Skip to main content

Antifungal Targets, Mechanisms of Action, and Resistance in Candida albicans

  • Chapter
Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

Antifungal resistance at the gene level has been studied in Candida albicans for about a decade now. Cloning of C. albicans genes by homology to resistance genes in Saccharomyces cerevisiae, heterologous expression of C. albicans genes in S. cerevisiae, regulated expression in C. albicans, and microarray- based expression analysis, have allowed rapid progress in identifying and studying the fi ve major C. albicans genes involved in resistance to clinically used antifungals: ABC transporter genes CDR1 and CDR2, major facilitator effl ux gene MDR1, and ergosterol biosynthesis genes ERG11 and ERG3. Analysis of these genes indicates that resistance involves alterations to the enzyme targeted by fl uconazole (FLZ), encoded by ERG11, and upregulation of P-glycoprotein type ABC transporters and major facilitators (MFs) that effl ux azoles and terbinafi ne. Potential alterations to ERG3 or its regulation have been understudied in C. albicans. Resistant isolates from clinical samples, especially in oropharyngeal candidiasis (OPC), typically display stepwise mutations in more than one of these genes. Key mutations hyperactivate transcriptional activators of CDR1 or MDR1. However, it is clear from in vivo and in vitro studies that mutations of these major genes do not completely account for the evolution of high-level azole resistance in some clinical isolates. More work is needed to identify other genes that contribute to resistance in C. albicans. Very little is understood about reversible, adaptive resistance of C. albicans, despite its potential clinical signifi - cance. Most clinical failures to control non-OPC infections occur with in vitro susceptible strains. There has been important discovery of tolerance mechanisms to azoles. Heterologous studies in S. cerevisiae on regulation of target genes have been less useful because of differences in regulation in C. albicans. Nevertheless, recent progress has been made in identifying genes that regulate CDR1, MDR1, and ERG genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, R. T. 2005. TOR signaling: an odyssey from cellular stress to the cell growth machinery. Curr Biol 15:R139–R141

    Article  PubMed  CAS  Google Scholar 

  2. Aerts, A. M., Francois, I. E., Bammens, L., Cammue, B. P., Smets, B., Winderickx, J., Accardo, S., De Vos, D. E., and Thevissen, K. 2006. Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 580:1903–1907

    Article  PubMed  CAS  Google Scholar 

  3. Akins, R. A. 2005. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318

    Article  PubMed  CAS  Google Scholar 

  4. Al-Fattani, M. A., and Douglas, L. J. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008

    Article  PubMed  CAS  Google Scholar 

  5. Al-Fattani, M. A., and Douglas, L. J. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48:3291–3297

    Article  PubMed  CAS  Google Scholar 

  6. Alarco, A. M., Balan, I., Talibi, D., Mainville, N., and Raymond, M. 1997. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272(31):19304–19313

    Article  PubMed  CAS  Google Scholar 

  7. Alarco, A. M., and Raymond, M. 1999. The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181(3):700–708

    PubMed  CAS  Google Scholar 

  8. Albertson, G. D., Niimi, M., Cannon, R. D., and Jenkinson, H. F. 1996. Multiple efflux mechanisms are involved in Candida albi-cans fluconazole resistance. Antimicrob Agents Chemother40(12):2835–2841

    PubMed  CAS  Google Scholar 

  9. Aleman, C., Annereau, J. P., Liang, X. J., Cardarelli, C. O., Taylor, B., Yin, J. J., Aszalos, A., and Gottesman, M. M. 2003. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res 63:3084–3091

    PubMed  CAS  Google Scholar 

  10. An, D., and Parsek, M. R. 2007. The promise and peril of tran-scriptional profiling in biofilm communities. Curr Opin Microbiol 10:292–296

    Article  PubMed  CAS  Google Scholar 

  11. Anderson, J. B., Sirjusingh, C., Parsons, A. B., Boone, C., Wickens, C., Cowen, L. E., and Kohn, L. M. 2003. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 163(4):1287–1298

    PubMed  CAS  Google Scholar 

  12. Antachopoulos, C., Meletiadis, J., Sein, T., Roilides, E., and Walsh, T. J. 2007. Concentration-dependent effects of caspofun-gin on the metabolic activity of Aspergillus species. Antimicrob Agents Chemother 51:881–887

    Article  PubMed  CAS  Google Scholar 

  13. Aoki, K., Uchiyama, R., Yamauchi, S., Katayama, T., Itonori, S., Sugita, M., Hada, N., Yamada-Hada, J., Takeda, T., Kumagai, H., and Yamamoto, K. 2004. Newly discovered neutral glycosphingol-ipids in aureobasidin A-resistant zygomycetes: identification of a novel family of Gala-series glycolipids with core Gal alpha 1–6Gal beta 1–6Gal beta sequences. J Biol Chem 279:32028–32034

    Article  PubMed  CAS  Google Scholar 

  14. Aoki, S., and Ito-Kuwa, S. 1987. Induction of petite mutation with acriflavine and elevated temperature in Candida albicans. J Med Vet Mycol 25:269–277

    Article  PubMed  CAS  Google Scholar 

  15. Aoki, S., Ito-Kuwa, S., Nakamura, Y., and Masuhara, T. 1990. Com parative pathogenicity of a wild-type strain and respiratory mutants of Candida albicans in mice. Int J Med Microbiol 273:332–343

    CAS  Google Scholar 

  16. Arie, Z. R., Altboum, Z., Berdicevsky, I., and Segal, E. 1998. Isolation of a petite mutant from a histidine auxotroph of Candida albicans and its characterization [in process citation]. Mycopathologia 141:137–142

    Article  Google Scholar 

  17. Arie, Z. R., Altboum, Z., Sandovsky-Losica, H., and Segal, E. 1998. Adhesion of Candida albicans mutant strains to host tissue. FEMS Microbiol Lett 163:121–127

    Article  PubMed  CAS  Google Scholar 

  18. Arsham, A. M., and Neufeld, T. P. 2006. Thinking globally and acting locally with TOR. Curr Opin Cell Biol 18:589–597

    Article  PubMed  CAS  Google Scholar 

  19. Arthington-Skaggs, B. A., Crowell, D. N., Yang, H., Sturley, S. L., and Bard, M. 1996. Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett 392:161–165

    Article  PubMed  CAS  Google Scholar 

  20. Bachmann, S. P., Patterson, T. F., and Lopez-Ribot, J. L. 2002. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol 40:2228–2230

    Article  PubMed  CAS  Google Scholar 

  21. Bachmann, S. P., VandeWalle, K., Ramage, G., Patterson, T. F., Wickes, B. L., Graybill, J. R., and Lopez-Ribot, J. L. 2002. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 46:3591–3596

    Article  PubMed  CAS  Google Scholar 

  22. Bader, O., Schaller, M., Klein, S., Kukula, J., Haack, K., Muhlschlegel, F., Korting, H. C., Schafer, W., and Hube, B. 2001. The KEX2 gene of Candida glabrata is required for cell surface integrity. Mol Microbiol 41:1431–1444

    Article  PubMed  CAS  Google Scholar 

  23. Bader, T., Bodendorfer, B., Schroppel, K., and Morschhauser, J. 2003. Calcineurin is essential for virulence in Candida albicans. Infect Immun 71(9):5344–5354

    Article  PubMed  CAS  Google Scholar 

  24. Bader, T., Schroppel, K., Bentink, S., Agabian, N., Kohler, G., and Morschhauser, J. 2006. Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74:4366–4369

    Article  PubMed  CAS  Google Scholar 

  25. Baev, D., Rivetta, A., Vylkova, S., Sun, J. N., Zeng, G. F., Slayman, C. L., and Edgerton, M. 2004. The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem 279:55060–55072

    Article  PubMed  CAS  Google Scholar 

  26. Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J., and Cardenas, M. E. 2007. Sensing the environment: lessons from fungi. Nat Rev Micro 5:57–69

    Article  CAS  Google Scholar 

  27. Baixench, M. T., Aoun, N., Desnos-Ollivier, M., Garcia-Hermoso, D., Bretagne, S., Ramires, S., Piketty, C., and Dannaoui, E. 2007. Acquired resistance to echinocandins in Candida albicans: case report and review. J Antimicrob Chemother 59:1076–1083

    Article  PubMed  CAS  Google Scholar 

  28. Balan, I., Alarco, A. M., and Raymond, M. 1997. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol 179(23):7210–7218

    PubMed  CAS  Google Scholar 

  29. Balashov, S. V., Park, S., and Perlin, D. S. 2006. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother 50:2058–2063

    Article  PubMed  CAS  Google Scholar 

  30. Balzi, E., Chen, W., Ulaszewski, S., Capieaux, E., and Goffeau, A. 1987. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. J Biol Chem 262(35):16871–16879

    PubMed  CAS  Google Scholar 

  31. Balzi, E., Wang, M., Leterme, S., Van Dyck, L., and Goffeau, A. 1994. PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 269(3):2206–2214

    PubMed  CAS  Google Scholar 

  32. Bard, M., Lees, N. D., Barbuch, R. J., and Sanglard, D. 1987. Characterization of a cytochrome P450 deficient mutant of Candida albicans. Biochem Biophys Res Commun 147:794–800

    Article  PubMed  CAS  Google Scholar 

  33. Bard, M., Lees, N. D., Burnett, A. S., and Parker, R. A. 1988. Isolation and characterization of mevinolin resistant mutants of Saccharomyces cerevisiae. J Gen Microbiol 134:1071–1078

    PubMed  CAS  Google Scholar 

  34. Bard, M., Lees, N. D., Burrows, L. S., and Kleinhans, F. W. 1978. Differences in crystal violet uptake and cation-induced death among yeast sterol mutants. J Bacteriol 135:1146–1148

    PubMed  CAS  Google Scholar 

  35. Bard, M., Lees, N. D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., Koegel, C., and Loper, J. C. 1993. Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 28:963–967

    Article  PubMed  CAS  Google Scholar 

  36. Barker, K. S., Crisp, S., Wiederhold, N., Lewis, R. E., Bareither, B., Eckstein, J., Barbuch, R., Bard, M., and Rogers, P. D. 2004. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 54:376–385

    Article  PubMed  CAS  Google Scholar 

  37. Barker, K. S., Crisp, S., Wiederhold, N., Lewis, R. E., Bareither, B., Eckstein, J., Barbuch, R., Bard, M., and Rogers, P. D. 2004. Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother 54(2):376–385

    Article  PubMed  CAS  Google Scholar 

  38. Barker, K. S., Pearson, M. M., and Rogers, P. D. 2003. Identification of genes differentially expressed in association with reduced azole susceptibility in Saccharomyces cerevisiae. J Antimicrob Chemother 51:1131–1140

    Article  PubMed  CAS  Google Scholar 

  39. Basilio, A., Justice, M., Harris, G., Bills, G., Collado, J., de la Cruz, M., Diez, M. T., Hernandez, P., Liberator, P., Nielsen kahn, J., Pelaez, F., Platas, G., Schmatz, D., Shastry, M., Tormo, J. R., Andersen, G. R., and Vicente, F. 2006. The discovery of moriniafungin, a novel sordarin derivative produced by Morinia pestalozzioides. Bioorg Med Chem 14:560–566

    Article  PubMed  CAS  Google Scholar 

  40. Basson, M. E., Thorsness, M., and Rine, J. 1986. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A 83:5563–5567

    Article  PubMed  CAS  Google Scholar 

  41. Bauer, B. E., Wolfger, H., and Kuchler, K. 1999. Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461:217–236

    Article  PubMed  CAS  Google Scholar 

  42. Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., and Tomita, M. 1993. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Med Microbiol Immunol (Berl) 182:97–105

    Article  CAS  Google Scholar 

  43. Ben-Josef, A. M., Cutright, J. L., Manavathu, E. K., and Sobel, J. D. 2003. CAN-296-P is effective against cutaneous candidiasis in guinea pigs. Int J Antimicrob Agents 22:168–171

    Article  PubMed  CAS  Google Scholar 

  44. Ben-Josef, A. M., Manavathu, E. K., Platt, D., and Sobel, J. D. 1997. In vitro antifungal activity of CAN-296: a naturally occurring complex carbohydrate. J Antibiot (Tokyo) 50:937–943

    CAS  Google Scholar 

  45. Ben-Josef, A. M., Manavathu, E. K., Platt, D., and Sobel, J. D. 1999. Involvement of calcium inhibitable binding to the cell wall in the fungicidal activity of CAN-296. J Antimicrob Chemother 44:217–222

    Article  PubMed  CAS  Google Scholar 

  46. Ben-Josef, A. M., Manavathu, E. K., Platt, D., and Sobel, J. D. 2000. Proton translocating ATPase mediated fungicidal activity of a novel complex carbohydrate: CAN-296. Eur J Med Res 5:126

    Google Scholar 

  47. Bennett, J. E., Izumikawa, K., and Marr, K. A. 2004. Mechanism of Increased Fluconazole Resistance in Candida glabrata during Prophylaxis. Antimicrob Agents Chemother 48:1773–1777

    Article  PubMed  CAS  Google Scholar 

  48. Biswas, S. K., and Chaffin, W. L. 2005. Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. Curr Microbiol 51:100–104

    Article  PubMed  CAS  Google Scholar 

  49. Blankenship, J. R., and Heitman, J. 2005. Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun 73:5767–5774

    Article  PubMed  CAS  Google Scholar 

  50. Blankenship, J. R., and Mitchell, A. P. 2006. How to build a bio-film: a fungal perspective. Curr Opin Microbiol 9:588–594

    Article  PubMed  CAS  Google Scholar 

  51. Blignaut, E., Molepo, J., Pujol, C., Soll, D. R., and Pfaller, M. A. 2005. Clade-related amphotericin B resistance among South African Candida albicans isolates. Diagn Microbiol Infect Dis 53:29–31

    Article  PubMed  CAS  Google Scholar 

  52. Broughton, M. C., Bard, M., and Lees, N. D. 1991. Polyene resistance in ergosterol producing strains of Candida albicans. Mycoses 34:75–83

    Article  PubMed  CAS  Google Scholar 

  53. Brun, S., Berges, T., Poupard, P., Vauzelle-Moreau, C., Renier, G., Chabasse, D., and Bouchara, J. P. 2004. Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother 48(5):1788–1796

    Article  PubMed  CAS  Google Scholar 

  54. Brutyan, R. A., and McPhie, P. 1996. On the one-sided action of amphotericin B on lipid bilayer membranes. J Gen Physiol 107:69–78

    Article  PubMed  CAS  Google Scholar 

  55. Bujdakova, H., Kral'ova, K., and Sidoova, E. 1995. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzothiazolylaminomethyl)-2-benzoxazolinethiones. Pharmazie 50:156

    PubMed  CAS  Google Scholar 

  56. Bujdakova, H., Kuchta, T., Sidoova, E., and Gvozdjakova, A. 1993. Anti-Candida activity of four antifungal benzothiazoles. FEMS Microbiol Lett 112:329–333

    Article  PubMed  CAS  Google Scholar 

  57. Cameron, A. M., Steiner, J. P., Roskams, A. J., Ali, S. M., Ronnett, G. V., and Snyder, S. H. 1995. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83(3):463–472

    Article  PubMed  CAS  Google Scholar 

  58. Cao, Y. Y., Cao, Y. B., Xu, Z., Ying, K., Li, Y., Xie, Y., Zhu, Z. Y., Chen, W. S., and Jiang, Y. Y. 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49:584–589

    Article  PubMed  CAS  Google Scholar 

  59. Capa, L., Mendoza, A., Lavandera, J. L., Gomez de las Heras, F., and Garcia-Bustos, J. F. 1998. Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42:2694–2699

    PubMed  CAS  Google Scholar 

  60. Capobianco, J. O., Zakula, D., Coen, M. L., and Goldman, R. C. 1993. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action. Biochem Biophys Res Commun 190:1037–1044

    Article  PubMed  CAS  Google Scholar 

  61. Carver, P. L. 2004. Micafungin. Ann Pharmacother 38:1707–1721

    Article  PubMed  CAS  Google Scholar 

  62. Casalinuovo, I. A., Di Francesco, P., and Garaci, E. 2004. Fluconazole resistance in Candida albicans: a review of mechanisms. Eur Rev Med Pharmacol Sci 8:69–77

    PubMed  CAS  Google Scholar 

  63. Casey, W. M., Keesler, G. A., and Parks, L. W. 1992. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol 174:7283–7288

