., Efficacy and safety of maraviroc plus optimized background therapy in viremic, ART-experienced patients infected with CCR5-tropic HIV-1 in Europe, Australia, and North America: 24-week results. 14th Conference on Retroviruses and Opportunistic Infections. 2007. Los Angeles, CA.

    Google Scholar 

  10. Gulick, R., Z. Su, C. Flexner, et al., ACTG 5211: phase II study of the safety and efficacy of vicriviroc in HIV-infected treatment-experienced subjects. 16th International AIDS Conference. 2006. Toronto, Canada.

    Google Scholar 

  11. Markowitz, M., B.-Y. Nguyen, E. Gotuzzo, et al., Potent antiretroviral effect of MK-0518, a novel HIV-1 integrase inhibitor, as part of combination ART in treatment-naïve HIV-1 infected patients. 16th International AIDS Conference. 2006. Toronto, Canada.

    Google Scholar 

  12. Berson, J.F., D. Long, B.J. Doranz, et al., A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol 1996; 70(9): 6288–95.

    PubMed  CAS  Google Scholar 

  13. Deng, H., R. Liu, W. Ellmeier, et al., Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381(6584): 661–6.

    Article  PubMed  CAS  Google Scholar 

  14. Feng, Y., C.C. Broder, P.E. Kennedy, et al., HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263):872–7.

    Article  PubMed  CAS  Google Scholar 

  15. Kwong, P.D., R. Wyatt, J. Robinson, et al., Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393(6686): 648–59.

    Article  PubMed  CAS  Google Scholar 

  16. Rizzuto, C.D., R. Wyatt, N. Hernández-Ramos, et al., A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 1998; 280(5371):1949–53.

    Article  PubMed  CAS  Google Scholar 

  17. Wyatt, R., P.D. Kwong, E. Desjardins, et al., The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 1998; 393(6686):705–11.

    Article  PubMed  CAS  Google Scholar 

  18. Gallaher, W.R., J.M. Ball, R.F. Garry, et al., A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses 1989; 5(4):431–40.

    Article  PubMed  CAS  Google Scholar 

  19. Weissenhorn, W., A. Dessen, S.C. Harrison, et al., Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997; 387(6631): 426–30.

    Article  PubMed  CAS  Google Scholar 

  20. Chan, D.C., D. Fass, J.M. Berger, et al., Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89(2):263–73.

    Article  PubMed  CAS  Google Scholar 

  21. Melikyan, G.B., R.M. Markosyan, H. Hemmati, et al., Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000; 151(2):413–24.

    Article  PubMed  CAS  Google Scholar 

  22. Furuta, R.A., C.T. Wild, Y. Weng, et al., Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 1998; 5(4):276–9.

    Article  PubMed  CAS  Google Scholar 

  23. Chan, D.C., C.T. Chutkowski, and P.S. Kim, Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci U S A 1998; 95(26):15613–7.

    Article  PubMed  CAS  Google Scholar 

  24. Wild, C., J.W. Dubay, T. Greenwell, et al., Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci U S A 1994; 91(26):12676–80.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, C.H., T.J. Matthews, C.B. McDanal, et al., A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 1995; 69(6):3771–7.

    PubMed  CAS  Google Scholar 

  26. Jacobson, J.M., I. Lowy, C.V. Fletcher, et al., Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000; 182(1):326–9.

    Article  PubMed  CAS  Google Scholar 

  27. Guo, Q., H.T. Ho, I. Dicker, et al., Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 2003; 77(19):10528–36.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, T., Z. Zhang, O.B. Wallace, et al., Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J Med Chem 2003; 46(20):4236–9.

    Article  PubMed  CAS  Google Scholar 

  29. Hanna, G., J. Lalezari, J. Hellinger, et al., Antiviral Activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1-infected subjects a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043 in HIV-1-infected subjects. 11th Conference on Retroviruses and Opportunistic Infections. 2004. San Francisco, CA.

    Google Scholar 

  30. Kuritzkes, D.R., J. Jacobson, W.G. Powderly, et al., Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 2004; 189(2):286–91.

    Article  PubMed  CAS  Google Scholar 

  31. Donzella, G.A., D. Schols, S.W. Lin, et al., AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 1998; 4(1):72–7.

    Article  PubMed  CAS  Google Scholar 

  32. Hendrix, C.W., C. Flexner, R.T. MacFarland, et al., Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chem-okine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44(6):1667–73.

