Skip to main content

Microarray Analysis of a Large Number of Single-Nucleotide Polymorphisms in Individual Human Spermatozoa

  • Chapter
The Genetics of Male Infertility

Abstract

Genetic studies in humans have been limited by various factors, including small family size and diploidy of the human genome. The ability to use individual spermatozoa as subjects has significantly facilitated these studies. However, because each sperm usually contains only one copy of the genome and the sensitivity of the available detection methods was low, single sperm could not be used for large-scale genetic analysis. After a series of enhancements, a high-throughput genotyping system has been developed. With this system, more than 1000 genetic markers consisting of single-nucleotide polymorphisms (SNPs) in a single sperm genome can be amplified to a detectable amount in a single tube. Sequences amplified from different polymorphic loci are then resolved by hybridizing these sequences to the corresponding probes spotted on a microarray. The allelic sequences of each SNP are then discriminated by the commonly used allele-specific single-base-extension assay with dideoxyribonucleotides labeled with different fluorescent dyes. Using single sperm cells as subjects, the highly sensitive and high-throughput multiplex genotyping system was used to analyze the physical structure of the human immunoglobulin heavy chain variable region that contains highly repetitive sequences and may not be easily analyzed with conventional methods. This system was also used to understand the contribution of meiotic recombination to haplotype structure formation in the human genome. The system may have various applications including study of genetic factors underlying male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet 2005;366:1036–1044.

    Article  PubMed  CAS  Google Scholar 

  2. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986;51:263–273.

    PubMed  CAS  Google Scholar 

  3. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985;230:1344–1350.

    Article  Google Scholar 

  4. Li HH, Gyllensten UB, Cui XF, Saiki RK, Erlich HA, Arnheim N. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 1988;335:414–417.

    Article  PubMed  CAS  Google Scholar 

  5. Cui X, Li H. Discriminating between allelic and interlocus differences among human immunoglobulin VH4 sequences by analyzing single spermatozoa. Hum Genet 1997;100:96–100.

    Article  PubMed  CAS  Google Scholar 

  6. Lien S, Kaminski S, Alestrom P, Rogne S. A simple and powerful method for linkage analysis by amplification of DNA from single sperm cells. Genomics 1993;16:41–44.

    Article  PubMed  CAS  Google Scholar 

  7. Greenawalt DM, Cui X, Wu Y, et al. Strong correlation between meiotic crossovers and haplotype structure in a 2.5-Mb region on the long arm of chromosome 21. Genome Res 2006;16:208–214.

    Article  PubMed  CAS  Google Scholar 

  8. Pramanik S, Li H. Direct detection of insertion/deletion polymorphisms in an auto-somal region by analyzing high-density markers in individual spermatozoa. Am J Hum Genet 2002;71:1342–1352.

    Article  PubMed  CAS  Google Scholar 

  9. Chimge NO, Pramanik S, Hu G, et al. Determination of gene organization in the human IGHV region on single chromosomes. Genes Immun 2005;6:186–193.

    Article  PubMed  CAS  Google Scholar 

  10. Cui XF, Li HH, Goradia TM, et al. Single-sperm typing: determination of genetic distance between the G gamma-globin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers. Proc Natl Acad Sci USA 1989;86:9389–9393.

    Article  PubMed  CAS  Google Scholar 

  11. Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB. Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci USA 1983;80:278–282.

    Article  PubMed  CAS  Google Scholar 

  12. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymati-cally amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonu-cleotide probes. Nature 1986;324:163–166.

    Article  PubMed  CAS  Google Scholar 

  13. Li H, Cui X, Arnheim N. Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc Natl Acad Sci USA 1990;87:4580–4584.

    Article  PubMed  CAS  Google Scholar 

  14. Goradia TM, Stanton VP, Jr, Cui XF, et al. Ordering three DNA polymorphisms on human chromosome 3 by sperm typing. Genomics 1991;10:748–755.

    Article  PubMed  CAS  Google Scholar 

  15. Hubert R, Stanton VP, Jr, Aburatani H, et al. Sperm typing allows accurate measurement of the recombination fraction between D3S2 and D3S3 on the short arm of human chromosome 3. Genomics 1992;12:683–687.

    Article  PubMed  CAS  Google Scholar 

  16. Cui X, Gerwin J, Navidi W, Li H, Kuehn M, Arnheim N. Gene-centromere linkage mapping by PCR analysis of individual oocytes. Genomics 1992;13:713–717.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 1992;89:5847–5851.

    Article  PubMed  CAS  Google Scholar 

  18. Cullen M, Perfetto SP, Klitz W, Nelson G, Carrington M. High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am J Hum Genet 2002;71:759–776.