    PubMed  CAS  Google Scholar 

  64. Cassone, A., Kerridge, D., and Gale, E. F. 1979. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol 110:339–349

    PubMed  CAS  Google Scholar 

  65. Chami, N., Chami, F., Bennis, S., Trouillas, J., and Remmal, A. 2004. Antifungal treatment with carvacrol and eugenol of oral can-didiasis in immunosuppressed rats. Braz J Infect Dis 8:217–226

    Article  PubMed  CAS  Google Scholar 

  66. Chamilos, G., Lewis, R. E., and Kontoyiannis, D. P. 2006. Lovastatin has significant activity against zygomycetes and interacts synergistically with voriconazole. Antimicrob Agents Chemother 50:96–103

    Article  PubMed  CAS  Google Scholar 

  67. Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T., and Ghannoum, M. A. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394

    Article  PubMed  CAS  Google Scholar 

  68. Chandra, J., Mukherjee, P. K., Leidich, S. D., Faddoul, F. F., Hoyer, L. L., Douglas, L. J., and Ghannoum, M. A. 2001. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80:903–908

    Article  PubMed  CAS  Google Scholar 

  69. Chandra, J., Zhou, G., and Ghannoum, M. A. 2005. Fungal bio-films and antimycotics. Curr Drug Targets 6:887–894

    Article  PubMed  CAS  Google Scholar 

  70. Chapeland-Leclerc, F., Bouchoux, J., Goumar, A., Chastin, C., Villard, J., and Noel, T. 2005. Inactivation of the FCY2 gene encoding purine-cytosine permease promotes cross-resistance to flucytosine and fluconazole in Candida lusitaniae. Antimicrob Agents Chemother 49:3101–3108

    Article  PubMed  CAS  Google Scholar 

  71. Chau, A. S., Mendrick, C. A., Sabatelli, F. J., Loebenberg, D., and McNicholas, P. M. 2004. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48:2124–2131

    Article  PubMed  CAS  Google Scholar 

  72. Chen, C. G., Yang, Y. L., Shih, H. I., Su, C. L., and Lo, H. J. 2004. CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrob Agents Chemother 48:4505–4512

    Article  PubMed  CAS  Google Scholar 

  73. Chen, J., and Powers, T. 2006. Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae. Curr Genet 49:281–293

    Article  PubMed  CAS  Google Scholar 

  74. Cheng, G., Yeater, K. M., and Hoyer, L. L. 2006. Cellular and molecular biology of Candida albicans estrogen response. Eukaryot Cell 5:180–191

    Article  PubMed  CAS  Google Scholar 

  75. Cira, L. A., Gonzalez, G. A., Torres, J. C., Pelayo, C., Gutierrez, M., and Ramirez, J. 2007. Heterologous expression of Fusarium oxysporum tomatinase in Saccharomyces cerevisiae increases its resistance to saponins and improves ethanol production during the fermentation of Agave tequilana Weber var. azul and Agave salmi-ana must. Antonie Van Leeuwenhoek 93:259–266

    Article  PubMed  CAS  Google Scholar 

  76. Clemons, K. V., Espiritu, M., Parmar, R., and Stevens, D. A. 2006. Assessment of the paradoxical effect of caspofungin in therapy of candidiasis. Antimicrob Agents Chemother 50:1293–1297

    Article  PubMed  CAS  Google Scholar 

  77. Cocuaud, C., Rodier, M. H., Daniault, G., and Imbert, C. 2005. Anti-metabolic activity of caspofungin against Candida albicans and Candida parapsilosis biofilms. J Antimicrob Chemother 56:507–512

    Article  PubMed  CAS  Google Scholar 

  78. Conz, C., Otto, H., Peisker, K., Gautschi, M., Wolfle, T., Mayer, M. P., and Rospert, S. 2007. Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex. 282:33977–33984

    CAS  Google Scholar 

  79. Coste, A., Selmecki, A., Forche, A., Diogo, D., Bougnoux, M. E., d'Enfert, C., Berman, J., and Sanglard, D. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albi-cans isolates. Eukaryot Cell 6:1889–1904

    Article  PubMed  CAS  Google Scholar 

  80. Coste, A., Turner, V., Ischer, F., Morschhauser, J., Forche, A., Selmecki, A., Berman, J., Bille, J., and Sanglard, D. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172:2139–2156

    Article  PubMed  CAS  Google Scholar 

  81. Coste, A. T., Karababa, M., Ischer, F., Bille, J., and Sanglard, D. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3:1639–1652

    Article  PubMed  CAS  Google Scholar 

  82. Coste, A. T., Ramsdale, M., Ischer, F., and Sanglard, D. 2008. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleio-tropic drug resistance in Saccharomyces cerevisiae. Microbiology 154:1491–1501

    Article  PubMed  CAS  Google Scholar 

  83. Cowen, L. E., Nantel, A., Whiteway, M. S., Thomas, D. Y., Tessier, D. C., Kohn, L. M., and Anderson, J. B. 2002. Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci U S A 99(14):9284–9289

    Article  PubMed  CAS  Google Scholar 

  84. Cowen, L. E., Sanglard, D., Calabrese, D., Sirjusingh, C., Anderson, J. B., and Kohn, L. M. 2000. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol 182:1580–1591

    Article  Google Scholar 

  85. Crowley, J. H., Tove, S., and Parks, L. W. 1998. A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae. Curr Genet 34:93–99

    Article  PubMed  CAS  Google Scholar 

  86. Cruz, M. C., Goldstein, A. L., Blankenship, J., Del Poeta, M., Perfect, J. R., McCusker, J. H., Bennani, Y. L., Cardenas, M. E., and Heitman, J. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoform-ans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45(11):3162–3170

    Article  PubMed  CAS  Google Scholar 

  87. Cruz, M. C., Goldstein, A. L., Blankenship, J. R., Del Poeta, M., Davis, D., Cardenas, M. E., Perfect, J. R., McCusker, J. H., and Heitman, J. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 21:546–559

    Article  PubMed  CAS  Google Scholar 

  88. Dann, S. G., and Thomas, G. 2006. The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 580:2821–2829

    Article  PubMed  CAS  Google Scholar 

  89. De Backer, M. D., Ilyina, T., Ma, X. J., Vandoninck, S., Luyten, W. H., and Vanden Bossche, H. 2001. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother 45:1660–1670

    Article  PubMed  CAS  Google Scholar 

  90. De Deken, X., and Raymond, M. 2004. Constitutive activation of the PDR16 promoter in a Candida albicans azole-resistant clinical isolate overexpressing CDR1 and CDR2. Antimicrob Agents Chemother 48:2700–2703

    Article  PubMed  CAS  Google Scholar 

  91. De Lucca, A. J., Bland, J. M., Boue, S., Vigo, C. B., Cleveland, T. E., and Walsh, T. J. 2006. Synergism of CAY-1 with amphoter-icin B and itraconazole. Chemotherapy 52:285–287

    Article  PubMed  CAS  Google Scholar 

  92. De Lucca, A. J., Bland, J. M., Vigo, C. B., Cushion, M., Selitrennikoff, C. P., Peter, J., and Walsh, T. J. 2002. CAY-I, a fungicidal saponin from Capsicum sp. fruit. Med Mycol 40:131–137

    Article  PubMed  CAS  Google Scholar 

  93. de Micheli, M., Bille, J., Schueller, C., and Sanglard, D. 2002. A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Mol Microbiol 43(5):1197–1214

    Article  PubMed  CAS  Google Scholar 

  94. De Smet, K., and Contreras, R. 2005. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347

    Article  PubMed  CAS  Google Scholar 

  95. De Smet, K., Reekmans, R., and Contreras, R. 2004. Role of oxidative phosphorylation in histatin 5-induced cell death in Saccharomyces cerevisiae. Biotechnol Lett 26:1781–1785

    Article  PubMed  CAS  Google Scholar 

  96. De Virgilio, C., and Loewith, R. 2006. Cell growth control: little eukaryotes make big contributions. Oncogene 25:6392–6415

    Article  PubMed  CAS  Google Scholar 

  97. De Virgilio, C., and Loewith, R. 2006. The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    Article  PubMed  CAS  Google Scholar 

  98. Defontaine, A., Bouchara, J. P., Declerk, P., Planchenault, C., Chabasse, D., and Hallet, J. N. 1999. In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida gla-brata. J Med Microbiol 48(7):663–670

    Article  PubMed  CAS  Google Scholar 

  99. Delaveau, T., Delahodde, A., Carvajal, E., Subik, J., and Jacq, C. 1994. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet 244(5):501–511

    Article  PubMed  CAS  Google Scholar 

  100. Dementhon, K., Iyer, G., and Glass, N. L. 2006. VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa. Eukaryot Cell 5:2161–2173

    Article  PubMed  CAS  Google Scholar 

  101. den Hertog, A. L., van Marle, J., van Veen, H. A., Van't Hof, W., Bolscher, J. G., Veerman, E. C., and Nieuw Amerongen, A. V. 2005. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695

    Article  CAS  Google Scholar 

  102. den Hertog, A. L., van Marle, J., Veerman, E. C., Valentijn-Benz, M., Nazmi, K., Kalay, H., Grun, C. H., Van't Hof, W., Bolscher, J. G., and Nieuw Amerongen, A. V. 2006. The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387:1495–1502

    Article  PubMed  CAS  Google Scholar 

  103. Denning, D. W. 2003. Echinocandin antifungal drugs. Lancet 362:1142

    Article  PubMed  CAS  Google Scholar 

  104. Denning, D. W. 2003. Echinocandin antifungal drugs. Lancet 362(9390):1142–1151.

    Article  PubMed  CAS  Google Scholar 

  105. Dickman, D. A., Ding, H., Li, Q., Nilius, A. M., Balli, D. J., Ballaron, S. J., Trevillyan, J. M., Smith, M. L., Seif, L. S., Kim, K., Sarthy, A., Goldman, R. C., Plattner, J. J., and Bennani, Y. L. 2000. Antifungal rapamycin analogues with reduced immu-nosuppressive activity. Bioorg Med Chem Lett 10:1405–1408

    Article  PubMed  CAS  Google Scholar 

  106. Dimster-Denk, D., Rine, J., Phillips, J., Scherer, S., Cundiff, P., DeBord, K., Gilliland, D., Hickman, S., Jarvis, A., Tong, L., and Ashby, M. 1999. Comprehensive evaluation of isoprenoid biosynthesis regulation in Saccharomyces cerevisiae utilizing the Genome Reporter Matrix(TM). J. Lipid Res. 40:850–860

    PubMed  CAS  Google Scholar 

  107. do Valle Matta, M. A., Jonniaux, J. L., Balzi, E., Goffeau, A., and van den Hazel, B. 2001. Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 272:111–119

    Article  PubMed  CAS  Google Scholar 

  108. Dodgson, A. R., Dodgson, K. J., Pujol, C., Pfaller, M. A., and Soll, D. R. 2004. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother 48(6):2223–2227

    Article  PubMed  CAS  Google Scholar 

  109. Dogra, S., Krishnamurthy, S., Gupta, V., Dixit, B. L., Gupta, C. M., Sanglard, D., and Prasad, R. 1999. Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast 15(2):111–121

    Article  PubMed  CAS  Google Scholar 

  110. Dominguez, J. M., Gomez-Lorenzo, M. G., and Martin, J. J. 1999. Sordarin inhibits fungal protein synthesis by blocking transloca-tion differently to fusidic acid. J Biol Chem 274:22423–22427

    Article  PubMed  CAS  Google Scholar 

  111. Dominguez, J. M., Kelly, V. A., Kinsman, O. S., Marriott, M. S., Gomez de las Heras, F., and Martin, J. J. 1998. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42:2274–2278

    PubMed  CAS  Google Scholar 

  112. Dominguez, J. M., and Martin, J. J. 1998. Identification of elongation factor 2 as the essential protein targeted by sordarins in Candida albicans. Antimicrob Agents Chemother 42:2279–2283

    PubMed  CAS  Google Scholar 

  113. Dong, J., Vylkova, S., Li, X. S., and Edgerton, M. 2003. Calcium blocks fungicidal activity of human salivary histatin 5 through disruption of binding with Candida albicans. J Dent Res 82:748–752

    Article  PubMed  CAS  Google Scholar 

  114. Douglas, C. M., D'Ippolito, J. A., Shei, G. J., Meinz, M., Onishi, J., Marrinan, J. A., Li, W., Abruzzo, G. K., Flattery, A., Bartizal, K., Mitchell, A., and Kurtz, M. B. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479

    PubMed  CAS  Google Scholar 

  115. Douglas, C. M., D'Ippolito, J. A., Shei, G. J., Meinz, M., Onishi, J., Marrinan, J. A., Li, W., Abruzzo, G. K., Flattery, A., Bartizal, K., Mitchell, A., and Kurtz, M. B. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 41(11):2471–2479

    PubMed  CAS  Google Scholar 

  116. Douglas, C. M., Foor, F., Marrinan, J. A., Morin, N., Nielsen, J. B., Dahl, A. M., Mazur, P., Baginsky, W., Li, W., el-Sherbeini, M., and et al. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subu-nit of 1,3- beta-D-glucan synthase. Proc Natl Acad Sci U S A 91:12907–12911

    Article  PubMed  CAS  Google Scholar 

  117. Douglas, C. M., Marrinan, J. A., Li, W., and Kurtz, M. B. 1994. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J Bacteriol 176:5686–5696

    PubMed  CAS  Google Scholar 

  118. Douglas, L. J. 2002. Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19:139–143

    PubMed  Google Scholar 

  119. Du, W., Coaker, M., Sobel, J. D., and Akins, R. A. 2004. Shuttle vectors for Candida albicans: control of plasmid copy number and elevated expression of cloned genes. Curr Genet 45:390–398

    Article  PubMed  CAS  Google Scholar 

  120. Dumitru, R., Hornby, J. M., and Nickerson, K. W. 2004. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48:2350–2354

    Article  PubMed  CAS  Google Scholar 

  121. Dunkel, N., Liu, T. T., Barker, K. S., Homayouni, R., Morschhauser, J., and Rogers, P. D. 2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7:1180–1190

    Article  PubMed  CAS  Google Scholar 

  122. Edinger, A. L. 2007. Controlling cell growth and survival through regulated nutrient transporter expression. Biochem J 406:1–12

    Article  PubMed  CAS  Google Scholar 

  123. Egner, R., Bauer, B. E., and Kuchler, K. 2000. The transmem-brane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 35:1255–1263

    Article  PubMed  CAS  Google Scholar 

  124. Eisenman, H. C., and Craig, E. A. 2004. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1. Mol Microbiol 53:335–344

    Article  PubMed  CAS  Google Scholar 

  125. Endo, M., Takesako, K., Kato, I., and Yamaguchi, H. 1997. Fungicidal action of aureobasidin A, a cyclic depsipeptide anti-fungal antibiotic, against Saccharomyces cerevisiae. Antimicrob Agents Chemother 41(3):672–676

    PubMed  CAS  Google Scholar 

  126. Fairn, G. D., Curwin, A. J., Stefan, C. J., and McMaster, C. R. 2007. The oxysterol binding protein Kes1p regulates golgi apparatus phosphatidylinositol-4-phosphate function. Proc Natl Acad Sci U S A 104:15352–15357

    Article  PubMed  Google Scholar 

  127. Fang, A., Wong, G. K., and Demain, A. L. 2000. Enhancement of the antifungal activity of rapamycin by the coproduced elaiophy-lin and nigericin. J Antibiot (Tokyo) 53:158–162

    CAS  Google Scholar 

  128. Fasoli, M. O., Kerridge, D., Morris, P. G., and Torosantucci, A. 1990. 19F nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrob Agents Chemother 34(10):1996–2006

    PubMed  CAS  Google Scholar 

  129. Favel, A., Michel-Nguyen, A., Peyron, F., Martin, C., Thomachot, L., Datry, A., Bouchara, J. P., Challier, S., Noel, T., Chastin, C., and Regli, P. 2003. Colony morphology switching of Candida lusitaniae and acquisition of multidrug resistance during treatment of a renal infection in a newborn: case report and review of the literature. Diagn Microbiol Infect Dis 47:331–339

    Article  PubMed  Google Scholar 

  130. Ferrer, E. 2006. Spotlight on targeting aminoacyl-tRNA syn-thetases for the treatment of fungal infections. Drug News Perspect 19:347–348

    Article  PubMed  CAS  Google Scholar 

  131. Fitzgerald-Hughes, D. H., Coleman, D. C., and O'Connell, B. C. 2007. Differentially expressed proteins in derivatives of Candida albicans displaying a stable histatin 3-resistant phenotype. Antimicrob Agents Chemother 51:2793–2800

    Article  PubMed  CAS  Google Scholar 

  132. Fitzgerald, D. H., Coleman, D. C., and O'Connell, B. C. 2003. Binding, internalisation and degradation of histatin 3 in histatin-resistant derivatives of Candida albicans. FEMS Microbiol Lett 220:247–253

    Article  PubMed  CAS  Google Scholar 

  133. Fox, T. D., Folley, L. S., Mulero, J. J., McMullin, T. W., Thorsness, P. E., Hedin, L. O., and Costanzo, M. C. 1991. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 194:149–165

    Article  PubMed  CAS  Google Scholar 

  134. Franz, R., Michel, S., and Morschhäuser, J.. 1998. A fourth gene from the Candida albicans CDR family of ABC transporters. Curr Microbiol 37:359–361

    Article  Google Scholar 

  135. Franz, R., Michel, S., and Morschhäuser, J. 1998. A fourth gene from the Candida albicans CDR family of ABC transporters. Gene 220(1–2):91–98

    Article  PubMed  CAS  Google Scholar 

  136. Fukuoka, T., Johnston, D. A., Winslow, C. A., de Groot, M. J., Burt, C., Hitchcock, C. A., and Filler, S. G. 2003. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother 47:1213–1219

    Article  PubMed  CAS  Google Scholar 

  137. Funk, D., Schrenk, H. H., and Frei, E. 2007. Serum albumin leads to false-positive results in the XTT and the MTT assay. Biotechniques 43:178, 180, 182 passim

    Article  PubMed  CAS  Google Scholar 

  138. Gaber, R. F., Copple, D. M., Kennedy, B. K., Vidal, M., and Bard, M. 1989. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 9(8):3447–3456.