    Article  PubMed  CAS  Google Scholar 

  33. Moyle, G., E. DeJesus, M. Boffito, et al. CXCR4 antagonism: proof of activity with AMD11070. 14th Conference on Retroviruses and Opportunistic Infection. 2007. Los Angeles, CA.

    Google Scholar 

  34. Saag, M., S. Rosenkranz, S. Becker, et al., Proof of concept of antiretroviral activity of AMD11070 (an orally administered CXCR4 Entry Inhibitor): results of the first dosing cohort A studied in ACTG protocol A5210. 14th Conference on Retroviruses and Opportunistic Infections. 2007. Los Angeles, CA.

    Google Scholar 

  35. Strizki, J.M., S. Xu, N.E. Wagner, et al., SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98(22):12718–23.

    Article  PubMed  CAS  Google Scholar 

  36. Dorr, P., M. Westby, S. Dobbs, et al., Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 2005; 49(11):4721–32.

    Article  PubMed  CAS  Google Scholar 

  37. Maeda, K., H. Nakata, Y. Koh, et al., Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 2004; 78(16):8654–62.

    Article  PubMed  CAS  Google Scholar 

  38. Eron, J.J., R.M. Gulick, J.A. Bartlett, et al., Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 2004; 189(6):1075–83.

    Article  PubMed  CAS  Google Scholar 

  39. Lalezari, J.P., N.C. Bellos, K. Sathasivam, et al., T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvirtide-containing treatment regimen. J Infect Dis 2005; 191(7):1155–63.

    Article  PubMed  CAS  Google Scholar 

  40. Wild, C., T. Greenwell, and T. Matthews, A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell—cell fusion. AIDS Res Hum Retroviruses 1993; 9(11):1051–3.

    Article  PubMed  CAS  Google Scholar 

  41. Earl, P.L., R.W. Doms, and B. Moss, Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci U S A 1990; 87(2):648–52.

    Article  PubMed  CAS  Google Scholar 

  42. Schuitemaker, H., M. Koot, N.A. Kootstra, et al., Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 1992; 66(3):1354–60.

    PubMed  CAS  Google Scholar 

  43. Fenyo, E.M., L. Morfeldt-Manson, F. Chiodi, et al., Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J Virol 1988; 62(11):4414–9.

    PubMed  CAS  Google Scholar 

  44. Schuitemaker, H., N.A. Kootstra, R.E. de Goede, et al., Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture. J Virol 1991; 65(1):356–63.

    PubMed  CAS  Google Scholar 

  45. Koot, M., A.H. Vos, R.P. Keet, et al., HIV-1 biological phenotype in long-term infected individuals evaluated with an MT-2 cocultivation assay. AIDS 1992; 6(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  46. Brumme, Z.L., J. Goodrich, H.B. Mayer, et al., Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis 2005; 192(3):466–74.

    Article  PubMed  CAS  Google Scholar 

  47. Koot, M., R. van Leeuwen, R.E. de Goede, et al., Conversion rate towards a syncytium-inducing (SI) phenotype during different stages of human immunodeficiency virus type 1 infection and prognostic value of SI phenotype for survival after AIDS diagnosis. J Infect Dis 1999; 179(1):254–8.

    Article  PubMed  CAS  Google Scholar 

  48. Melby, T., M. Despirito, R. Demasi, et al., HIV-1 coreceptor use in triple-class treatment-experienced patients: baseline prevalence, correlates, and relationship to enfuvirtide response. J Infect Dis 2006; 194(2):238–46.

    Article  PubMed  CAS  Google Scholar 

  49. Wilkin, T.J., Z. Su, D.R. Kuritzkes, et al., HIV type 1 chemokine coreceptor use among antiretroviral-experienced patients screened for a clinical trial of a CCR5 Inhibitor: AIDS clinical trial group A5211. Clin Infect Dis 2007; 44(4):591–5.

    Article  PubMed  CAS  Google Scholar 

  50. Melby, T., HIV coreceptor use in heavily treatment-experienced patients: does it take two to tangle? Clin Infect Dis 2007; 44(4):596–8.

    Article  PubMed  CAS  Google Scholar 

  51. Hunt, P.W., P.R. Harrigan, W. Huang, et al., Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis 2006; 194(7):926–30.

    Article  PubMed  CAS  Google Scholar 

  52. De Jong, J.J., A. De Ronde, W. Keulen, et al., Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J Virol 1992; 66(11):6777–80.