    Article  PubMed  Google Scholar 

  19. Fischer SG, Lerman LS. Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci USA 1980;77:4420–4424.

    Article  PubMed  CAS  Google Scholar 

  20. Myers RM, Fischer SG, Maniatis T, Lerman LS. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res 1985;13:3111–3129.

    Article  PubMed  CAS  Google Scholar 

  21. Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 1983;80:1579–1583.

    Article  PubMed  CAS  Google Scholar 

  22. Myers RM, Fischer SG, Lerman LS, Maniatis T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 1985;13:3131–3145.

    Article  PubMed  CAS  Google Scholar 

  23. Li H, Cui X, Pramanik S, Chimge NO. Genetic diversity of the human immunoglobulin heavy chain VH region. Immunol Rev 2002;190:53–68.

    Article  PubMed  CAS  Google Scholar 

  24. Cui X, Li H. Determination of gene organization in individual haplotypes by analyzing single DNA fragments from single spermatozoa. Proc Natl Acad Sci USA 1998;95:10,791–10,796.

    Article  PubMed  CAS  Google Scholar 

  25. Lin Z, Cui X, Li H. Multiplex genotype determination at a large number of gene loci. Proc Natl Acad Sci USA 1996;93:2582–2587.

    Article  PubMed  CAS  Google Scholar 

  26. Edwards MC, Gibbs RA. Multiplex PCR: advantages, development, and applications. PCR Methods Appl 1994;3:S65–S75.

    PubMed  CAS  Google Scholar 

  27. Shuber AP, Grondin VJ, Klinger KW. A simplified procedure for developing multiplex PCRs. Genome Res 1995;5:488–493.

    Article  PubMed  CAS  Google Scholar 

  28. Yeakley JM, Fan JB, Doucet D, et al. Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol 2002;20:353–358.

    Article  PubMed  CAS  Google Scholar 

  29. Hardenbol P, Baner J, Jain M, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 2003;21:673–678.

    Article  PubMed  CAS  Google Scholar 

  30. Kennedy GC, Matsuzaki H, Dong S, et al. Large-scale genotyping of complex DNA. Nat Biotechnol 2003;21:1233–1237.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuzaki H, Loi H, Dong S, et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res 2004;14:414–425.

    Article  PubMed  CAS  Google Scholar 

  32. Fan J-B, Oliphant A, Shen R, et al. Highly parallel SNP genotyping. In: Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press, City: 2004;69–78.

    Google Scholar 

  33. Butcher LM, Meaburn E, Liu L, et al. Genotyping pooled DNA on microarrays: a systematic genome screen of thousands of SNPs in large samples to detect QTLs for complex traits. Behav Genet 2004;34:549–555.

    Article  PubMed  Google Scholar 

  34. Zhou X, Mok SC, Chen Z, Li Y, Wong DT. Concurrent analysis of loss of heterozy-gosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Hum Genet 2004;115:327–330.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou X, Li C, Mok SC, Chen Z, Wong DT. Whole genome loss of heterozygosity profiling on oral squamous cell carcinoma by high-density single nucleotide polymorphic allele (SNP) array. Cancer Genet Cytogenet 2004;151:82–84.

    Article  PubMed  CAS  Google Scholar 

  36. Wang HY, Luo M, Tereshchenko IV, et al. A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome. Genome Res 2005;15:276–283.

    Article  PubMed  CAS  Google Scholar 

  37. Shumaker JM, Metspalu A, Caskey CT. Mutation detection by solid phase primer extension. Hum Mutat 1996;7:346–354.

    Article  PubMed  CAS  Google Scholar 

  38. Lindblad-Toh K, Tanenbaum DM, Daly MJ, et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol 2000;18:1001–1005.

    Article  PubMed  CAS  Google Scholar 

  39. Pastinen T, Kurg A, Metspalu A, Peltonen L, Syvanen AC. Minisequencing: a specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res 1997;7:606–614.

    PubMed  CAS  Google Scholar 

  40. Syvanen AC. From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 1999;13:1–10.

    Article  PubMed  CAS  Google Scholar 

  41. Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvanen AC. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res 2000;10:1031–1042.

    Article  PubMed  CAS  Google Scholar 

  42. Aknin-Seifer IE, Lejeune H, Touraine RL, Levy R. Y chromosome microdeletion screening in infertile men in France: a survey of French practice based on 88 IVF centres. Hum Reprod 2004;19:788–793.

    Article  PubMed  Google Scholar 

  43. Vogt PH. AZF deletions and Y chromosomal haplogroups: history and update based on sequence. Hum Reprod Update 2005;11:319–336.