    PubMed  CAS  Google Scholar 

  139. Gaber, R. F., Copple, D. M., Kennedy, B. K., Vidal, M., and Bard, M. 1989. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol 9:3447–3456

    PubMed  CAS  Google Scholar 

  140. Gachotte, D., Pierson, C. A., Lees, N. D., Barbuch, R., Koegel, C., and Bard, M. 1997. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc Natl Acad Sci U S A 94:11173–11178

    Article  PubMed  CAS  Google Scholar 

  141. Gale, E. F., Ingram, J., Kerridge, D., Notario, V., and Wayman, F. 1980. Reduction of amphotericin resistance in stationary phase cultures of Candida albicans by treatment with enzymes. J Gen Microbiol 117:383–391

    PubMed  CAS  Google Scholar 

  142. Gale, E. F., Johnson, A. M., Kerridge, D., and Koh, T. Y. 1975. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth. J Gen Microbiol 87:20–36

    PubMed  CAS  Google Scholar 

  143. Gale, E. F., Johnson, A. M., Kerridge, D., and Wayman, F. 1980. Phenotypic resistance to miconazole and amphotericin B in Candida albicans. J Gen Microbiol 117:535–538

    PubMed  CAS  Google Scholar 

  144. Garcia-Marcos, M., Pochet, S., Marino, A., and Dehaye, J. P. 2006. P2X7 and phospholipid signalling: the search of the “missing link” in epithelial cells. Cell Signal 18:2098–2104

    Article  PubMed  CAS  Google Scholar 

  145. Garcia-Rodriguez, L. J., Trilla, J. A., Castro, C., Valdivieso, M. H., Duran, A., and Roncero, C. 2000. Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett 478:84–88

    Article  PubMed  CAS  Google Scholar 

  146. Garcia-Sanchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J. M., and d'Enfert, C. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. 3:536–545

    CAS  Google Scholar 

  147. Gardiner, R. E., Souteropoulos, P., Park, S., and Perlin, D. S. 2005. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol 43(Suppl 1): S299–S305

    Article  PubMed  CAS  Google Scholar 

  148. Gaur, N. A., Puri, N., Karnani, N., Mukhopadhyay, G., Goswami, S. K., and Prasad, R. 2004. Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans. FEMS Yeast Res 4:389–399

    Article  PubMed  CAS  Google Scholar 

  149. Gauthier, C., Weber, S., Alarco, A. M., Alqawi, O., Daoud, R., Georges, E., and Raymond, M. 2003. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters. Antimicrob Agents Chemother 47(5):1543–1554

    Article  PubMed  CAS  Google Scholar 

  150. Geber, A., Hitchcock, C. A., Swartz, J. E., Pullen, F. S., Marsden, K. E., Kwon-Chung, K. J., and Bennett, J. E. 1995. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 39:2708–2717

    PubMed  CAS  Google Scholar 

  151. Geraghty, P., and Kavanagh, K. 2003. Disruption of mitochondrial function in Candida albicans leads to reduced cellular ergosterol levels and elevated growth in the presence of amphotericin B. Arch Microbiol 179(4):295–300

    PubMed  CAS  Google Scholar 

  152. Geraghty, P., and Kavanagh, K. 2003. Erythromycin, an inhibitor of mitoribosomal protein biosynthesis, alters the amphoter-icin B susceptibility of Candida albicans. J Pharm Pharmacol 55:179–184

    Article  PubMed  Google Scholar 

  153. Ghannoum, M. A., and Rice, L. B. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517

    PubMed  CAS  Google Scholar 

  154. Ghetie, M. A., Marches, R., Kufert, S., and Vitetta, E. S. 2004. An anti-CD19 antibody inhibits the interaction between P-glycoprotein (P-gp) and CD19, causes P-gp to translocate out of lipid rafts, and chemosensitizes a multidrug-resistant (MDR) lymphoma cell line. Blood 104:178–183

    Article  PubMed  CAS  Google Scholar 

  155. Ghosh, M., Shen, J., and Rosen, B. P. 1999. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  PubMed  CAS  Google Scholar 

  156. Goldstein, J. L., and Brown, M. S. 1990. Regulation of the meval-onate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  157. Gomez-Lorenzo, M. G., and Garcia-Bustos, J. F. 1998. Ribosomal P-protein stalk function is targeted by sordarin antifungals. J Biol Chem 273:25041–25044

    Article  PubMed  CAS  Google Scholar 

  158. Graminha, M. A., Rocha, E. M., Prade, R. A., and Martinez-Rossi, N. M. 2004. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans. Antimicrob Agents Chemother 48(9):3530–3535

    Article  PubMed  CAS  Google Scholar 

  159. Gray, C. H., Ines Borges-Walmsley, M., Evans, G. J., and Walmsley, A. R. 2003. The pfr1 gene from the human pathogenic fungus Paracoccidioides brasiliensis encodes a half-ABC transporter that is transcribed in response to treatment with flucona-zole. Yeast 20:865–880

    Article  PubMed  CAS  Google Scholar 

  160. Griac, P. 2007. Sec14 related proteins in yeast. Biochim Biophys Acta 1771:737–745

    PubMed  CAS  Google Scholar 

  161. Grigoriev, P. A., Schlegel, R., and Grafe, U. 2001. Cation selective ion channels formed by macrodiolide antibiotic elaiophylin in lipid bilayer membranes. Bioelectrochemistry 54:11–15

    Article  PubMed  CAS  Google Scholar 

  162. Gulshan, K., and Moye-Rowley, W. S. 2007. Multidrug resistance in fungi. Eukaryot Cell 6:1933–1942

    Article  PubMed  CAS  Google Scholar 

  163. Gurer, U. S., Palanduz, A., Gurbuz, B., Yildirmak, Y., Cevikbas, A., and Kayaalp, N. 2002. Effect of antipyretics on polymorphonu-clear leukocyte functions in children. Int Immunopharmacol 2:1599–1602

    Article  PubMed  Google Scholar 

  164. Guthmiller, J. M., Vargas, K. G., Srikantha, R., Schomberg, L. L., Weistroffer, P. L., McCray, P. B., Jr., and Tack, B. F. 2001. Susceptibilities of oral bacteria and yeast to mammalian catheli-cidins. Antimicrob Agents Chemother 45:3216–3219

    Article  PubMed  CAS  Google Scholar 

  165. Gyurko, C., Lendenmann, U., Troxler, R. F., and Oppenheim, F. G. 2000. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother 44:348–354

    Article  PubMed  CAS  Google Scholar 

  166. Gyurko, C., Lendenmann, U., Troxler, R. F., and Oppenheim, F. G. 2000. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother 44:425–427

    Article  Google Scholar 

  167. Ha, Y. S., Covert, S. F., and Momany, M. 2006. FsFKS1, the 1,3-beta-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell 5:1036–1042

    Article  PubMed  CAS  Google Scholar 

  168. Hakki, M., Staab, J. F., and Marr, K. A. 2006. Emergence of a Candida krusei isolate with reduced susceptibility to caspofungin during therapy. Antimicrob Agents Chemother 50:2522–2524

    Article  PubMed  CAS  Google Scholar 

  169. Hallstrom, T. C., Katzmann, D. J., Torres, R. J., Sharp, W. J., and Moye-Rowley, W. S. 1998. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol Cell Biol 18(3):1147–1155

    PubMed  CAS  Google Scholar 

  170. Hallstrom, T. C., Lambert, L., Schorling, S., Balzi, E., Goffeau, A., and Moye-Rowley, W. S. 2001. Coordinate control of sphingoli-pid biosynthesis and multidrug resistance in Saccharomyces cer-evisiae. J Biol Chem 276(26):23674–23680

    Article  PubMed  CAS  Google Scholar 

  171. Hallstrom, T. C., and Moye-Rowley, W. S. 2000. Hyperactive forms of the Pdr1p transcription factor fail to respond to positive regulation by the hsp70 protein Pdr13p. Mol Microbiol 36(2):402–413

    Article  PubMed  CAS  Google Scholar 

  172. Hallstrom, T. C., and Moye-Rowley, W. S. 2000. Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275(48):37347–37356

    Article  PubMed  CAS  Google Scholar 

  173. Hammer, K. A., Carson, C. F., and Riley, T. V. 2004. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cer-evisiae. J Antimicrob Chemother 53:1081–1085

    Article  PubMed  CAS  Google Scholar 

  174. Hapala,I., KlobucnÃková, V., Mazánová, K., and KohÃ̊t, P. 2005. Two mutants selectively resistant to polyenes reveal distinct mechanisms of antifungal activity by nystatin and amphotericin B. BioChem Soc Transac 33:1206–1209

    Article  CAS  Google Scholar 

  175. Haque, A., Rai, V., Bahal, B. S., Shukla, S., Lattif, A. A., Mukhopadhyay, G., and Prasad, R. 2007. Allelic variants of ABC drug transporter Cdr1p in clinical isolates of Candida albicans. Biochem Biophys Res Commun 352:491–497

    Article  PubMed  CAS  Google Scholar 

  176. Harrison, J. J., Ceri, H., Yerly, J., Rabiei, M., Hu, Y., Martinuzzi, R., and Turner, R. J. 2007. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl Environ Microbiol 73:4940–4949

    Article  PubMed  CAS  Google Scholar 

  177. Harrison, J. J., Rabiei, M., Turner, R. J., Badry, E. A., Sproule, K. M., and Ceri, H. 2006. Metal resistance in Candida biofilms. FEMS Microbiol Ecol 55:479–491

    Article  PubMed  CAS  Google Scholar 

  178. Hasenoehrl, A., Galic, T., Ergovic, G., Marsic, N., Skerlev, M., Mittendorf, J., Geschke, U., Schmidt, A., and Schoenfeld, W. 2006. In vitro activity and in vivo efficacy of icofungipen (PLD-118), a novel oral antifungal agent, against the patho genic yeast Candida albicans. Antimicrob Agents Chemother 50:3011–3018

    Article  PubMed  CAS  Google Scholar 

  179. Hashida-Okado, T., Ogawa, A., Endo, M., Yasumoto, R., Takesako, K., and Kato, I. 1996. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet 251(2):236–244

    PubMed  CAS  Google Scholar 

  180. Heidenreich, E., and Eisler, H. 2004. Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells. Mutat Res 556:201–208

    PubMed  CAS  Google Scholar 

  181. Heidenreich, E., Holzmann, V., and Eisler, H. 2004. Polymerase zeta dependency of increased adaptive mutation frequencies in nucleotide excision repair-deficient yeast strains. DNA Repair (Amst) 3:395–402

    Article  CAS  Google Scholar 

  182. Heidenreich, E., Novotny, R., Kneidinger, B., Holzmann, V., and Wintersberger, U. 2003. Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J 22:2274–2283

    Article  PubMed  CAS  Google Scholar 

  183. Heidler, S. A., and Radding, J. A. 1995. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrob Agents Chemother 39(12):2765–2769

    PubMed  CAS  Google Scholar 

  184. Heinisch, J. J., Lorberg, A., Schmitz, H. P., and Jacoby, J. J. 1999. The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevi-siae. Mol Microbiol 32(4):671–680

    Article  PubMed  CAS  Google Scholar 

  185. Helmerhorst, E. J., Breeuwer, P., van't Hof, W., Walgreen-Weterings, E., Oomen, L. C., Veerman, E. C., Amerongen, A. V., and Abee, T. 1999. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274:7286–7291

    Article  PubMed  CAS  Google Scholar 

  186. Helmerhorst, E. J., Reijnders, I. M., van't Hof, W., Simoons-Smit, I., E. C. I. Veerman, and Amerongen, A. V. N. 1999. Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 43:702–704

    PubMed  CAS  Google Scholar 

  187. Helmerhorst, E. J., Van't Hof, W., Veerman, E. C., Simoons-Smit, I., and Nieuw Amerongen, A. V. 1997. Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326(Pt 1):39–45

    PubMed  CAS  Google Scholar 

  188. Helmerhorst, E. J., Venuleo, C., Sanglard, D., and Oppenheim, F. G. 2006. Roles of cellular respiration, CgCDR1, and CgCDR2 in Candida glabrata resistance to histatin 5. Antimicrob Agents Chemother 50:1100–1103

    Article  PubMed  CAS  Google Scholar 

  189. Henry, K. W., Nickels, J. T., and Edlind, T. D. 2000. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother44(10):2693–2700

    Article  PubMed  CAS  Google Scholar 

  190. Henry, K. W., Nickels, J. T., and Edlind, T. D. 2000. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors [in process citation]. Antimicrob Agents Chemother 44:2693–2700

    Article  PubMed  CAS  Google Scholar 

  191. Hersh, M. N., Ponder, R. G., Hastings, P. J., and Rosenberg, S. M. 2004. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol 155:352–359

    Article  PubMed  CAS  Google Scholar 

  192. Higashiyama, Y., and Kohno, S. 2004. Micafungin: a therapeutic review. Expert Rev Anti Infect Ther 2(3):345–355

    Article  PubMed  CAS  Google Scholar 

  193. High, K. P., and Washburn, R. G. 1997. Invasive aspergillosis in mice immunosuppressed with cyclosporin A, tacrolimus (FK506), or sirolimus (rapamycin). J Infect Dis 175:222–225

    PubMed  CAS  Google Scholar 

  194. Hiratani, T., and Yamaguchi, H. 1994. [Cross-resistance of Candida albicans to several different families of antifungals with ergosterol biosynthesis-inhibiting activity]. Jpn J Antibiot 47(2):125–128

    PubMed  CAS  Google Scholar 

  195. Holmes, A. R., Tsao, S., Lamping, E., Niimi, K., Monk, B. C., Tanabe, K., Niimi, M., and Cannon, R. D. 2006. Amino acid residues affecting drug pump function in Candida albicansC. albicans drug pump function. Nippon Ishinkin Gakkai Zasshi 47:275–281

    Article  PubMed  CAS  Google Scholar 

  196. Holmes, A. R., Tsao, S., Ong, S. W., Lamping, E., Niimi, K., Monk, B. C., Niimi, M., Kaneko, A., Holland, B. R., Schmid, J., and Cannon, R. D. 2006. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62:170–186

    Article  PubMed  CAS  Google Scholar 

  197. Hongay, C., Jia, N., Bard, M., and Winston, F. 2002. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevi-siae. EMBO J 21:4114–4124

    Article  PubMed  CAS  Google Scholar 

  198. Honraet, K., Goetghebeur, E., and Nelis, H. J. 2005. Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295

    Article  PubMed  CAS  Google Scholar 

  199. Hope, W. W., Tabernero, L., Denning, D. W., and Anderson, M. J. 2004. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 48:4377–4386

    Article  PubMed  CAS  Google Scholar 

  200. Houten, S. M., and Waterham, H. R. 2001. Nonorthologous gene displacement of phosphomevalonate kinase. Mol Genet Metab 72:273–276