    PubMed  Google Scholar 

  53. Boyd, M.T., G.R. Simpson, A.J. Cann, et al., A single amino acid substitution in the V1 loop of human immunodeficiency virus type 1 gp120 alters cellular tropism. J Virol 1993; 67(6):3649–52.

    PubMed  CAS  Google Scholar 

  54. Ross, T.M. and B.R. Cullen, The ability of HIV type 1 to use CCR-3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR-5 tropic V3 loop. Proc Natl Acad Sci U S A 1998; 95(13):7682–6.

    Article  PubMed  CAS  Google Scholar 

  55. Jensen, M.A. and A.B. van't Wout, Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev 2003; 5(2):104–12.

    PubMed  Google Scholar 

  56. Yi, Y., A. Singh, F. Shaheen, et al., Contrasting use of CCR5 structural determinants by R5 and R5X4 variants within a human immunodeficiency virus type 1 primary isolate quasispecies. J. Virol. 2003; 77(22):12057–66.

    Article  PubMed  CAS  Google Scholar 

  57. Bieniasz, P.D., R.A. Fridell, I. Aramori, et al., HIV-1-induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 co-receptor. EMBO J 1997; 16(10):2599–609.

    Article  PubMed  CAS  Google Scholar 

  58. Platt, E.J., D.M. Shea, P.P. Rose, et al., Variants of human immunodeficiency virus type 1 that efficiently use CCR5 lacking the tyrosine-sulfated amino terminus have adaptive mutations in gp120, including loss of a functional N-glycan. J Virol 2005; 79(7):4357–68.

    Article  PubMed  CAS  Google Scholar 

  59. Platt, E.J., S.E. Kuhmann, P.P. Rose, et al., Adaptive mutations in the V3 loop of gp120 enhance fusogenicity of human immunodeficiency virus type 1 and enable use of a CCR5 coreceptor that lacks the amino-terminal sulfated region. J Virol 2001; 75(24):12266–78.

    Article  PubMed  CAS  Google Scholar 

  60. Gallaher, W.R., Detection of a fusion peptide sequence in the trans-membrane protein of human immunodeficiency virus. Cell 1987; 50(3):327–8.

    Article  PubMed  CAS  Google Scholar 

  61. Delwart, E.L., G. Mosialos, and T. Gilmore, Retroviral envelope glycoproteins contain a “leucine zipper”-like repeat. AIDS Res Hum Retroviruses 1990; 6(6):703–6.

    Article  PubMed  CAS  Google Scholar 

  62. Bullough, P.A., F.M. Hughson, J.J. Skehel, et al., Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 1994; 371(6492):37–43.

    Article  PubMed  CAS  Google Scholar 

  63. Carr, C.M. and P.S. Kim, A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 1993; 73(4):823–32.

    Article  PubMed  CAS  Google Scholar 

  64. Lu, M., S.C. Blacklow, and P.S. Kim, A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 1995; 2(12):1075–82.

    Article  PubMed  CAS  Google Scholar 

  65. Munoz-Barroso, I., K. Salzwedel, E. Hunter, et al., Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol 1999; 73(7):6089–92.

    Google Scholar 

  66. Westby, M., C. Smith-Burchnell, J. Mori, et al., Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 2007; 81(5):2359–71.

    Article  PubMed  CAS  Google Scholar 

  67. Strizki, J.M., C. Tremblay, S. Xu, et al., Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother 2005; 49(12):4911–9.

    Article  PubMed  CAS  Google Scholar 

  68. Dean, M., M. Carrington, C. Winkler, et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, San Francisco city cohort, ALIVE study. Science 1996; 273(5283):1856–62.

    Article  PubMed  CAS  Google Scholar 

  69. Samson, M., F. Libert, B.J. Doranz, et al., Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382(6593):722–5.

    Article  PubMed  CAS  Google Scholar 

  70. Glass, W.G., J.K. Lim, R. Cholera, et al., Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 2005; 202(8):1087–98.

    Article  PubMed  CAS  Google Scholar 

  71. Glass, W.G., D.H. McDermott, J.K. Lim, et al., CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 2006; 203(1):35–40.

    Article  PubMed  CAS  Google Scholar 

  72. Wild, C.T., D.C. Shugars, T.K. Greenwell, et al., Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91(21):9770–4.

    Article  PubMed  CAS  Google Scholar 

  73. Kliger, Y., S.A. Gallo, S.G. Peisajovich, et al., Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 2001; 276(2):1391–7.