    Article  PubMed  CAS  Google Scholar 

  44. Ali S, Hasnain SE. Genomics of the human Y-chromosome. 1. Association with male infertility. Gene 2003;321:25–37.40

    Article  PubMed  CAS  Google Scholar 

  45. Pallares N, Lefebvre S, Contet V, Matsuda F, Lefranc MP. The human immunoglobulin heavy variable genes. Exp Clin Immunogenet 1999;16:36–60.

    Article  PubMed  CAS  Google Scholar 

  46. Scaviner D, Barbie V, Ruiz M, Lefranc MP. Protein displays of the human immunoglobulin heavy, kappa and lambda variable and joining regions. Exp Clin Immunogenet 1999;16:234–240.

    Article  PubMed  CAS  Google Scholar 

  47. Cook GP, Tomlinson IM, Walter G, et al. A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q. Nat Genet 1994;7:162–168.

    Article  PubMed  CAS  Google Scholar 

  48. Cook GP, Tomlinson IM. The human immunoglobulin VH repertoire. Immunol Today 1995;16:237–242.

    Article  PubMed  CAS  Google Scholar 

  49. Matsuda F, Shin EK, Nagaoka H, et al. Structure and physical map of 64 variable segments in the 3′0.8-megabase region of the human immunoglobulin heavy-chain locus. Nat Genet 1993;3:88–94.

    Article  PubMed  CAS  Google Scholar 

  50. Matsuda F, Ishii K, Bourvagnet P, et al. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 1998;188:2151–2162.

    Article  PubMed  CAS  Google Scholar 

  51. Shin EK, Matsuda F, Nagaoka H, et al. Physical map of the 3′ region of the human immunoglobulin heavy chain locus: clustering of autoantibody-related variable segments in one haplotype. Embo J 1991;10:3641–3645.

    PubMed  CAS  Google Scholar 

  52. Cherif D, Berger R. New localizations of VH sequences by in situ hybridization with biotinylated probes. Genes Chromosomes Cancer 1990;2:103–108.

    Article  PubMed  CAS  Google Scholar 

  53. Tomlinson IM, Cook GP, Carter NP, et al. Human immunoglobulin VH and D segments on chromosomes 15q11.2 and 16p11.2. Hum Mol Genet 1994;3:853–860.

    Article  PubMed  CAS  Google Scholar 

  54. Nagaoka H, Ozawa K, Matsuda F, et al. Recent translocation of variable and diversity segments of the human immunoglobulin heavy chain from chromosome 14 to chromosomes 15 and 16. Genomics 1994;22:189–197.

    Article  PubMed  CAS  Google Scholar 

  55. Lee KH, Matsuda F, Kinashi T, Kodaira M, Honjo T. A novel family of variable region genes of the human immunoglobulin heavy chain. J Mol Biol 1987;195:761–768.

    Article  PubMed  CAS  Google Scholar 

  56. Berman JE, Mellis SJ, Pollock R, et al. Content and organization of the human Ig VH locus: definition of three new VH families and linkage to the Ig CH locus. EMBO J 1988;7:727–738.

    PubMed  CAS  Google Scholar 

  57. Rabbitts TH, Matthyssens G, Hamlyn PH. Contribution of immunoglobulin heavy-chain variable-region genes to antibody diversity. Nature 1980;284:238–243.

    Article  PubMed  CAS  Google Scholar 

  58. Schroeder HW, Jr, Hillson JL, Perlmutter RM. Early restriction of the human antibody repertoire. Science 1987;238:791–793.

    Article  PubMed  CAS  Google Scholar 

  59. Humphries CG, Shen A, Kuziel WA, Capra JD, Blattner FR, Tucker PW. A new human immunoglobulin VH family preferentially rearranged in immature B-cell tumours. Nature 1988;331:446–449.

    Article  PubMed  CAS  Google Scholar 

  60. Buluwela L, Rabbitts TH. A VH gene is located within 95 Kb of the human immunoglobulin heavy chain constant region genes. Eur J Immunol 1988;18:1843–1845.

    Article  PubMed  CAS  Google Scholar 

  61. van Dijk KW, Mortari F, Kirkham PM, Schroeder HW, Jr, Milner EC. The human immunoglobulin VH7 gene family consists of a small, polymorphic group of six to eight gene segments dispersed throughout the VH locus. Eur J Immunol 1993;23:832–839.

    Article  PubMed  Google Scholar 

  62. Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 1992;227:776–798.