    Article  PubMed  CAS  Google Scholar 

  201. Howe, A. G., and McMaster, C. R. 2006. Regulation of phos-phatidylcholine homeostasis by Sec14. Can J Physiol Pharmacol 84:29–38

    Article  PubMed  CAS  Google Scholar 

  202. Ishtar Snoek, I. S., H. Y. S. 2007. Factors involved in anaerobic growth of Saccharomyces cerevisiae.. Yeast 24:1–10

    Article  PubMed  CAS  Google Scholar 

  203. Inoki, K., and Guan, K. L. 2006. Complexity of the TOR signaling network. Trends Cell Biol 16:206–212

    Article  PubMed  CAS  Google Scholar 

  204. Isola, R., Isola, M., Conti, G., Lantini, M. S., and Riva, A. 2007. Histatin-induced alterations in Candida albicans: a microscopic and submicroscopic comparison. Microsc Res Tech 70:607–616

    Article  PubMed  CAS  Google Scholar 

  205. Iwata, K. 1992. Drug resistance in human pathogenic fungi. Eur J Epidemiol 8(3):407–421

    Article  PubMed  CAS  Google Scholar 

  206. Jackson, C. J., Lamb, D. C., Manning, N. J., Kelly, D. E., and Kelly, S. L. 2003. Mutations in Saccharomyces cerevisiae sterol C5-desaturase conferring resistance to the CYP51 inhibitor fluco-nazole. Biochem Biophys Res Commun 309:999–1004

    Article  PubMed  CAS  Google Scholar 

  207. Jain, P., Akula, I., and Edlind, T. 2003. Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 47:3195–3201

    Article  PubMed  CAS  Google Scholar 

  208. Jain, P., Akula, I., and Edlind, T. 2003. Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 47(10):3195–3201

    Article  PubMed  CAS  Google Scholar 

  209. Jainkittivong, A., Johnson, D. A., and Yeh, C. K. 1998. The relationship between salivary histatin levels and oral yeast carriage. Oral Microbiol Immunol 13:181–187

    Article  PubMed  CAS  Google Scholar 

  210. James, G., and Butt, A. M. 2002. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. 447:247

    CAS  Google Scholar 

  211. Janbon, G., Sherman, F., and Rustchenko, E. 1998. Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc Natl Acad Sci U S A 95:5150–5155

    Article  PubMed  CAS  Google Scholar 

  212. Jensen-Pergakes, K. L., Kennedy, M. A., Lees, N. D., Barbuch, R., Koegel, C., and Bard, M. 1998. Sequencing, disruption, and characterization of the Candida albicans sterol methyltrans-ferase (ERG6) gene: drug susceptibility studies in erg6 mutants. Antimicrob Agents Chemother 42:1160–1167

    PubMed  CAS  Google Scholar 

  213. Jessup, C. J., Ryder, N. S., and Ghannoum, M. A. 2000. An evaluation of the in vitro activity of terbinafine. Med Mycol 38:161–168

    Article  Google Scholar 

  214. Jethwaney, D., Hofer, M., Khaware, R. K., and Prasad, R. 1997. Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin. Microbiology 143(Pt 2):397–404

    Article  PubMed  CAS  Google Scholar 

  215. Ji, H., Zhang, W., Zhang, M., Kudo, M., Aoyama, Y., Yoshida, Y., Sheng, C., Song, Y., Yang, S., Zhou, Y., Lu, J., and Zhu, J. 2003. Structure-based de novo design, synthesis, and biological evaluation of non-azole inhibitors specific for lanosterol 14alpha-demethylase of fungi. J Med Chem 46:474–485

    Article  PubMed  CAS  Google Scholar 

  216. Ji, H., Zhang, W., Zhou, Y., Zhang, M., Zhu, J., Song, Y., and Lu, J. 2000. A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 43:2493–2505

    Article  PubMed  CAS  Google Scholar 

  217. Jia, N., Arthington-Skaggs, B., Lee, W., Pierson, C. A., Lees, N. D., Eckstein, J., Barbuch, R., and Bard, M. 2002. Candida albicans sterol C-14 reductase, encoded by the ERG24 gene, as a potential antifungal target site. Antimicrob Agents Chemother 46:947–957

    Article  PubMed  CAS  Google Scholar 

  218. Jin, Y., Zhang, T., Samaranayake, Y. H., Fang, H. H., Yip, H. K., and Samaranayake, L. P. 2005. The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 159:353–360

    Article  PubMed  CAS  Google Scholar 

  219. Jones, T., Federspiel, N. A., Chibana, H., Dungan, J., Kalman, S., Magee, B. B., Newport, G., Thorstenson, Y. R., Agabian, N., Magee, P. T., Davis, R. W., and Scherer, S. 2004. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101:7329–7334

    Article  PubMed  CAS  Google Scholar 

  220. Joseph-Horne, T., and Hollomon, D. W. 1997. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett 149:141–149

    Article  PubMed  CAS  Google Scholar 

  221. Joseph-Horne, T., Manning, N., Holoman, D., and Kelly, S. 1996. Nonsterol related resistance in Ustilago maydis to the polyene anti-fungals, amphotericin B and nystatin. Phytochemistry 42:637–639

    Article  PubMed  CAS  Google Scholar 

  222. Jung, W. H., Warn, P., Ragni, E., Popolo, L., Nunn, C. D., Turner, M. P., and Stateva, L. 2005. Deletion of PDE2, the gene encoding the high-affinity cAMP phosphodiesterase, results in changes of the cell wall and membrane in Candida albicans. Yeast 22:285–294

    Article  PubMed  CAS  Google Scholar 

  223. Justice, M. C., Hsu, M. J., Tse, B., Ku, T., Balkovec, J., Schmatz, D., and Nielsen, J. 1998. Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J Biol Chem 273:3148–3151

    Article  PubMed  CAS  Google Scholar 

  224. Justice, M. C., Ku, T., Hsu, M. J., Carniol, K., Schmatz, D., and Nielsen, J. 1999. Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 274:4869–4875

    Article  PubMed  CAS  Google Scholar 

  225. Kafadar, K. A., and Cyert, M. S. 2004. Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot Cell 3:1147–1153

    Article  PubMed  CAS  Google Scholar 

  226. Kahn, J. N., Garcia-Effron, G., Hsu, M. J., Park, S., Marr, K. A., and Perlin, D. S. 2007. Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase. Antimicrob Agents Chemother 51:1876–1878

    Article  PubMed  CAS  Google Scholar 

  227. Kalb, V. F., Woods, C. W., Turi, T. G., Dey, C. R., Sutter, T. R., and Loper, J. C. 1987. Primary structure of the P450 lanos-terol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537

    Article  PubMed  CAS  Google Scholar 

  228. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. 2000. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  PubMed  CAS  Google Scholar 

  229. Kamai, Y., Kakuta, M., Shibayama, T., Fukuoka, T., Kuwahara, S., Jorgensen, R., Yates, S. P., Teal, D. J., Nilsson, J., Prentice, G. A., Merrill, A. R., Andersen, G. R., Santos, C., Rodriguez-Gabriel, M. A., Remacha, M., Ballesta, J. P., Spahn, C. M., Gomez-Lorenzo, M. G., Grassucci, R. A., Jorgensen, R., Andersen, G. R., Beckmann, R., Penczek, P. A., Ballesta, J. P., Frank, J., Andersen, G. R., Nissen, P., Nyborg, J., Jorgensen, R., Ortiz, P. A., Carr-Schmid, A., Nissen, P., Kinzy, T. G., Andersen, G. R., Torres-Rodriguez, J. M., Morera, Y., Baro, T., Lopez, O., Alia, C., Jimenez, T., Serrano-Wu, M. H., St Laurent, D. R., Chen, Y., Huang, S., Lam, K. R., Matson, J. A., Mazzucco, C. E., Stickle, T. M., Tully, T. P., Wong, H. S., Vyas, D. M., Balasubramanian, B. N., Goss Kinzy, T., Harger, J. W., Carr-Schmid, A., Kwon, J., Shastry, M., Justice, M., Dinman, J. D., Bueno, J. M., Chicharro, J., Fiandor, J. M., Gomez de las Heras, F., Huss, S., Tanaka, M., Moriguchi, T., Kizuka, M., Ono, Y., Miyakoshi, S., Ogita, T., Davoli, P., Engel, G., Werle, A., Sterner, O., Anke, T., Castro, J., Cuevas, J. C., Fiandor, J. M., Fraile, M. T., de las Heras, F. G., Ruiz, J. R., Deresinski, S. C., Serrano-Wu, M. H., St Laurent, D. R., Mazzucco, C. E., Stickle, T. M., Barrett, J. F., Vyas, D. M., Balasubramanian, B. N., Santos, C., Ballesta, J. P., Hall, R. M., Dawson, M. J., Jones, C. A., Roberts, A. D., Sidebottom, P. J., Stead, P., Taylor, N. L., Bueno, J. M., Cuevas, J. C., et al. 2005. Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 49:52–56

    Article  PubMed  CAS  Google Scholar 

  230. Karababa, M., Coste, A. T., Rognon, B., Bille, J., and Sanglard, D. 2004. Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48:3064–3079

    Article  PubMed  CAS  Google Scholar 

  231. Karababa, M., Valentino, E., Pardini, G., Coste, A. T., Bille, J., and Sanglard, D. 2006. CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59:1429–1451

    Article  PubMed  CAS  Google Scholar 

  232. Karnani, N., Gaur, N. A., Jha, S., Puri, N., Krishnamurthy, S., Goswami, S. K., Mukhopadhyay, G., and Prasad, R. 2004. SRE1 and SRE2 are two specific steroid-responsive modules of Candida drug resistance gene 1 (CDR1) promoter. Yeast 21:219–239

    Article  PubMed  CAS  Google Scholar 

  233. Kartsonis, N. A., Saah, A. J., Joy Lipka, C., Taylor, A. F., and Sable, C. A. 2005. Salvage therapy with caspofungin for invasive aspergillosis: results from the caspofungin compassionate use study. J Infect 50:196–205

    Article  PubMed  Google Scholar 

  234. Kato, M., and Wickner, W. 2001. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J 20(15):4035–4040

    Article  PubMed  CAS  Google Scholar 

  235. Katz, M. E., Gray, K. A., and Cheetham, B. F. 2006. The Aspergillus nidulans xprG (phoG) gene encodes a putative tran-scriptional activator involved in the response to nutrient limitation. Fungal Genet Biol 43:190–199

    Article  PubMed  CAS  Google Scholar 

  236. Katzmann, D. J., Burnett, P. E., Golin, J., Mahe, Y., and Moye-Rowley, W. S. 1994. Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol 14(7):4653–4661

    PubMed  CAS  Google Scholar 

  237. Kaur, R., and Bachhawat, A. K. 1999. The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818

    Article  PubMed  CAS  Google Scholar 

  238. Kaur, R., Castano, I., and Cormack, B. P. 2004. Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613

    Article  PubMed  CAS  Google Scholar 

  239. Kelly, S. L., Lamb, D. C., Corran, A. J., Baldwin, B. C., and Kelly, D. E. 1995. Mode of action and resistance to azole antifun-gals associated with the formation of 14 alpha-methylergosta-8, 24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun 207:910–915

    Article  PubMed  CAS  Google Scholar 

  240. Kelly, S. L., Lamb, D. C., Kelly, D. E., Loeffler, J., and Einsele, H. 1996. Resistance to fluconazole and amphotericin in Candida albicans from AIDS patients [letter]. Lancet 348:1523–1524

    Article  PubMed  CAS  Google Scholar 

  241. Kelly, S. L., Lamb, D. C., Kelly, D. E., Manning, N. J., Loeffler, J., Hebart, H., Schumacher, U., and Einsele, H. 1997. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5, 6-desaturation. FEBS Lett 400:80–82

    Article  PubMed  CAS  Google Scholar 

  242. Kennedy, M. A., Barbuch, R., and Bard, M. 1999. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1445:110–122

    PubMed  CAS  Google Scholar 

  243. Kennedy, M. A., and Bard, M. 2001. Positive and negative regulation of squalene synthase (ERG9), an ergosterol biosynthetic gene, in Saccharomyces cerevisiae. Biochim Biophys Acta 1517(2):177–189

    PubMed  CAS  Google Scholar 

  244. Kennedy, M. A., Johnson, T. A., Lees, N. D., Barbuch, R., Eckstein, J. A., and Bard, M. 2000. Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Pediatr Infect Dis J 19:319–324

    Article  Google Scholar 

  245. Khot, P. D., Suci, P. A., Miller, R. L., Nelson, R. D., and Tyler, B. J. 2006. A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother 50:3708–3716

    Article  PubMed  CAS  Google Scholar 

  246. Kiehne, K., Brunke, G., Meyer, D., Harder, J., uuml, rgen, and Herzig, K. H. 2005. Oesophageal defensin expression during Candida infection and reflux disease. Scand J Gasteroenterol 40:501–507

    Article  CAS  Google Scholar 

  247. Kim, D. Y., Song, W. Y., Yang, Y. Y., and Lee, Y. 2001. The role of PDR13 in tolerance to high copper stress in budding yeast. FEBS Lett 508:99–102

    Article  PubMed  CAS  Google Scholar 

  248. Klar, A. J., Srikantha, T., and Soll, D. R. 2001. A histone deacetyla-tion inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics 158:919–924

    PubMed  CAS  Google Scholar 

  249. Kleinhans, F. W., Lees, N. D., Bard, M., Haak, R. A., and Woods, R. A. 1979. ESR determinations of membrane permeability in a yeast sterol mutant. Chem Phys Lipids 23:143–154

    Article  PubMed  Google Scholar 

  250. Klobucnikova, V., Kohut, P., Leber, R., Fuchsbichler, S., Schweighofer, N., Turnowsky, F., and Hapala, I. 2003. Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Biophys Res Commun 309(3):666–671

    Article  PubMed  CAS  Google Scholar 

  251. Klotz, S. A., Gaur, N. K., Lake, D. F., Chan, V., Rauceo, J., and Lipke, P. N. 2004. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun 72:2029–2034

    Article  PubMed  CAS  Google Scholar 

  252. Klotz, S. A., Gaur, N. K., Rauceo, J., Lake, D. F., Park, Y., Hahm, K. S., and Lipke, P. N. 2004. Inhibition of adherence and killing of Candida albicans with a 23-Mer peptide (Fn/23) with dual antifungal properties. Antimicrob Agents Chemother 48:4337–4341

    Article  PubMed  CAS  Google Scholar 

  253. Kohli, A., Smriti, Mukhopadhyay, K., Rattan, A., and Prasad, R. 2002. In vitro low-level resistance to azoles in Candida albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother 46:1046–1052

    Article  PubMed  CAS  Google Scholar 

  254. Konishi, M., Nishio, M., Saitoh, K., Miyaki, T., Oki, T., and Kawaguchi, H. 1989. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo) 42:1749–1755

    CAS  Google Scholar 

  255. Kontoyiannis, D. P. 2000. Efflux-mediated resistance to flucona-zole could be modulated by sterol homeostasis in Saccharomyces cerevisiae. J Antimicrob Chemother 46(2):199–203

    Article  PubMed  CAS  Google Scholar 

  256. Kontoyiannis, D. P. 2000. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother 46:191–197

    Article  PubMed  CAS  Google Scholar 

  257. Kontoyiannis, D. P., Sagar, N., and Hirschi, K. D. 1999. Overexpression of Erg11p by the regulatable GAL1 promoter confers fluconazole resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 43(11):2798–2800

    PubMed  CAS  Google Scholar 

  258. Koshlukova, S. E., Araujo, M. W., Baev, D., and Edgerton, M. 2000. Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 68:6848–6856

    Article  PubMed  CAS  Google Scholar 

  259. Koshlukova, S. E., Lloyd, T. L., Araujo, M. W., and Edgerton, M. 1999. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274:18872–18879

    Article  PubMed  CAS  Google Scholar 

  260. Krishnamurthy, S., Chatterjee, U., Gupta, V., Prasad, R., Das, P., Snehlata, P., Hasnain, S. E., and Prasad, R. 1998. Deletion of transmembrane domain 12 of CDR1, a multidrug transporter from Candida albicans, leads to altered drug specificity: expression of a yeast multidrug transporter in baculovirus expression system. Yeast 14:535–550

    Article  PubMed  CAS  Google Scholar 

  261. Krogh-Madsen, M., Arendrup, M. C., Heslet, L., and Knudsen, J. D. 2006. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis 42:938–944