    Article  PubMed  CAS  Google Scholar 

  74. Matthews, T.J., C. Wild, C.H. Chen, et al., Structural rearrangements in the transmembrane glycoprotein after receptor binding. Immunol Rev 1994; 140:93–104.

    Article  PubMed  CAS  Google Scholar 

  75. Pine, P.S., J.L. Weaver, T. Oravecz, et al., A semiautomated fluorescence-based cell-to-cell fusion assay for gp120-gp41 and CD4 expressing cells. Exp Cell Res 1998; 240(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  76. Nagashima, K.A., D.A. Thompson, S.I. Rosenfield, et al., Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell—cell fusion. J Infect Dis 2001; 183(7):1121–5.

    Article  PubMed  CAS  Google Scholar 

  77. Lawless, M.K., S. Barney, K.I. Guthrie, et al., HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp41. Biochemistry 1996; 35(42): 13697–708.

    Article  PubMed  CAS  Google Scholar 

  78. Sista, P.R., T. Melby, D. Davison, et al., Characterization of determinants of genotypic and phenotypic resistance to enfuvirtide in baseline and on-treatment HIV-1 isolates. AIDS 2004; 18(13):1787–94.

    Article  PubMed  CAS  Google Scholar 

  79. Whitcomb, J., W. Huang, S. Fransen, et al., Analysis of baseline enfuvirtide (T20) susceptibility and co-receptor tropism in two-phase III study populations. 10th Conference on Retroviruses and Opportunistic Infections. 2003. Boston, MA.

    Google Scholar 

  80. Nelson, M., K. Arasteh, B. Clotet, et al., Durable efficacy of enfuvirtide over 48 weeks in heavily treatment-experienced HIV-1-infected patients in the T-20 versus optimized background regimen only 1 and 2 clinical trials. J Acquir Immune Defic Syndr 2005; 40(4):404–12.

    Article  PubMed  CAS  Google Scholar 

  81. Melby, T., P. Sista, R. Demasi, et al., Characterization of envelope glycoprotein gp41 genotype and phenotypic susceptibility to enfuvirtide at baseline and on treatment in the phase III clinical trials TORO-1 and TORO-2. AIDS Res Hum Retroviruses 2006; 22(5):375–85.

    Article  PubMed  CAS  Google Scholar 

  82. Westby, M., Resistance to CCR5 antagonists. Curr Opin HIV AIDS 2007; 2(2):137–44.

    Article  PubMed  Google Scholar 

  83. Trkola, A., S.E. Kuhmann, J.M. Strizki, et al., HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U S A 2002; 99(1):395–400.

    Article  PubMed  CAS  Google Scholar 

  84. Westby, M., M. Lewis, J. Whitcomb, et al., Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 2006; 80(10):4909–20.

    Article  PubMed  CAS  Google Scholar 

  85. Pugach, P., A.J. Marozsan, T.J. Ketas, et al., HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 2007; 361(1):212–228.

    Article  PubMed  CAS  Google Scholar 

  86. Tersmette, M., R.E. de Goede, B.J. Al, et al., Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol 1988; 62(6):2026–32.

    PubMed  CAS  Google Scholar 

  87. Connor, R.I., K.E. Sheridan, D. Ceradini, et al., Change in core-ceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 1997; 185(4):621–8.

    Article  PubMed  CAS  Google Scholar 

  88. Tersmette, M., J.M. Lange, R.E. de Goede, et al., Association between biological properties of human immunodeficiency virus variants and risk for AIDS and AIDS mortality. Lancet 1989; 1(8645):983–5.

    Article  PubMed  CAS  Google Scholar 

  89. Koot, M., I.P.M. Keet, A.H.V. Vos, et al., Articles: prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993; 118(9):681–8.

    PubMed  CAS  Google Scholar 

  90. Marozsan, A.J., S.E. Kuhmann, T. Morgan, et al., Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCH-D). Virology 2005; 338(1):182–99.

    Article  PubMed  CAS  Google Scholar 

  91. Pastore, C., R. Nedellec, A. Ramos, et al., Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol 2006; 80(2):750–8.

    Article  PubMed  CAS  Google Scholar 

  92. Bunnik, E.M., E.D. Quakkelaar, A.C. van Nuenen, et al., Increased neutralization sensitivity of recently emerged CXCR4-using HIV-1 as compared to co-existing CCR5-using variants from the same patient. J Virol 2006:JVI.01983–06.