    Article  PubMed  CAS  Google Scholar 

  63. Kirkham PM, Mortari F, Newton JA, Schroeder HW, Jr. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. Embo J 1992;11:603–609. 59

    PubMed  CAS  Google Scholar 

  64. Mortari F, Newton JA, Wang JY, Schroeder HW, Jr. The human cord blood antibody repertoire. Frequent usage of the VH7 gene family. Eur J Immunol 1992;22:241–245.

    Article  PubMed  CAS  Google Scholar 

  65. Kodaira M, Kinashi T, Umemura I, et al. Organization and evolution of variable region genes of the human immunoglobulin heavy chain. J Mol Biol 1986;190:529–541.

    Article  PubMed  CAS  Google Scholar 

  66. Walter MA, Surti U, Hofker MH, Cox DW. The physical organization of the human immunoglobulin heavy chain gene complex. Embo J 1990;9:3303–3313.

    PubMed  CAS  Google Scholar 

  67. Lefranc MP. Nomenclature of the human immunoglobulin heavy (IGH) genes. Exp Clin Immunogenet 2001;18:100–116.

    Article  PubMed  CAS  Google Scholar 

  68. Cui X, Li H. Human immunoglobulin VH4 sequences resolved by population-based analysis after enzymatic amplification and denaturing gradient gel electrophoresis. Eur J Immunogenet 2000;27:37–46.

    Article  PubMed  CAS  Google Scholar 

  69. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002;3:299–309.

    Article  PubMed  CAS  Google Scholar 

  70. Wall JD, Pritchard JK. Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 2003;4:587–597.

    Article  PubMed  CAS  Google Scholar 

  71. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29:229–232.

    Article  PubMed  CAS  Google Scholar 

  72. Patil N, Berno AJ, Hinds DA, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001;294:1719–1723.

    Article  PubMed  CAS  Google Scholar 

  73. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–2229.

    Article  PubMed  CAS  Google Scholar 

  74. Olivier M, Wang X, Cole R, et al. Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11. Genomics 2004;83:912–923.

    Article  PubMed  CAS  Google Scholar 

  75. Stenzel A, Lu T, Koch WA, et al. Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum Genet 2004;114:377–385.

    Article  PubMed  CAS  Google Scholar 

  76. Twells RC, Mein CA, Phillips MS, et al. Haplotype structure, LD blocks, and uneven recombination within the LRP5 gene. Genome Res 2003;13:845–855.

    Article  PubMed  CAS  Google Scholar 

  77. Judson R, Salisbury B, Schneider J, Windemuth A, Stephens JC. How many SNPs does a genome-wide haplotype map require? Pharmacogenomics 2002;3:379–391.

    Article  PubMed  CAS  Google Scholar 

  78. Phillips MS, Lawrence R, Sachidanandam R, et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 2003;33:382–387.

    Article  PubMed  CAS  Google Scholar 

  79. Wang N, Akey JM, Zhang K, Chakraborty R, Jin L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 2002;71:1227–1234.

    Article  PubMed  CAS  Google Scholar 

  80. Consortium IH. The International HapMap Project. Nature 2003;426:789–796.

    Article  Google Scholar 

  81. Jeffreys AJ, Neumann R, Panayi M, Myers S, Donnelly P. Human recombination hot spots hidden in regions of strong marker association. Nat Genet 2005;37:601–606.

    Article  PubMed  CAS  Google Scholar 

  82. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001;29:217–222.

    Article  PubMed  CAS  Google Scholar 

  83. Crawford DC, Bhangale T, Li N, et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet 2004;36:700–706.

    Article  PubMed  CAS  Google Scholar 

  84. McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P. The finescale structure of recombination rate variation in the human genome. Science 2004;304:581–584.

    Article  PubMed  CAS  Google Scholar 

  85. Kauppi L, Sajantila A, Jeffreys AJ. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region. Hum Mol Genet 2003;12:33–40.

    Article  PubMed  CAS  Google Scholar 

  86. Kong A, Gudbjartsson DF, Sainz J, et al. A high-resolution recombination map of the human genome. Nat Genet 2002;31:241–247.

    PubMed  CAS  Google Scholar 

  87. Cheung J, Estivill X, Khaja R, et al. Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol 2003;4:R25.

    Article  PubMed  Google Scholar 

  88. Fredman D, White SJ, Potter S, Eichler EE, Den Dunnen JT, Brookes AJ. Complex SNP-related sequence variation in segmental genome duplications. Nat Genet 2004;36:861–866.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Li, H. et al. (2007). Microarray Analysis of a Large Number of Single-Nucleotide Polymorphisms in Individual Human Spermatozoa. In: Carrell, D.T. (eds) The Genetics of Male Infertility. Humana Press. https://doi.org/10.1007/978-1-59745-176-5_4

Download citation

Publish with us

Policies and ethics