    Article  PubMed  CAS  Google Scholar 

  262. Kuchta, T., Bartkova, K., and Kubinec, R. 1992. Ergosterol depletion and 4-methyl sterols accumulation in the yeast Saccharomyces cerevisiae treated with an antifungal, 6-amino-2-n-pentylthioben-zothiazole. Biochem Biophys Res Commun 189:85–91

    Article  PubMed  CAS  Google Scholar 

  263. Kuchta, T., Leka, C., Farkas, P., Bujdakova, H., Belajova, E., and Russell, N. J. 1995. Inhibition of sterol 4-demethylation in Candida albicans by 6-amino-2-n-pentylthiobenzothiazole, a novel mechanism of action for an antifungal agent. Antimicrob Agents Chemother 39:1538–1541

    PubMed  CAS  Google Scholar 

  264. Kuhn, D. M., George, T., Chandra, J., Mukherjee, P. K., and Ghannoum, M. A. 2002. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. 46:1773–1780

    CAS  Google Scholar 

  265. Kuhn, D. M., and Ghannoum, M. A. 2004. Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 5:186–197

    PubMed  CAS  Google Scholar 

  266. Kuipers, M. E., Beljaars, L., Van Beek, N., De Vries, H. G., Heegsma, J., Van Den Berg, J. J., Meijer, D. K., and Swart, P. J. 2002. Conditions influencing the in vitro antifungal activity of lactoferrin combined with antimycotics against clinical isolates of Candida. Impact on the development of buccal preparations of lactoferrin. Apmis 110:290–298

    Article  PubMed  CAS  Google Scholar 

  267. Kuipers, M. E., de Vries, H. G., Eikelboom, M. C., Meijer, D. K., and Swart, P. J. 1999. Synergistic fungistatic effects of lactoferrin in combination with antifungal drugs against clinical Candida isolates. Antimicrob Agents Chemother 43:2635–2641

    PubMed  CAS  Google Scholar 

  268. Kumamoto, C. A. 2005. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci U S A 102:5576–5581

    Article  PubMed  CAS  Google Scholar 

  269. Kunze, D., Melzer, I., Bennett, D., Sanglard, D., MacCallum, D., Norskau, J., Coleman, D. C., Odds, F. C., Schafer, W., and Hube, B. 2005. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology 151:3381–3394

    Article  PubMed  CAS  Google Scholar 

  270. Kurdistani, S. K., and Grunstein, M. 2003. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4:276–284

    Article  PubMed  CAS  Google Scholar 

  271. Kurdistani, S. K., Robyr, D., Tavazoie, S., and Grunstein, M. 2002. Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248–254

    Article  PubMed  CAS  Google Scholar 

  272. Kurdistani, S. K., Tavazoie, S., and Grunstein, M. 2004. Mapping global histone acetylation patterns to gene expression. Cell 117:721–733

    Article  PubMed  CAS  Google Scholar 

  273. Kurtz, J. E., Exinger, F., Erbs, P., and Jund, R. 1999. New insights into the pyrimidine salvage pathway of Saccharomyces cer-evisiae: requirement of six genes for cytidine metabolism. Curr Genet 36(3):130–136

    Article  PubMed  CAS  Google Scholar 

  274. Kurtz, M. B., Abruzzo, G., Flattery, A., Bartizal, K., Marrinan, J. A., Li, W., Milligan, J., Nollstadt, K., and Douglas, C. M. 1996. Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun 64:3244–3251

    PubMed  CAS  Google Scholar 

  275. Kurtz, M. B., Douglas, C., Marrinan, J., Nollstadt, K., Onishi, J., Dreikorn, S., Milligan, J., Mandala, S., Thompson, J., Balkovec, J. M., and et al. 1994. Increased antifungal activity of L-733,560, a water-soluble, semisynthetic pneumocandin, is due to enhanced inhibition of cell wall synthesis. Antimicrob Agents Chemother 38:2750–2757

    PubMed  CAS  Google Scholar 

  276. LaFleur, M. D., Kumamoto, C. A., and Lewis, K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846

    Article  PubMed  CAS  Google Scholar 

  277. Lalioti, V. S., Perez-Fernandez, J., Remacha, M., and Ballesta, J. P. G. 2002. Characterization of interaction sites in the Saccharomyces cerevisiae ribosomal stalk components. Mol Microbiol 46:719–792

    Article  PubMed  CAS  Google Scholar 

  278. Lamb, D., Kelly, D., and Kelly, S. 1999. Molecular aspects of azole antifungal action and resistance. Drug Resist Updat 2:390–402

    Article  PubMed  CAS  Google Scholar 

  279. Lamping, E., Monk, B. C., Niimi, K., Holmes, A. R., Tsao, S., Tanabe, K., Niimi, M., Uehara, Y., and Cannon, R. D. 2007. Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6:1150–1165

    Article  PubMed  CAS  Google Scholar 

  280. Langlet, J., Berges, J., Caillet, J., and Demaret, J. P. 1994. Theoretical study of the complexation of amphotericin B with sterols. Biochim Biophys Acta 1191:79–93

    Article  PubMed  CAS  Google Scholar 

  281. Laverdiere, M., Hoban, D., Restieri, C., and Habel, F. 2002. In vitro activity of three new triazoles and one echinocandin against Candida bloodstream isolates from cancer patients. J Antimicrob Chemother 50:119–123

    Article  PubMed  CAS  Google Scholar 

  282. Laverdiere, M., Lalonde, R. G., Baril, J. G., Sheppard, D. C., Park, S., and Perlin, D. S. 2006. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albi-cans oesophagitis. J Antimicrob Chemother 57:705–708

    Article  PubMed  CAS  Google Scholar 

  283. Laverdiere, M., Restieri, C., and Habel, F. 2002. Evaluation of the in vitro activity of caspofungin against bloodstream isolates of Candida species from cancer patients: comparison of Etest and NCCLS reference methods. Int J Antimicrob Agents 20:468–471

    Article  PubMed  CAS  Google Scholar 

  284. Le Crom, S., Devaux, F., Marc, P., Zhang, X., Moye-Rowley, W. S., and Jacq, C. 2002. New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system. Mol Cell Biol 22:2642–2649

    Article  PubMed  CAS  Google Scholar 

  285. Leber, R., Fuchsbichler, S., Klobucnikova, V., Schweighofer, N., Pitters, E., Wohlfarter, K., Lederer, M., Landl, K., Ruckenstuhl, C., Hapala, I., and Turnowsky, F. 2003. Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 47(12):3890–3900

    Article  PubMed  CAS  Google Scholar 

  286. Leber, R., Landl, K., Zinser, E., Ahorn, H., Spok, A., Kohlwein, S. D., Turnowsky, F., and Daum, G. 1998. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9(2):375–386

    PubMed  CAS  Google Scholar 

  287. Legrand, M., Lephart, P., Forche, A., Mueller, F. M., Walsh, T., Magee, P. T., and Magee, B. B. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyo-typic rearrangements and tetraploid formation. Mol Microbiol 52:1451–1462

    Article  PubMed  CAS  Google Scholar 

  288. Lehrer, R. I., and Ganz, T. 2002. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9:18–22

    Article  PubMed  Google Scholar 

  289. Lemoine, R. C., Glinka, T. W., Watkins, W. J., Cho, A., Yang, J., Iqbal, N., Singh, R., Madsen, D., Lolans, K., Lomovskaya, O., Oza, U., and Dudley, M. N. 2004. Quinazolinone-based fungal efflux pump inhibitors. Part 1: discovery of an (N-methylpiperazine)-containing derivative with activity in clinically relevant Candida spp. Bioorg Med Chem Lett 14:5127–5131

    Article  PubMed  CAS  Google Scholar 

  290. Lesage, G., and Bussey, H. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    Article  PubMed  CAS  Google Scholar 

  291. Lesage, G., Sdicu, A. M., Menard, P., Shapiro, J., Hussein, S., and Bussey, H. 2004. Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:35–49

    Article  PubMed  CAS  Google Scholar 

  292. Lewis, R. E., Lo, H. J., Raad,I. I., and Kontoyiannis, D. P. 2002. Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother 46:1153–1155

    Article  PubMed  CAS  Google Scholar 

  293. Lewis, R. E., Prince, R. A., Chi, J., and Kontoyiannis, D. P. 2002. Itraconazole preexposure attenuates the efficacy of subsequent amphotericin B therapy in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother 46:3208–3214

    Article  PubMed  CAS  Google Scholar 

  294. Li, X. S., Reddy, M. S., Baev, D., and Edgerton, M. 2003. Candida albicans Ssa1/2p is the cell envelope binding protein for human salivary histatin 5. J Biol Chem 278:28553–28561

    Article  PubMed  CAS  Google Scholar 

  295. Li, X. S., Sun, J. N., Okamoto-Shibayama, K., and Edgerton, M. 2006. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 281:22453–22463

    Article  PubMed  CAS  Google Scholar 

  296. Liu, T. T., Lee, R. E., Barker, K. S., Lee, R. E., Wei, L., Homayouni, R., and Rogers, P. D. 2005. Genome-wide expression profiling of the response to azole, polyene, echinocan-din, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236

    Article  PubMed  CAS  Google Scholar 

  297. Liu, T. T., Znaidi, S., Barker, K. S., Xu, L., Homayouni, R., Saidane, S., Morschhauser, J., Nantel, A., Raymond, M., and Rogers, P. D. 2007. Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 6:2122–2138

    Article  PubMed  CAS  Google Scholar 

  298. Liu, W., May, G. S., Lionakis, M. S., Lewis, R. E., and Kontoyiannis, D. P. 2004. Extra copies of the Aspergillus fumi-gatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob Agents Chemother 48(7):2490–2496

    Article  PubMed  CAS  Google Scholar 

  299. Lo, H. J., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G. R. 1997. Nonfilamentous C. albi-cans mutants are avirulent. Cell 90:939–949

    Article  PubMed  CAS  Google Scholar 

  300. Lo, H. J., Wang, J. S., Lin, C. Y., Chen, C. G., Hsiao, T. Y., Hsu, C. T., Su, C. L., Fann, M. J., Ching, Y. T., and Yang, Y. L. 2005. Efg1 involved in drug resistance by regulating the expression of ERG3 in Candida albicans. Antimicrob Agents Chemother 49:1213–1215

    Article  PubMed  CAS  Google Scholar 

  301. Loeffler, J., and Stevens, D. A. 2003. Antifungal drug resistance. Clin Infect Dis 36:S31–S41

    Article  PubMed  CAS  Google Scholar 

  302. Loffler, J., Kelly, S. L., Hebart, H., Schumacher, U., Lass-Florl, C., and Einsele, H. 1997. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett 151:263–268

    Article  PubMed  CAS  Google Scholar 

  303. Loo, T. W., and Clarke, D. M. 2000. Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism. J Natl Cancer Inst 92:898–902

    Article  PubMed  CAS  Google Scholar 

  304. Lopez-Garcia, B., Lee, P. H. A., Yamasaki, K., and Gallo, R. L. 2005. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Investig Dermatol 125:108–115

    Article  PubMed  CAS  Google Scholar 

  305. Lopez-Ribot, J. L. 2005. Candida albicans biofilms: more than filamentation. Curr Biol 15:R453–R455

    Article  PubMed  CAS  Google Scholar 

  306. Lopez-Ribot, J. L., McAtee, R. K., Lee, L. N., Kirkpatrick, W. R., White, T. C., Sanglard, D., and Patterson, T. F. 1998. Distinct patterns of gene expression associated with development of fluco-nazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42:2932–2937

    PubMed  CAS  Google Scholar 

  307. Lorenz, R. T., and Parks, L. W. 1990. Effects of lovastatin (mevin-olin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob Agents Chemother 34:1660–1665

    PubMed  CAS  Google Scholar 

  308. Luker, G. D., Pica, C. M., Kumar, A. S., Covey, D. F., and Piwnica-Worms, D. 2000. Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains. Biochemistry 39:7651–7661

    Article  PubMed  CAS  Google Scholar 

  309. Lupetti, A., Brouwer, C. J. M., Bogaards, S. P., Welling, M., de Heer, E., Campa, M., van Dissel, J., Friesen, R. E., and Nibbering, P. 2007. Human lactoferrin-derived peptide's antifun-gal activities against disseminated Candida albicans infection. J Infect Dis 196:1416–1424

    Article  PubMed  CAS  Google Scholar 

  310. Lupetti, A., Brouwer, C. P. J. M., Dogterom-Ballering, H. E. C., Senesi, S., Campa, M., van Dissel, J. T., and Nibbering, P. H. 2004. Release of calcium from intracellular stores and subsequent uptake by mitochondria are essential for the candidacidal activity of an N-terminal peptide of human lactoferrin. J Antimicrob Chemother 54:603–608

    Article  PubMed  CAS  Google Scholar 

  311. Lupetti, A., Paulusma-Annema, A., Welling, M. M., Senesi, S., van Dissel, J. T., and Nibbering, P. H. 2000. Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother. 44:3257–3263

    Article  PubMed  CAS  Google Scholar 

  312. Macchiarulo, A., Costantino, G., Fringuelli, D., Vecchiarelli, A., Schiaffella, F., and Fringuelli, R. 2002. 1,4-Benzothiazine and 1,4-benzoxazine imidazole derivatives with antifungal activity: a docking study. Bioorg Med Chem 10:3415–3423

    Article  PubMed  CAS  Google Scholar 

  313. MacPherson, S., Akache, B., Weber, S., De Deken, X., Raymond, M., and Turcotte, B. 2005. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 49:1745–1752

    Article  PubMed  CAS  Google Scholar 

  314. Maebashi, K., Kudoh, M., Nishiyama, Y., Makimura, K., Uchida, K., Mori, T., and Yamaguchi, H. 2002. A novel mechanism of fluconazole resistance associated with fluconazole sequestration in Candida albicans isolates from a myelofibrosis patient. Microbiol Immunol 46(5):317–326

    PubMed  CAS  Google Scholar 

  315. Maebashi, K., Niimi, M., Kudoh, M., Fischer, F. J., Makimura, K., Niimi, K., Piper, R. J., Uchida, K., Arisawa, M., Cannon, R. D., and Yamaguchi, H. 2001. Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J Antimicrob Chemother 47(5):527–536

    Article  PubMed  CAS  Google Scholar 

  316. Maesaki, S., Marichal, P., Hossain, M. A., Sanglard, D., Vanden Bossche, H., and Kohno, S. 1998. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albi-can strains. J Antimicrob Chemother 42(6):747–753

    Article  PubMed  CAS  Google Scholar 

  317. Mai, A., Rotili, D., Massa, S., Brosch, G., Simonetti, G., Passariello, C., and Palamara, A. T. 2007. Discovery of uracil-based histone deacetylase inhibitors able to reduce acquired anti-fungal resistance and trailing growth in Candida albicans. Bioorg Med Chem Lett 17:1221–1225

    Article  PubMed  CAS  Google Scholar 

  318. Mamane, Y., Petroulakis, E., LeBacquer, O., and Sonenberg, N. 2006. mTOR, translation initiation and cancer. Oncogene 25:6416–6422

    Article  PubMed  CAS  Google Scholar 

  319. Manoharlal, R., Gaur, N. A., Panwar, S. L., Morschhauser, J., and Prasad, R. 2008. Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans. Antimicrob Agents Chemother 52:1481–1492

    Article  PubMed  CAS  Google Scholar 

  320. Marchetti, O., Moreillon, P., Entenza, J. M., Vouillamoz, J., Glauser, M. P., Bille, J., and Sanglard, D. 2003. Fungicidal syn-ergism of fluconazole and cyclosporine in Candida albicans is not dependent on multidrug efflux transporters encoded by the CDR1, CDR2, CaMDR1, and FLU1 genes. Antimicrob Agents Chemother 47:1565–1570

    Article  PubMed  CAS  Google Scholar 

  321. Marichal, P., Koymans, L., Willemsens, S., Bellens, D., Verhasselt, P., Luyten, W., Borgers, M., Ramaekers, F. C., Odds, F. C., and Bossche, H. V. 1999. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145(Pt 10):2701–2713

    PubMed  CAS  Google Scholar 

  322. Marichal, P., Koymans, L., Willemsens, S., Bellens, D., Verhasselt, P., Luyten, W., Borgers, M., Ramaekers, F. C., Odds, F. C., and Bossche, H. V. 1999. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans [in process citation]. Microbiology 145:2701–2713

    PubMed  CAS  Google Scholar 

  323. Marichal, P., Vanden Bossche, H., Odds, F. C., Nobels, G., Warnock, D. W., Timmerman, V., Van Broeckhoven, C., Fay, S., and Mose-Larsen, P. 1997. Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41:2229–2237

    PubMed  CAS  Google Scholar 

  324. Markovich, S., Yekutiel, A., Shalit, I., Shadkchan, Y., and Osherov, N. 2004. Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cer-evisiae. Antimicrob Agents Chemother 48:3871–3876

    Article  PubMed  CAS  Google Scholar 

  325. Martin, D. E., and Hall, M. N. 2005. The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166

    Article  PubMed  CAS  Google Scholar 

  326. Martin, S. W., and Konopka, J. B. 2004. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3(3):675–684

    Article  PubMed  CAS  Google Scholar 

  327. Martinez, A., Aviles, P., Jimenez, E., Caballero, J., and Gargallo-Viola, D. 2000. Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother 44:3389–3394

    Article  PubMed  CAS  Google Scholar 

  328. Martinez, A., Ferrer, S., Santos, I., Jimenez, E., Sparrowe, J., Regadera, J., De Las Heras, F. G., and Gargallo-Viola, D. 2001. Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovagi-nal candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 45:3304–3309

    Article  PubMed  CAS  Google Scholar 

  329. Martinez, A., Regadera, J., Jimenez, E., Santos, I., and Gargallo-Viola, D. 2001. Antifungal efficacy of GM237354, a sordarin derivative, in experimental oral candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 45:1008–1013

    Article  PubMed  CAS  Google Scholar 

  330. Mateus, C., Crow, S. A., Jr., and Ahearn, D. G. 2004. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother 48:3358–3366

    Article  PubMed  CAS  Google Scholar 

  331. Mathis, A. S., Shah, N. K., and Friedman, G. S. 2004. Combined use of sirolimus and voriconazole in renal transplantation: a report of two cases. Transplant Proc 36:2708–2709

    Article  PubMed  CAS  Google Scholar 

  332. Mayer, C., and Grummt, I. 2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391

    Article  PubMed  CAS  Google Scholar 

  333. Mazur, P., and Baginsky, W. 1996. In vitro activity of 1,3-beta-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem 271(24):14604–14609

    Article  PubMed  CAS  Google Scholar 

  334. Mazur, P., Morin, N., Baginsky, W., el-Sherbeini, M., Clemas, J. A., Nielsen, J. B., and Foor, F. 1995. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol Cell Biol 15(10):5671–5681

    PubMed  CAS  Google Scholar 

  335. Meyers, S., Schauer, W., Balzi, E., Wagner, M., Goffeau, A., and Golin, J. 1992. Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr Genet 21(6):431–436

    Article  PubMed  CAS  Google Scholar 

  336. Michimoto, T., Aoki, T., Toh-e, A., and Kikuchi, Y. 2000. Yeast Pdr13p and Zuo1p molecular chaperones are new functional Hsp70 and Hsp40 partners. Gene 257:131–137

    Article  PubMed  CAS  Google Scholar 

  337. Miller, C. D., Lomaestro, B. W., Park, S., and Perlin, D. S. 2006. Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy 26:877–880

    Article  PubMed  Google Scholar 

  338. Miller, N. S., Dick, J. D., and Merz, W. G. 2006. Phenotypic switching in Candida lusitaniae on copper sulfate indicator agar: association with amphotericin B resistance and filamentation. J Clin Microbiol 44:1536–1539

    Article  PubMed  CAS  Google Scholar 

  339. Mio, T., Adachi-Shimizu, M., Tachibana, Y., Tabuchi, H., Inoue, S. B., Yabe, T., Yamada- Okabe, T., Arisawa, M., Watanabe, T., and Yamada-Okabe, H. 1997. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J. Bacteriol. 179:4096–4105

    PubMed  CAS  Google Scholar 

  340. Mishra, N. N., Prasad, T., Sharma, N., Prasad, R., and Gupta, D. K. 2007. Membrane fluidity and lipid composition in clinical isolates of Candida albicans isolated from AIDS/HIV patients. Acta Microbiol Immunol Hung 54:367–377

    Article  PubMed  CAS  Google Scholar 

  341. Miyazaki, T., Miyazaki, Y., Izumikawa, K., Kakeya, H., Miyakoshi, S., Bennett, J. E., and Kohno, S. 2006. Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance. Antimicrob Agents Chemother 50:580–586

    Article  PubMed  CAS  Google Scholar 

  342. Monk, B. C., Niimi, K., Lin, S., Knight, A., Kardos, T. B., Cannon, R. D., Parshot, R., King, A., Lun, D., and Harding, D. R. 2005. Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49:57–70

    Article  PubMed  CAS  Google Scholar 

  343. Monneret, C. 2005. Histone deacetylase inhibitors. Eur J Med Chem 40:1–13

    Article  PubMed  CAS  Google Scholar 

  344. Monneret, C. 2007. Histone deacetylase inhibitors for epigenetic therapy of cancer. Anticancer Drugs 18:363–370

    Article  PubMed  CAS  Google Scholar 

  345. Montplaisir, S., Drouhet, E., and Mercier-Soucy, L. 1975. Sensitivity and resistance of pathogenic yeasts to 5-fluoropyrimi-dines. II – Mechanisms of resistance to 5-fluorocytosine (5-FC) and 5-fluorouracil (5-FU) (author's transl). Ann Microbiol (Paris) 126B(1):41–49

    CAS  Google Scholar 

  346. Mora-Duarte, J., Betts, R., Rotstein, C., Colombo, A. L., Thompson-Moya, L., Smietana, J., Lupinacci, R., Sable, C., Kartsonis, N., and Perfect, J. 2002. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347:2020–2029

    Article  PubMed  CAS  Google Scholar 

  347. Morschhauser, J., Barker, K. S., Liu, T. T., Bla, B. W. J., Homayouni, R., and Rogers, P. D. 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3:e164

    Article  PubMed  CAS  Google Scholar 

  348. Moudgal, V., Little, T., Boikov, D., and Vazquez, J. A. 2005. Multiechinocandin- and multiazole-resistant Candida parapsilo-sis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 49:767–769

    Article  PubMed  CAS  Google Scholar 

  349. Mousley, C. J., Tyeryar, K. R., Vincent-Pope, P., and Bankaitis, V. A. 2007. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim Biophys Acta 1771:727–736

    PubMed  CAS  Google Scholar 

  350. Moye-Rowley, W. S. 2005. Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene 354:15–21

    Article  PubMed  CAS  Google Scholar 

  351. Mukherjee, P. K., Chandra, J., Kuhn, D. M., and Ghannoum, M. A. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340

    Article  PubMed  CAS  Google Scholar 

  352. Mukherjee, P. K., Zhou, G., Munyon, R., and Ghannoum, M. A. 2005. Candida biofilm: a well-designed protected environment. Med Mycol 43:191–208

    Article  PubMed  CAS  Google Scholar 

  353. Mukhopadhyay, K., Kohli, A., and Prasad, R. 2002. Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    Article  PubMed  CAS  Google Scholar 

  354. Mukhopadhyay, K., Prasad, T., Saini, P., Pucadyil, T. J., Chattopadhyay, A., and Prasad, R. 2004. Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans. Antimicrob Agents Chemother 48:1778–1787

    Article  PubMed  CAS  Google Scholar 

  355. Munro, C. A., Selvaggini, S., de Bruijn, I., Walker, L., Lenardon, M. D., Gerssen, B., Milne, S., Brown, A. J., and Gow, N. A. 2007. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63:1399–1413

    Article  PubMed  CAS  Google Scholar 

  356. Murakami, M., Lopez-Garcia, B., Braff, M., Dorschner, R. A., and Gallo, R. L. 2004. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    PubMed  CAS  Google Scholar 

  357. Murillo, L. A., Newport, G., Lan, C. Y., Habelitz, S., Dungan, J., and Agabian, N. M. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell 4:1562–1573

    Article  PubMed  CAS  Google Scholar 

  358. Naidu, A. S., Chen, J., Martinez, C., Tulpinski, J., Pal, B. K., and Fowler, R. S. 2004. Activated lactoferrin's ability to inhibit Candida growth and block yeast adhesion to the vaginal epithelial monolayer. J Reprod Med 49:859–866

    PubMed  CAS  Google Scholar 

  359. Naidu, A. S., Fowler, R. S., Martinez, C., Chen, J., and Tulpinski, J. 2004. Activated lactoferrin and fluconazole syner-gism against Candida albicans and Candida glabrata vaginal isolates. J Reprod Med 49:800–807

    PubMed  CAS  Google Scholar 

  360. Nakamura, K., Niimi, M., Niimi, K., Holmes, A. R., Yates, J. E., Decottignies, A., Monk, B. C., Goffeau, A., and Cannon, R. D. 2001. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother 45:3366–3374

    Article  PubMed  CAS  Google Scholar 

  361. Nascimento, A. M., Goldman, G. H., Park, S., Marras, S. A. E., Delmas, G., Oza, U., Lolans, K., Dudley, M. N., Mann, P. A., and Perlin, D. S. 2003. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itra-conazole. Antimicrob Agents Chemother 47:1719–1726

    Article  PubMed  CAS  Google Scholar 

  362. Nett, J., Lincoln, L., Marchillo, K., Massey, R., Holoyda, K., Hoff, B., VanHandel, M., and Andes, D. 2007. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520

    Article  PubMed  CAS  Google Scholar 

  363. Niimi, K., Maki, K., Ikeda, F., Holmes, A. R., Lamping, E., Niimi, M., Monk, B. C., and Cannon, R. D. 2006. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother 50:1148–1155

    Article  PubMed  CAS  Google Scholar 

  364. Niimi, M., Niimi, K., Takano, Y., Holmes, A. R., Fischer, F. J., Uehara, Y., and Cannon, R. D. 2004. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Chemother 54:999–1006

    Article  PubMed  CAS  Google Scholar 

  365. Nikawa, H., Fukushima, H., Makihira, S., Hamada, T., and Samaranayake, L. P. 2004. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis 10:221–228

    Article  PubMed  CAS  Google Scholar 

  366. Nikawa, H., Jin, C., Fukushima, H., Makihira, S., and Hamada, T. 2001. Antifungal activity of histatin-5 against non-albicans Candida species. Oral Microbiol Immunol 16:250–252

    Article  PubMed  CAS  Google Scholar 

  367. Nikawa, H., Samaranayake, L. P., and Hamada, T. 1995. Modulation of the anti-Candida activity of apo-lactoferrin by dietary sucrose and tunicamycin in vitro. Arch Oral Biol 40:581–584

    Article  PubMed  CAS  Google Scholar 

  368. Nikawa, H., Samaranayake, L. P., Tenovuo, J., and Hamada, T. 1994. The effect of antifungal agents on the in vitro susceptibility of Candida albicans to apo-lactoferrin. Arch Oral Biol 39:921–923

    Article  PubMed  CAS  Google Scholar 

  369. Nikawa, H., Samaranayake, L. P., Tenovuo, J., Pang, K. M., and Hamada, T. 1993. The fungicidal effect of human lactofer-rin on Candida albicans and Candida krusei. Arch Oral Biol 38:1057–1063

    Article  PubMed  CAS  Google Scholar 

  370. Nobile, C. J., and Mitchell, A. P. 2006. Genetics and genom-ics of Candida albicans biofilm formation. Cell Microbiol 8:1382–1391

    Article  PubMed  CAS  Google Scholar 

  371. Noel, T., Francois, F., Paumard, P., Chastin, C., Brethes, D., and Villard, J. 2003. Flucytosine-fluconazole cross-resistance in purine-cytosine permease-deficient Candida lusitaniae clinical isolates: indirect evidence of a fluconazole uptake transporter. Antimicrob Agents Chemother 47(4):1275–1284

    Article  PubMed  CAS  Google Scholar 

  372. Nolte, F. S., Parkinson, T., Falconer, D. J., Dix, S., Williams, J., Gilmore, C., Geller, R., and Wingard, J. R. 1997. Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother 41(1):196–199

    PubMed  CAS  Google Scholar 

  373. Norice, C. T., Smith, F. J., Jr., Solis, N., Filler, S. G., and Mitchell, A. P. 2007. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot Cell 6:2046–2055

    Article  PubMed  CAS  Google Scholar 

  374. Nose, H., Fushimi, H., Seki, A., Sasaki, T., Watabe, H., and Hoshiko, S. 2002. PF1163A, a novel antifungal agent, inhibit ergosterol biosynthesis at C-4 sterol methyl oxidase. J Antibiot (Tokyo) 55:969–974

    CAS  Google Scholar 

  375. Nose, H., Seki, A., Yaguchi, T., Hosoya, A., Sasaki, T., Hoshiko, S., and Shomura, T. 2000. PF1163A and B, new anti-fungal antibiotics produced by Penicillium sp. I. Taxonomy of producing strain, fermentation, isolation and biological activities. J Antibiot (Tokyo) 53:33–37

    CAS  Google Scholar 

  376. Nourani, A., Papajova, D., Delahodde, A., Jacq, C., and Subik, J. 1997. Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain. Mol Gen Genet 256:397–405

    Article  PubMed  CAS  Google Scholar 

  377. O'Connell, B. C., Xu, T., Walsh, T. J., Sein, T., Mastrangeli, A., Crystal, R. G., Oppenheim, F. G., and Baum, B. J. 1996. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands. Hum Gene Ther 7:2255–2261

    Article  PubMed  Google Scholar 

  378. O'Connor, R. M., McArthur, C. R., and Clark-Walker, G. D. 1976. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 mu m. J Bacteriol 126(2):959–968

    PubMed  Google Scholar 

  379. O'Keeffe, J., and Kavanagh, K. 2004. Adriamycin alters the expression of drug efflux pumps and confers amphotericin B tolerance in Candida albicans. Anticancer Res 24(2A):405–408

    PubMed  Google Scholar 

  380. Obeid, L. M., Okamoto, Y., and Mao, C. 2002. Yeast sphin-golipids: metabolism and biology. Biochim Biophys Acta 1585(2–3):163–171

    PubMed  CAS  Google Scholar 

  381. Ogita, A., Fujita, K., Taniguchi, M., and Tanaka, T. 2006. Enhancement of the fungicidal activity of amphotericin B by allicin, an allyl-sulfur compound from garlic, against the yeast Saccharomyces cerevisiae as a model system. Planta Med 72:1247–1250

    Article  PubMed  CAS  Google Scholar 

  382. Ogita, A., Matsumoto, K., Fujita, K., Usuki, Y., Hatanaka, Y., and Tanaka, T. 2007. Synergistic fungicidal activities of ampho-tericin B and N-methyl-N?-dodecylguanidine: a constituent of polyol macrolide antibiotic niphimycin. J Antibiot (Tokyo) 60:27–35

    CAS  Google Scholar 

  383. Oh, C. S., Toke, D. A., Mandala, S., and Martin, C. E. 1997. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384

    Article  PubMed  CAS  Google Scholar 

  384. Oliver, B. G., Silver, P. M., Marie, C., Hoot, S. J., Leyde, S. E., and White, T. C. 2008. Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology 154:960–970

    Article  PubMed  CAS  Google Scholar 

  385. Oliver, B. G., Song, J. L., Choiniere, J. H., and White, T. C. 2007. cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot Cell 6:2231–2239

    Article  PubMed  CAS  Google Scholar 

  386. Olson, G. M., Fox, D. S., Wang, P., Alspaugh, J. A., and Buchanan, K. L. 2007. Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neo-formans. Eukaryot Cell 6:222–234

    Article  PubMed  CAS  Google Scholar 

  387. Onishi, J., Meinz, M., Thompson, J., Curotto, J., Dreikorn, S., Rosenbach, M., Douglas, C., Abruzzo, G., Flattery, A., Kong, L., Cabello, A., Vicente, F., Pelaez, F., Diez, M. T., Martin, I., Bills, G., Giacobbe, R., Dombrowski, A., Schwartz, R., Morris, S., Harris, G., Tsipouras, A., Wilson, K., and Kurtz, M. B. 2000. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44(2):368–377

    Article  PubMed  CAS  Google Scholar 

  388. Onyewu, C., Blankenship, J. R., Del Poeta, M., and Heitman, J. 2003. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47(3):956–964

    Article  PubMed  CAS  Google Scholar 

  389. Onyewu, C., Wormley, F. L., Jr., Perfect, J. R., and Heitman, J. 2004. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72:7330–7333