    Google Scholar 

  93. Moore, J.P., S.G. Kitchen, P. Pugach, et al., The CCR5 and CXCR4 coreceptors—central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 2004; 20(1):111–26.

    Article  PubMed  CAS  Google Scholar 

  94. Mayer, H., E.V.d. Ryst, M. Saag, et al., Safety and efficacy of MARAVIROC, a novel CCR5 antagonist, when used in combination with optimized background therapy for the treatment of antiretroviral-experienced subjects infected with dual/mixed-tropic HIV-1: 24-week results of a phase 2b exploratory trial. 16th International AIDS Conference. 2006. Toronto, Canada.

    Google Scholar 

  95. Kuhmann, S.E., P. Pugach, K.J. Kunstman, et al., Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J Virol 2004; 78(6):2790–807.

    Article  PubMed  CAS  Google Scholar 

  96. Baba, M., H. Miyake, X. Wang, et al., Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 2007; 51(2):707–715.

    Article  PubMed  CAS  Google Scholar 

  97. Rimsky, L.T., D.C. Shugars, and T.J. Matthews, Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 1998; 72(2):986–93.

    PubMed  CAS  Google Scholar 

  98. Mink, M., S.M. Mosier, S. Janumpalli, et al., Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 Binding and antiviral potency of enfuvirtide in vitro. J Virol 2005; 79(19): 12447–54.

    Article  PubMed  CAS  Google Scholar 

  99. Wei, X., J.M. Decker, H. Liu, et al., Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46(6):1896–905.

    Article  PubMed  CAS  Google Scholar 

  100. Xu, L., A. Pozniak, A. Wildfire, S.A. Stanfield-Oakley, et al., Emergence and evolution of enfuvirtide resistance following long-term therapy involves heptad repeat 2 mutations within gp41. Antimicrob Agents Chemother 2005; 49(3):1113–9.

    Article  PubMed  CAS  Google Scholar 

  101. Baldwin, C.E., R.W. Sanders, Y. Deng, et al., Emergence of a drug-dependent human immunodeficiency virus type 1 variant during therapy with the T20 fusion inhibitor. J Virol 2004; 78(22):12428–37.

    Article  PubMed  CAS  Google Scholar 

  102. Bai, X., K. Wilson, J. Seedorff, et al., The impact of the N43D resistance mutation on enfuvirtide sensitivity and six-helix bundle structure in combination with the E137K polymorphism. XV International Drug Resistance Workshop 2006; 11:S 55.

    Google Scholar 

  103. Heil, M.L., J.M. Decker, J.N. Sfakianos, et al., Determinants of human immunodeficiency virus type 1 baseline susceptibility to the fusion inhibitors enfuvirtide and T-649 reside outside the peptide interaction site. J Virol 2004; 78(14):7582–9.

    Article  PubMed  CAS  Google Scholar 

  104. Stanfield-Oakley, S.A., J. Jeffrey, C.B. McDanal, et al., Determinants of susceptibility to enfuvirtide map to gp41 in enfuvirtidenaive HIV-1. 12th International HIV Drug Resistance Workshop. 2003. Los Cabos, Mexico, 10–14 June 2003; Abstract 56.w

    Google Scholar 

  105. Su, C., G. Heilek-Snyder, D. Fenger, et al., The relationship between susceptibility to enfuvirtide of baseline viral recombinants and polymorphisms in the env region of R5-tropic HIV-1. 11th International HIV Drug Resistance Workshop. 2003. Los Cabos, Mexico.

    Google Scholar 

  106. Derdeyn, C.A., J.M. Decker, J.N. Sfakianos, et al., Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 2001; 75(18):8605–14.

    Article  PubMed  CAS  Google Scholar 

  107. Reeves, J.D., S.A. Gallo, N. Ahmad, et al., Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 2002; 99(25):16249–54.

    Article  PubMed  CAS  Google Scholar 

  108. Derdeyn, C.A., J.M. Decker, J.N. Sfakianos, et al., Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 2000; 74(18):8358–67.

    Article  PubMed  CAS  Google Scholar 

  109. Greenberg, M., C. McDanal, S. Stanfield-Oakley, et al., Virus sensitivity to T-20 and T-1249 is independent of coreceptor usage. 8th Conference on Retroviruses and Opportunistic Infections. 2001. Chicago, IL.