    Article  PubMed  CAS  Google Scholar 

  390. Oppenheim, F. G., Xu, T., McMillian, F. M., Levitz, S. M., Diamond, R. D., Offner, G. D., and Troxler, R. F. 1988. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477

    PubMed  CAS  Google Scholar 

  391. Osherov, N., May, G. S., Albert, N. D., and Kontoyiannis, D. P. 2002. Overexpression of Sbe2p, a Golgi protein, results in resistance to caspofungin in Saccharomyces cerevisiae. Antimicrob Agents Chemother 46(8):2462–2469

    Article  PubMed  CAS  Google Scholar 

  392. Paderu, P., Park, S., and Perlin, D. S. 2004. Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob Agents Chemother 48:3845–3849

    Article  PubMed  CAS  Google Scholar 

  393. Pai, M. P., Jones, A. L., and Mullen, C. K. 2007. Micafungin activity against Candida bloodstream isolates: effect of growth medium and susceptibility testing method. Diagn Microbiol Infect Dis 58:129–132

    Article  PubMed  CAS  Google Scholar 

  394. Panwar, S. L., Krishnamurthy, S., Gupta, V., Alarco, A. M., Raymond, M., Sanglard, D., and Prasad, R. 2001. CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albi-cans. Yeast 18(12):1117–1129

    Article  PubMed  CAS  Google Scholar 

  395. Papon, N., Noel, T., Florent, M., Gibot-Leclerc, S., Jean, D., Chastin, C., Villard, J., and Chapeland-Leclerc, F. 2007. Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance. Antimicrob Agents Chemother 51:369–371

    Article  PubMed  CAS  Google Scholar 

  396. Paquet, V., and Carreira, E. M. 2006. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine. Org Lett 8:1807–1809

    Article  PubMed  CAS  Google Scholar 

  397. Pardini, G., De Groot, P. W., Coste, A. T., Karababa, M., Klis, F. M., de Koster, C. G., and Sanglard, D. 2006. The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J Biol Chem 281:40399–40411

    Article  PubMed  CAS  Google Scholar 

  398. Park, S., Kelly, R., Kahn, J. N., Robles, J., Hsu, M. J., Register, E., Li, W., Vyas, V., Fan, H., Abruzzo, G., Flattery, A., Gill, C., Chrebet, G., Parent, S. A., Kurtz, M., Teppler, H., Douglas, C. M., and Perlin, D. S. 2005. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273

    Article  PubMed  CAS  Google Scholar 

  399. Park, Y., Lee, D. G., and Hahm, K. S. 2004. HP(2–9)-magainin 2(1–12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane. J Pept Sci 10:204–209

    Article  PubMed  CAS  Google Scholar 

  400. Parks, L. W., Smith, S. J., and Crowley, J. H. 1995. Biochemical and physiological effects of sterol alterations in yeast–a review. Lipids 30:227–230

    Article  PubMed  CAS  Google Scholar 

  401. Parnham, M. J., Bogaards, J. J., Schrander, F., Schut, M. W., Oreskovic, K., and Mildner, B. 2005. The novel antifungal agent PLD-118 is neither metabolized by liver microsomes nor inhibits cytochrome P450 in vitro. Biopharm Drug Dispos 26:27–33

    Article  PubMed  CAS  Google Scholar 

  402. Pasrija, R., Panwar, S. L., and Prasad, R. 2008. Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother 52:694–704

    Article  PubMed  CAS  Google Scholar 

  403. Pasrija, R., Prasad, T., and Prasad, R. 2005. Membrane raft lipid constituents affect drug susceptibilities of Candida albicans. Biochem Soc Trans 33:1219–1223

    Article  PubMed  CAS  Google Scholar 

  404. Perepnikhatka, V., Fischer, F. J., Niimi, M., Baker, R. A., Cannon, R. D., Wang, Y. K., Sherman, F., and Rustchenko, E. 1999. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J Bacteriol 181:4041–4049

    PubMed  CAS  Google Scholar 

  405. Perez, A., Pedros, B., Murgui, A., Casanova, M., Lopez-Ribot, J. L., and Martinez, J. P. 2006. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6:1074–1084

    Article  PubMed  CAS  Google Scholar 

  406. Perlin, D. S. 2007. Resistance to echinocandin-class antifungal drugs. Drug Resistance Updates 10:121–130

    Article  PubMed  CAS  Google Scholar 

  407. Perumal, P., Mekala, S., and Chaffin, W. L. 2007. Role for cell density in antifungal drug resistance in Candida albicans bio-films. Antimicrob Agents Chemother 51:2454–2463

    Article  PubMed  CAS  Google Scholar 

  408. Peschel, A. 2002. How do bacteria resist human antimicrobial peptides. Trends Microbiol 10:179–186

    Article  PubMed  CAS  Google Scholar 

  409. Peschel, A., Jack, R. W., Otto, M., Collins, L. V., Staubitz, P., Nicholson, G., Kalbacher, H., Nieuwenhuizen, W. F., Jung, G., Tarkowski, A., van Kessel, K. P., and van Strijp, J. A. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076

    Article  PubMed  CAS  Google Scholar 

  410. Petraitiene, R., Petraitis, V., Kelaher, A. M., Sarafandi, A. A., Mickiene, D., Groll, A. H., Sein, T., Bacher, J., and Walsh, T. J. 2005. Efficacy, plasma pharmacokinetics, and safety of icofungipen, an inhibitor of Candida isoleucyl-tRNA synthetase, in treatment of experimental disseminated candidiasis in persistently neutropenic rabbits. Antimicrob Agents Chemother 49:2084–2092

    Article  PubMed  CAS  Google Scholar 

  411. Petraitis, V., Petraitiene, R., Kelaher, A. M., Sarafandi, A. A., Sein, T., Mickiene, D., Bacher, J., Groll, A. H., and Walsh, T. J. 2004. Efficacy of PLD-118, a novel inhibitor of Candida isoleu-cyl-tRNA synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albi-cans. Antimicrob Agents Chemother 48:3959–3967

    Article  PubMed  CAS  Google Scholar 

  412. Peyron, F., Favel, A., Calaf, R., Michel-Nguyen, A., Bonaly, R., and Coulon, J. 2002. Sterol and fatty acid composition of Candida lusitaniae clinical isolates. Antimicrob Agents Chemother 46:531–533

    Article  PubMed  CAS  Google Scholar 

  413. Pfaller, M. A., Boyken, L., Hollis, R. J., Messer, S. A., Tendolkar, S., and Diekema, D. J. 2006. Global surveillance of in vitro activity of micafungin against Candida: a comparison with caspofungin by CLSI-recommended methods. J Clin Microbiol 44:3533–3538

    Article  PubMed  CAS  Google Scholar 

  414. Pfaller, M. A., Boyken, L., Hollis, R. J., Messer, S. A., Tendolkar, S., and Diekema, D. J. 2005. In vitro activities of ani-dulafungin against more than 2,500 clinical isolates of Candida spp., including 315 isolates resistant to fluconazole. J Clin Microbiol 43:5425–5427

    Article  PubMed  CAS  Google Scholar 

  415. Pfaller, M. A., Boyken, L., Hollis, R. J., Messer, S. A., Tendolkar, S., and Diekema, D. J. 2006. In vitro susceptibilities of Candida spp. to caspofungin: four years of global surveillance. J Clin Microbiol 44:760–763

    Article  PubMed  CAS  Google Scholar 

  416. Pfaller, M. A., Diekema, D. J., Boyken, L., Messer, S. A., Tendolkar, S., Hollis, R. J., and Goldstein, B. P. 2005. Effectiveness of anidulafungin in eradicating Candida species in invasive can-didiasis. Antimicrob Agents Chemother 49:4795–4797

    Article  PubMed  CAS  Google Scholar 

  417. Pfaller, M. A., Messer, S. A., Boyken, L., Rice, C., Tendolkar, S., Hollis, R. J., and Diekema, D. J. 2003. Caspofungin activity against clinical isolates of fluconazole-resistant Candida. J Clin Microbiol 41:5729–5731

    Article  PubMed  CAS  Google Scholar 

  418. Pierson, C. A., Eckstein, J., Barbuch, R., and Bard, M. 2004. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans. Med Mycol 42:385–389

    Article  PubMed  CAS  Google Scholar 

  419. Pierson, C. A., Jia, N., Mo, C., Lees, N. D., Sturm, A. M., Eckstein, J., Barbuct, R., and Bard, M. 2004. Isolation, characterization, and regulation of the Candida albicans ERG27 gene encoding the sterol 3-keto reductase. Med Mycol 42:461–473

    Article  PubMed  CAS  Google Scholar 

  420. Pina-Vaz, C., Goncalves Rodrigues, A., Pinto, E., Costa-de-Oliveira, S., Tavares, C., Salgueiro, L., Cavaleiro, C., Goncalves, M. J., and Martinez-de-Oliveira, J. 2004. Antifungal activity of thymus oils and their major compounds. J Eur Acad Dermatol Venereol 18:73–78

    Article  PubMed  CAS  Google Scholar 

  421. Polak, A., and Wain, W. H. 1979. The effect of 5-fluorocytosine on the blastospores and hyphae of Candida albicans. J Med Microbiol 12(1):83–97

    Article  PubMed  CAS  Google Scholar 

  422. Polakowski, T., Stahl, U., and Lang, C. 1998. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49:66–71

    Article  PubMed  CAS  Google Scholar 

  423. Pourshafie, M., Morand, S., Virion, A., Rakotomanga, M., Dupuy, C., and Loiseau, P. M. 2004. Cloning of S-adenosyl-L-methionine:C-24-{delta}-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-resistant promastigotes. 48:2409–2414

    CAS  Google Scholar 

  424. Powers, T. 2007. TOR signaling and S6 kinase 1: yeast catches up. Cell Metab 6:1–2

    Article  PubMed  CAS  Google Scholar 

  425. Prabhananda, B. S., and Ugrankar, M. M. 1991. Nigericin-mediated H+, K+ and Na+ transports across vesicular membrane: T-jump studies. Biochim Biophys Acta 1070:481–491

    Article  PubMed  CAS  Google Scholar 

  426. Prasad, R., De Wergifosse, P., Goffeau, A., and Balzi, E. 1995. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329

    Article  PubMed  CAS  Google Scholar 

  427. Prasad, R., and Kapoor, K. 2005. Multidrug resistance in yeast Candida. Int Rev Cytol 242:215–248

    Article  PubMed  CAS  Google Scholar 

  428. Prill, S. K. H., Klinkert, B., Timpel, C., Gale, C. A., Schroppel, K., and Ernst, J. F. 2005. PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. 546–560, vol. 55

    Google Scholar 

  429. Pujol, C., Messer, S. A., Pfaller, M., and Soll, D. R. 2003. Drug resistance is not directly affected by mating type locus zygosity in Candida albicans. Antimicrob Agents Chemother 47:1207–1212

    Article  PubMed  CAS  Google Scholar 

  430. Pujol, C., Pfaller, M. A., and Soll, D. R. 2004. Flucytosine resistance is restricted to a single genetic clade of Candida albicans. Antimicrob Agents Chemother 48:262–266

    Article  PubMed  CAS  Google Scholar 

  431. Qadota, H., Python, C. P., Inoue, S. B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D. E., and Ohya, Y. 1996. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272(5259):279–281

    Article  PubMed  CAS  Google Scholar 

  432. Qiao, J., Kontoyiannis, D. P., Wan, Z., Li, R., and Liu, W. 2007. Antifungal activity of statins against Aspergillus species. Med Mycol 45:589–593

    Article  PubMed  CAS  Google Scholar 

  433. Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L., and Lopez-Ribot, J. L. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49(6):973–980

    Article  PubMed  CAS  Google Scholar 

  434. Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L., and Lopez-Ribot, J. L. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. 49:973–980

    CAS  Google Scholar 

  435. Ramage, G., and Lopez-Ribot, J. L. 2005. Techniques for antifun-gal susceptibility testing of Candida albicans biofilms. Methods Mol Med 118:71–79

    PubMed  CAS  Google Scholar 

  436. Ramage, G., Saville, S. P., Thomas, D. P., and Lopez-Ribot, J. L. 2005. Candida biofilms: an update. 4:633–638

    CAS  Google Scholar 

  437. Ramage, G., Saville, S. P., Wickes, B. L., and Lopez-Ribot, J. L. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463

    Article  PubMed  CAS  Google Scholar 

  438. Ramage, G., Vande Walle, K., Wickes, B. L., and Lopez-Ribot, J. L. 2001. Biofilm formation by Candida dubliniensis. J Clin Microbiol 39:3234–3240

    Article  PubMed  CAS  Google Scholar 

  439. Ramanathan, B., Davis, E. G., Ross, C. R., and Blecha, F. 2002. Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes Infect 4:361–372

    Article  PubMed  CAS  Google Scholar 

  440. Renault, S., De Lucca, A. J., Boue, S., Bland, J. M., Vigo, C. B., and Selitrennikoff, C. P. 2003. CAY-1, a novel antifungal compound from cayenne pepper. Med Mycol 41:75–81

    Article  PubMed  CAS  Google Scholar 

  441. Rex, J. H., Pfaller, M. A., Walsh, T. J., Chaturvedi, V., Espinel-Ingroff, A., Ghannoum, M. A., Gosey, L. L., Odds, F. C., Rinaldi, M. G., Sheehan, D. J., and Warnock, D. W. 2001. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14:643–658, table of contents

    Article  PubMed  CAS  Google Scholar 

  442. Ribeiro, M. A., and Paula, C. R. 2007. Up-regulation of ERG11 gene among fluconazole-resistant Candida albicans generated in vitro: is there any clinical implication. Diagn Microbiol Infect Dis 57:71–75

    Article  PubMed  CAS  Google Scholar 

  443. Richard, M. L., Nobile, C. J., Bruno, V. M., and Mitchell, A. P. 2005. Candida albicans biofilm-defective mutants. 4:1493–1502

    CAS  Google Scholar 

  444. Roberts, J. A., Vial, C., Digby, H. R., Agboh, K. C., Wen, H., Atterbury-Thomas, A., and Evans, R. J. 2006. Molecular properties of P2X receptors. Pflugers Arch 452:486–500

    Article  PubMed  CAS  Google Scholar 

  445. Robyr, D., Kurdistani, S. K., and Grunstein, M. 2004. Analysis of genome-wide histone acetylation state and enzyme binding using DNA microarrays. Methods Enzymol 376:289–304

    Article  PubMed  CAS  Google Scholar 

  446. Rocha, E. M., Garcia-Effron, G., Park, S., and Perlin, D. S. 2007. A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 51:4174–4176

    Article  PubMed  CAS  Google Scholar 

  447. Roemer, T., Jiang, B., Davison, J., Ketela, T., Veillette, K., Breton, A., Tandia, F., Linteau, A., Sillaots, S., Marta, C., Martel, N., Veronneau, S., Lemieux, S., Kauffman, S., Becker, J., Storms, R., Boone, C., and Bussey, H. 2003. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181

    Article  PubMed  CAS  Google Scholar 

  448. Rogers, K. M., Pierson, C. A., Culbertson, N. T., Mo, C., Sturm, A. M., Eckstein, J., Barbuch, R., Lees, N. D., and Bard, M. 2004. Disruption of the Candida albicans CYB5 gene results in increased azole sensitivity. Antimicrob Agents Chemother 48(9):3425–3435

    Article  PubMed  CAS  Google Scholar 

  449. Rogers, P. D., and Barker, K. S. 2003. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47(4):1220–1227

    Article  PubMed  CAS  Google Scholar 

  450. Rognon, B., Kozovska, Z., Coste, A. T., Pardini, G., and Sanglard, D. 2006. Identification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance. Microbiology 152:3701–3722

    Article  PubMed  CAS  Google Scholar 

  451. Rohde, J. R., and Cardenas, M. E. 2004. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol 279:53–72

    PubMed  CAS  Google Scholar 

  452. Rothstein, D. M., Spacciapoli, P., Tran, L. T., Xu, T., Roberts, F. D., Dalla Serra, M., Buxton, D. K., Oppenheim, F. G., and Friden, P. 2001. Anticandida activity is retained in P-113, a 12-amino-acid frag ment of histatin 5. Antimicrob Agents Chemother 45:1367–1373

    Article  PubMed  CAS  Google Scholar 

  453. Roze, L. V., and Linz, J. E. 1998. Lovastatin triggers an apopto-sis-like cell death process in the fungus Mucor racemosus. Fungal Genet Biol 25:119–133

    Article  PubMed  CAS  Google Scholar 

  454. Ruissen, A. L., Groenink, J., Helmerhorst, E. J., Walgreen-Weterings, E., Van't Hof, W., Veerman, E. C., and Nieuw Amerongen, A. V. 2001. Effects of histatin 5 and derived peptides on Candida albicans. Biochem J 356:361–368

    Article  PubMed  CAS  Google Scholar 

  455. Rusnak, F., and Mertz, P. 2000. Calcineurin: form and function. Physiol Rev 80(4):1483–1521

    PubMed  CAS  Google Scholar 

  456. Rustad, T. R., Stevens, D. A., Pfaller, M. A., and White, T. C. 2002. Homozygosity at the Candida albicans MTL locus associated with azole resistance. Microbiology 148(Pt 4):1061–1072

    PubMed  CAS  Google Scholar 

  457. Ryder, N. S. 1999. Activity of terbinafine against serious fungal pathogens. Mycoses 42:115–119

    PubMed  CAS  Google Scholar 

  458. Ryder, N. S., Wagner, S., and Leitner, I. 1998. In vitro activities of terbinafine against cutaneous isolates of Candida albicans and other pathogenic yeasts. Antimicrob Agents Chemother 42:1057–1061

    PubMed  CAS  Google Scholar 

  459. Saidane, S., Weber, S., De Deken, X., St-Germain, G., and Raymond, M. 2006. PDR16-mediated azole resistance in Candida albicans. Mol Microbiol 60:1546–1562

    Article  PubMed  CAS  Google Scholar 

  460. Saito, K., Tautz, L., and Mustelin, T. 2007. The lipid-binding SEC14 domain. Biochim Biophys Acta 1771:719–726

    PubMed  CAS  Google Scholar 

  461. Salgueiro, L. R., Pinto, E., Goncalves, M. J., Pina-Vaz, C., Cavaleiro, C., Rodrigues, A. G., Palmeira, A., Tavares, C., Costa-de-Oliveira, S., and Martinez-de-Oliveira, J. 2004. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med 70:572–575

    Article  PubMed  CAS  Google Scholar 

  462. Samaranayake, Y. H., Samaranayake, L. P., Pow, E. H., Beena, V. T., and Yeung, K. W. 2001. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human immunodeficiency virus-infected southern Chinese cohort. J Clin Microbiol 39:3296–3302

    Article  PubMed  CAS  Google Scholar 

  463. Samaranayake, Y. H., Samaranayake, L. P., Wu, P. C., and So, M. 1997. The antifungal effect of lactoferrin and lysozyme on Candida krusei and Candida albicans. Apmis 105:875–883

    Article  PubMed  CAS  Google Scholar 

  464. Sanglard, D. 2002. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5(4):379–385

    Article  PubMed  CAS  Google Scholar 

  465. Sanglard, D., and Bille, J. 2002. Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. 349–383. In R. A. Calderon (ed.), Candida and Candidiasis. ASM Press, Washington DC

    Google Scholar 

  466. Sanglard, D., Ischer, F., and Bille, J. 2001. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45:1174–1183

    Article  PubMed  CAS  Google Scholar 

  467. Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., and Bille, J. 1999. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43:2753–2765

    PubMed  CAS  Google Scholar 

  468. Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. A., and Bille, J. 1999. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents [in process citation]. Antimicrob Agents Chemother 43:2753–2765

    PubMed  CAS  Google Scholar 

  469. Sanglard, D., Ischer, F., Koymans, L., and Bille, J. 1998. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42:241–253

    Article  PubMed  CAS  Google Scholar 

  470. Sanglard, D., Ischer, F., Marchetti, O., Entenza, J., and Bille, J. 2003. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48(4):959–976

    Article  PubMed  CAS  Google Scholar 

  471. Sanglard, D., Ischer, F., Monod, M., and Bille, J. 1997. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143:405–416

    Article  PubMed  CAS  Google Scholar 

  472. Sanglard, D., Ischer, F., Monod, M., and Bille, J. 1997. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143(Pt 2):405–416

    Article  PubMed  CAS  Google Scholar 

  473. Sanglard, D., Ischer, F., Monod, M., and Bille, J. 1996. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40:2300–2305

    PubMed  CAS  Google Scholar 

  474. Sanglard, D., Ischer, F., Parkinson, T., Falconer, D., and Bille, J. 2003. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47(8):2404–2412

    Article  PubMed  CAS  Google Scholar 

  475. Sanglard, D., and Odds, F. C. 2002. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85

    Article  PubMed  CAS  Google Scholar 

  476. Santos, C., Rodriguez-Gabriel, M. A., Remacha, M., and Ballesta, J. P. 2004. Ribosomal P0 protein domain involved in selectivity of antifungal sordarin derivatives. Antimicrob Agents Chemother 48:2930–2936

    Article  PubMed  CAS  Google Scholar 

  477. Sauna, Z. E., Peng, X. H., Nandigama, K., Tekle, S., and Ambudkar, S. V. 2004. The molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1). Mol Pharmacol 65:675–684

    Article  PubMed  CAS  Google Scholar 

  478. Schjerling, P., and Holmberg, S. 1996. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. 24:4599–4607

    CAS  Google Scholar 

  479. Schmelzle, T., and Hall, M. N. 2000. TOR, a central controller of cell growth. Cell 103(2):253–262

    Article  PubMed  CAS  Google Scholar 

  480. Schuetzer-Muehlbauer, M., Willinger, B., Egner, R., Ecker, G., and Kuchler, K. 2003. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 22(3):291–300

    Article  PubMed  CAS  Google Scholar 

  481. Schuetzer-Muehlbauer, M., Willinger, B., Egner, R., Ecker, G., and Kuchler, K. 2003. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 22:291–300

    Article  PubMed  CAS  Google Scholar 

  482. Schuetzer-Muehlbauer, M., Willinger, B., Krapf, G., Enzinger, S., Presterl, E., and Kuchler, K. 2003. The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol 48(1):225–235

    Article  PubMed  CAS  Google Scholar 

  483. Schulz, T. A., and Prinz, W. A. 2007. Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim Biophys Acta 1771:769–780

    PubMed  CAS  Google Scholar 

  484. Schulz, T. A., and Prinz, W. A. 2007. Sterol transport in yeast and the oxysterol binding protein homologue (OSH) family. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids 1771:769–780

    Article  CAS  Google Scholar 

  485. Seo, K., Akiyoshi, H., and Ohnishi, Y. 1999. Alteration of cell wall composition leads to amphotericin B resistance in Aspergillus flavus. Microbiol Immunol 43(11):1017–1025

    PubMed  CAS  Google Scholar 

  486. Shah Alam Bhuiyan, M., Eckstein, J., Barbuch, R., and Bard, M. 2007. Synthetically lethal interactions involving loss of the yeast ERG24: the sterol C-14 reductase gene. Lipids 42:69–76

    Article  PubMed  CAS  Google Scholar 

  487. Shahi, P., Gulshan, K., and Moye-Rowley, W. S. 2007. Negative transcriptional regulation of multidrug resistance gene expression by an Hsp70 protein. 282:26822–26831

    CAS  Google Scholar 

  488. Sharom, F. J. 2006. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Biochem Cell Biol 84:979–992

    Article  PubMed  CAS  Google Scholar 

  489. Shastry, M., Nielsen, J., Ku, T., Hsu, M. J., Liberator, P., Anderson, J., Schmatz, D., and Justice, M. C. 2001. Species-specific inhibition of fungal protein synthesis by sordarin: identification of a sordarin-specificity region in eukaryotic elongation factor 2. Microbiology 147:383–390

    PubMed  CAS  Google Scholar 

  490. Shen, H., An, M. M., Wang de, J., Xu, Z., Zhang, J. D., Gao, P. H., Cao, Y. Y., Cao, Y. B., and Jiang, Y. Y. 2007. Fcr1p inhibits development of fluconazole resistance in Candida albicans by abolishing CDR1 induction. Biol Pharm Bull 30:68–73

    Article  PubMed  CAS  Google Scholar 

  491. Shimokawa, O., Kato, Y., and Nakayama, H. 1986. Increased drug sensitivity in Candida albicans cells accumulating 14-meth-ylated sterols. J Med Vet Mycol 24:481–483

    Article  PubMed  CAS  Google Scholar 

  492. Shimokawa, O., and Nakayama, H. 1989. A Candida albicans mutant conditionally defective in sterol 14 alpha-demethylation. J Med Vet Mycol 27:121–125

    Article  PubMed  CAS  Google Scholar 

  493. Shin, S., and Kim, J. H. 2004. Antifungal activities of essential oils from Thymus quinquecostatus and T. magnus. Planta Med 70:1090–1092

    Article  PubMed  CAS  Google Scholar 

  494. Shin, S., and Lim, S. 2004. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J Appl Microbiol 97:1289–1296

    Article  PubMed  CAS  Google Scholar 

  495. Shuford, J. A., Rouse, M. S., Piper, K. E., Steckelberg, J. M., and Patel, R. 2006. Evaluation of caspofungin and amphoter-icin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis 194:710–713

    Article  PubMed  CAS  Google Scholar 

  496. Shukla, S., Ambudkar, S. V., and Prasad, R. 2004. Substitution of threonine-1351 in the multidrug transporter Cdr1p of Candida albicans results in hypersusceptibility to antifungal agents and threonine-1351 is essential for synergic effects of calcineurin inhibitor FK520. J Antimicrob Chemother 54:38–45

    Article  PubMed  CAS  Google Scholar 

  497. Shukla, S., Rai, V., Saini, P., Banerjee, D., Menon, A. K., and Prasad, R. 2007. Candida drug resistance protein 1, a major multidrug ATP binding cassette transporter of Candida albicans, translocates fluorescent phospholipids in a reconstituted system. Biochemistry 46:12081–12090

    Article  PubMed  CAS  Google Scholar 

  498. Shukla, S., Saini, P., Smriti, Jha, S., Ambudkar, S. V., and Prasad, R. 2003. Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot Cell 2:1361–1375

    Article  PubMed  CAS  Google Scholar 

  499. Shukla, S., Sauna, Z. E., Prasad, R., and Ambudkar, S. V. 2004. Disulfiram is a potent modulator of multidrug transporter Cdr1p of Candida albicans. Biochem Biophys Res Commun 322:520–525

    Article  PubMed  CAS  Google Scholar 

  500. Sidorova, M., Drobna, E., Dzugasova, V., Hikkel, I., and Subik, J. 2007. Loss-of-function pdr3 mutations convert the Pdr3p transcription activator to a protein suppressing multidrug resistance in Saccharomyces cerevisiae. FEMS Yeast Res 7:254–264

    Article  PubMed  CAS  Google Scholar 

  501. Silver, P. M., Oliver, B. G., and White, T. C. 2004. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3:1391–1397

    Article  PubMed  CAS  Google Scholar 

  502. Simic, A., Sokovic, M. D., Ristic, M., Grujic-Jovanovic, S., Vukojevic, J., and Marin, P. D. 2004. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother Res 18:713–717

    Article  PubMed  CAS  Google Scholar 

  503. Simonetti, G., Passariello, C., Rotili, D., Mai, A., Garaci, E., and Palamara, A. T. 2007. Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res 7:1371–1380

    Article  PubMed  CAS  Google Scholar 

  504. Simonics, T., Kozovska, Z., Michalkova-Papajova, D., Delahodde, A., Jacq, C., and Subik, J. 2000. Isolation and molecular characterization of the carboxy-terminal pdr3 mutants in Saccharomyces cerevisiae. Curr Genet 38:248–255

    Article  PubMed  CAS  Google Scholar 

  505. Singh, A., Dhillon, N. K., Sharma, S., and Khuller, G. K. 2008. Identification and purification of CREB like protein in Candida albicans. Mol Cell Biochem 308:237–245

    Article  PubMed  CAS  Google Scholar 

  506. Singh, A., Sharma, S., and Khuller, G. K. 2007. cAMP regulates vegetative growth and cell cycle in Candida albicans. Mol Cell Biochem 304:331–341

    Article  PubMed  CAS  Google Scholar 

  507. Sirokmany, G., Szidonya, L., Kaldi, K., Gaborik, Z., Ligeti, E., and Geiszt, M. 2006. Sec14 homology domain targets p50RhoGAP to endosomes and provides a link between Rab and Rho GTPases. J Biol Chem 281:6096–6105

    Article  PubMed  CAS  Google Scholar 

  508. Situ, H., and Bobek, L. A. 2000. In vitro assessment of antifun-gal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Antimicrob Agents Chemother 44:1485–1493

    Article  PubMed  CAS  Google Scholar 

  509. Smith, S. J., Crowley, J. H., and Parks, L. W. 1996. Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol 16:5427–5432

    PubMed  CAS  Google Scholar 

  510. Smith, W. L., and Edlind, T. D. 2002. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregu-lation. Antimicrob Agents Chemother 46(11):3532–3539

    Article  PubMed  CAS  Google Scholar 

  511. Smith, W. L., and Edlind, T. D. 2002. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregu-lation. 46:3532–3539

    CAS  Google Scholar 

  512. Smriti, S. Krishnamurthy, Dixit, B. L., Gupta, C. M., Milewski, S., and Prasad, R. 2002. ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators. Yeast 19:303–318

    Article  PubMed  CAS  Google Scholar 

  513. Soe, R., Mosley, R. T., Justice, M., Nielsen-Kahn, J., Shastry, M., Merrill, A. R., and Andersen, G. R. 2007. Sordarin derivatives induce a novel conformation of the yeast ribosome translocation factor eEF2. J Biol Chem 282:657–666

    Article  PubMed  CAS  Google Scholar 

  514. Sohn, K., Senyurek, I., Fertey, J., Konigsdorfer, A., Joffroy, C., Hauser, N., Zelt, G., Brunner, H., and Rupp, S. 2006. An in vitro assay to study the transcriptional response during adherence of Candida albicans to different human epithelia. FEMS Yeast Res 6:1085–1093

    Article  PubMed  CAS  Google Scholar 

  515. Sokol-Anderson, M., Sligh, J. E., Jr., Elberg, S., Brajtburg, J., Kobayashi, G. S., and Medoff, G. 1988. Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B. Antimicrob Agents Chemother 32:702–705

    PubMed  CAS  Google Scholar 

  516. Song, J. L., Harry, J. B., Eastman, R. T., Oliver, B. G., and White, T. C. 2004. The Candida albicans lanosterol 14-alpha-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 48:1136–1144

    Article  PubMed  CAS  Google Scholar 

  517. Song, J. L., Lyons, C. N., Holleman, S., Oliver, B. G., and White, T. C. 2003. Antifungal activity of fluconazole in combination with lovastatin and their effects on gene expression in the ergos-terol and prenylation pathways in Candida albicans. Med Mycol 41:417–425

    Article  PubMed  CAS  Google Scholar 

  518. Song, J. L., and White, T. C. 2003. RAM2: an essential gene in the prenylation pathway of Candida albicans. Microbiology 149:249–259

    Article  PubMed  CAS  Google Scholar 

  519. Soukka, T., Tenovuo, J., and Lenander-Lumikari, M. 1992. Fungicidal effect of human lactoferrin against Candida albicans. FEMS Microbiol Lett 69:223–228

    Article  PubMed  CAS  Google Scholar 

  520. Srikanth, C. V., Chakraborti, A. K., and Bachhawat, A. K. 2005. Acetaminophen toxicity and resistance in the yeast Saccharomyces cerevisiae. Microbiology 151:99–111

    Article  PubMed  CAS  Google Scholar 

  521. Srikantha, T., Tsai, L., Daniels, K., Klar, A. J., and Soll, D. R. 2001. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol 183:4614–4625

    Article  PubMed  CAS  Google Scholar 

  522. Steinbach, W. J., Schell, W. A., Blankenship, J. R., Onyewu, C., Heitman, J., and Perfect, J. R. 2004. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumiga-tus. Antimicrob Agents Chemother 48:1664–1669

    Article  PubMed  CAS  Google Scholar 

  523. Steinbach, W. J., Singh, N., Miller, J. L., Benjamin, D. K., Jr., Schell, W. A., Heitman, J., and Perfect, J. R. 2004. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. Antimicrob Agents Chemother 48:4922–4925

    Article  PubMed  CAS  Google Scholar 

  524. Stevens, D. A., Espiritu, M., and Parmar, R. 2004. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother 48:3407–3411

    Article  PubMed  CAS  Google Scholar 

  525. Stevens, D. A., Ichinomiya, M., Koshi, Y., and Horiuchi, H. 2006. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother 50:3160–3161

    Article  PubMed  CAS  Google Scholar