    Google Scholar 

  110. Wrin, T., W. Huang, J. Yap, et al., Evaluating HIV-1 coreceptor usage and inhibitors of virus entry using recombinant virus assays. 5th International Workshop on HIV Drug Resistance and Treatment Strategies. 2001. Scottsdale, AZ.

    Google Scholar 

  111. Coakley, E., C.J. Petropoulos, and J.M. Whitcomb, Assessing chemokine co-receptor usage in HIV. Curr Opin Infect Dis 2005; 18(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  112. Roman, F., D. Gonzalez, C. Lambert, et al., Uncommon mutations at residue positions critical for enfuvirtide (T-20) resistance in enfuvirtide-naive patients infected with subtype B and non-B HIV-1 strains. J Acquir Immune Defic Syndr 2003; 33(2):134–9.

    Article  PubMed  Google Scholar 

  113. Zollner, B., H.H. Feucht, M. Schroter, et al., Primary genotypic resistance of HIV-1 to the fusion inhibitor T-20 in long-term infected patients. AIDS 2001; 15(7):935–6.

    Article  PubMed  CAS  Google Scholar 

  114. Lu, J., P. Sista, F. Giguel, et al., Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 2004; 78(9):4628–37.

    Article  PubMed  CAS  Google Scholar 

  115. Marconi, V., S. Bonhoeffer, R. Paredes, et al., In vivo fitness of enfuvirtide resistant HIV-1 estimated by allele-specific PCR during partial treatment interruption and pulse intensification. 13th Conference on Retroviruses and Opportunistic Infections. 2006. Denver, CO.

    Google Scholar 

  116. Aquaro, S., R. D'Arrigo, V. Svicher, et al., Specific mutations in HIV-1 gp41 are associated with immunological success in HIV-1-infected patients receiving enfuvirtide treatment. J Antimicrob Chemother 2006; 58(4):714–22.

    Article  PubMed  CAS  Google Scholar 

  117. Pérez-Alvarez, L., R. Carmona, A. Ocampo, et al., Long-term monitoring of genotypic and phenotypic resistance to T20 in treated patients infected with HIV-1. J Med Virol 2006; 78(2): 141–7.

    Article  PubMed  CAS  Google Scholar 

  118. Poveda, E., B. Rodes, J.L. Labernardiere, et al., Evolution of genotypic and phenotypic resistance to Enfuvirtide in HIV-infected patients experiencing prolonged virologic failure. J Med Virol 2004; 74(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  119. LaBranche, C., D. Davison, R. Ferris, et al., Studies with 873140, a novel CCR5 antagonist,demonstrate synergy with enfuvirtide and potent inhibition of enfuvirtide-resistant R5-tropic HIV-1. 14th International HIV Drug Resistance Workshop. 2005. Quebec City, Canada.

    Google Scholar 

  120. Ray, N., J.E. Harrison, L.A. Blackburn, et al., Clinical resistance to enfuvirtide does not affect susceptibility to other classes of entry inhibitors. J Virol 2007; 81(7):3240–3250.

    Article  PubMed  CAS  Google Scholar 

  121. Repits, J., M. Oberg, J. Esbjornsson, et al., Selection of human immunodeficiency virus type 1 R5 variants with augmented replicative capacity and reduced sensitivity to entry inhibitors during severe immunodeficiency. J Gen Virol 2005; 86(Pt 10):2859–69.

    Article  PubMed  CAS  Google Scholar 

  122. Tremblay, C.L., F. Giguel, C. Kollmann, et al., Anti-human immunodeficiency virus interactions of SCH-C (SCH 351125), a CCR5 antagonist, with other antiretroviral agents in vitro. Antimicrob Agents Chemother 2002; 46(5):1336–9.

    Article  PubMed  CAS  Google Scholar 

  123. Murga, J.D., M. Franti, D.C. Pevear, et al., Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Chemother 2006; 50(10):3289–96.

    Article  PubMed  CAS  Google Scholar 

  124. Melby TE, Despirito M, Demasi RA, Heilek G, Thommes JA, Greenberg ML, Graham N. Association between specific enfuvirtide resistance mutations and CD4+ cell response during therapy. AIDS 2007; 21:2537–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Melby, T., Heilek, G., Cammack, N., Greenberg, M.L. (2009). Resistance to Enfuvirtide and Other HIV Entry Inhibitors. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_35

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics