Combustion and Incineration Engineering

  • Walter R. Niessen
Part of the Handbook of Environmental Engineering book series (HEE, volume 7)


Thermal processes (drying, pyrolysis, and combustion) provide powerful means to reduce the volume and sanitize municipal solid wastes (MSW) and the residual solids of wastewater treatment. Solids removed by wastewater treatment processes include screenings and grit, floating materials (scum), and the concentrated solids from primary and secondary clarifiers (sewage sludge). This chapter reviews the basic technology and analysis tools relating to thermal processes, and presents the application of these tools in the management of both municipal solid wastes and sewage sludge (biosolids).

Key Words

Sewage sludge municipal solid waste biosolids combustion incineration pyrolysis drying air pollution emissions municipal waste combustors multiple hearth furnace fluidized bed mass burning refuse derived fuel rotary dryer tray dryer indirect dryer direct dryer 


  1. 1.
    W. R. Niessen, Combustion and Incineration Processes, 3rd ed., Dekker, New York (2002).CrossRefGoogle Scholar
  2. 2.
    D. G. Wilson, Handbook of Solid Waste Management, Van Nostrand-Reinhold, New York (1977).Google Scholar
  3. 3.
    Y. C. Chang, Estimating heat of combustion for waste materials, Pollution Engineering, 29 (1979).Google Scholar
  4. 4.
    W. S. Selvig, and E. H. Gibson, in Chemistry of Coal Utilization, H. H. Lowry (ed.), John Wiley and Sons, New York (1945).Google Scholar
  5. 5.
    H. C. Hottel, G. C. Williams, N. M. Nerheim, and G. Schneider, Combustion of Carbon Monoxide and Propane, 10th International Symposium on Combustion, pp. 111–121, Combustion Institute, Pittsburgh, PA (1965).Google Scholar
  6. 6.
    M. A. Field, D. W. Gill, B. B. Morgan, and P. G. W. Hawksley, Combustion of Pulverized Coal, The British Coal Utilization Research Assn., Leatherhead, Surrey, England (1967).Google Scholar
  7. 7.
    W. R. Niessen, S. H. Chansky, E. L. Field, A. N. Dimetriou, C. P. La Mantia, R. E. Zinn, T. J. Lamb, and A. S. Sarofim, Systems Study of Air Pollution from Municipal Incineration, NAPCA, U.S. DHEW, Contract CPA-22-69-23, March (1970).Google Scholar
  8. 8.
    E. R. Kaiser, and S. B. Friedman, paper presented at 60th Annual Meeting, AIChE, November (1968).Google Scholar
  9. 9.
    D. A. Hoffman and R. A. Fritz, Environmental Science and Technology, 2 (11), 1023 (1968).CrossRefGoogle Scholar
  10. 10.
    M. A. Kanury, Combustion and Flame, 18, 75–83 (1972).CrossRefGoogle Scholar
  11. 11.
    U. K. Shivadev, and H. W. Emmons, Combustion and Flame, 22, 223–236 (1974).CrossRefGoogle Scholar
  12. 12.
    S. Kim, J. K. Park, and H. Chun, Pyrolysis kinetics of scrap tire rubbers. I: using TGD and TGA, Journal of Environmental Engineering, p. 507, July (1995).Google Scholar
  13. 13.
    R. S. Burto, III, and R. C. Bailie, Combustion, 13–18, February (1974).Google Scholar
  14. 14.
    S. B. Alpert, and F. A. Ferguson, et al., Pyrolysis of Solid Waste: A Technical and Economic Assessment, NTIS Pb. 218–231, September (1972).Google Scholar
  15. 15.
    P. Nicholls, Underfeed Combustion, Effect of Preheat, and Distribution of Ash in Fuelbeds, U.S. Bureau of Mines, Bulletin 378 (1934).Google Scholar
  16. 16.
    R. H. Stevens et al., Incinerator Overfire Mixing Study—Demonstration of Overfire Jet Mixing, OAP, U.S. Contract 68020204 (1974).Google Scholar
  17. 17.
    E. R. Kaiser, personal communication to W. R. Niessen, C. M. Mohr, and A. F. Sarofim (1970).Google Scholar
  18. 18.
    J. L. Korn, and R.L. Huitrick, Commerce refuse-to-energy facility combined ash treatment process, 30th Annual International Solid Waste Exposition, Tampa FL, pp. 431–446, August 3–6 (1992).Google Scholar
  19. 19.
    H. Eberhardt and W. Mayer, Experiences with Refuse Incinerators in Europe, in Proceedings of the 1968 National Incineration Conference, pp. 142–153, ASME, New York (1968).Google Scholar
  20. 20.
    F. Nowak, Brennstoft-Warme-Kraft, 19(2), 71–76 (1967).Google Scholar
  21. 21.
    R. L. Stenburg, R. R. Horsley, R. A. Herrick, and A. H. Rose, Jr., Journal of Air Pollution Control Association, 10, 114–120 (1966).Google Scholar
  22. 22.
    A. B. Walker and F. W. Schmitz, Characteristics of Furnace Emissions from Large, Mechanically Stoked Municipal Incinerators, in Proceedings of the 1964 National Incineration Conference, pp. 64–73, ASME, New York (1964).Google Scholar
  23. 23.
    F. R. Rehm, Journal of Air Pollution Control Association, 6 (4), 199–204 (1957).Google Scholar
  24. 24.
    H. R. Johnstone, University of Illinois Engineering Experiment Station Bulletin, 228, 221 (1931).Google Scholar
  25. 25.
    National Renewable Energy Laboratory, Polyvinyl Chloride Plastics in Municipal Solid Waste Combustion, NREL/TP-430-5518, Golden Colorado, April (1993).Google Scholar
  26. 26.
    H. G. Rigo, A. J. Chandler, and S.W. Lanier, The Relationship Between Chlorine in Waste Streams and Dioxin Emissions from Waste Combustor Stacks, American Society of Mechanical Engineers Report CRTD-Volume 36, New York (1995).Google Scholar
  27. 27.
    B. Zeldovitch, P. Sadovnikov, D. Frank-Kamenetski, Oxidation of Nitrogen in Combustion, Academy of Sciences (USSR), Institute of Chemistry and Physics, Moscow-Leningrad (1947).Google Scholar
  28. 28.
    C. T. Bowman, Kinetics of pollutant formation and destruction in combustion, Progress in Energy Combustion Science, 1, 33–45 (1975).CrossRefGoogle Scholar
  29. 29.
    Y.-H. Kiang, The formation of nitrogen oxides in hazardous waste incinerators, 10th Biennial ASME Solid Waste Processing Conference, New York, pp. 169–176, May 2–5 (1984).Google Scholar
  30. 30.
    A. H. Rose, Jr., and H. R. Crabaugh, Research findings in standards of incinerator design, in Air Pollution, Reinhold, New York (1955).Google Scholar
  31. 31.
    R. G. Barton, W. R. Seeker, and H. E. Bostian, The behavior of metals in municipal sludge incinerators, Transactions of the Institution of Chemical Engineers, 69, Part B, 29–36, February (1991).Google Scholar
  32. 32.
    NATO CCMS, International Toxicity Equivalency Factors (I/TEF) Method of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds, Report 178, December (1988).Google Scholar
  33. 33.
    D. G. Barnes, J. Bellin, and D. Cleverly, Interim procedure for estimating risks associated with exposures to mixtures of chlorinated dibenzodioxins and dibenzofurans (CDDs and CDFs), Chemosphere, 15, 1985 (1986).CrossRefGoogle Scholar
  34. 34.
    Bundesgesunheitsamt (German Federal Health Office) (BGA), Sachstand Dioxine, Bericht des Umweltbundesamtes, 5/85, 264 (1985).Google Scholar
  35. 35.
    U. G. Ahlborg, Nordic Risk Assessment of PCDDs and PCDFs, Chemosphere, 19, 603, (1989).CrossRefGoogle Scholar
  36. 36.
    Y. V. Ivanov, Effective Combustion of Overfire Fuel Gases in Furnaces, Estonian State Publishing House, Tallin, USSR (1959).Google Scholar
  37. 37.
    G. N. Abramovich, The Theory of Turbulent Jets, M.I.T. Press, Cambridge, MA (1963).Google Scholar
  38. 38.
    Layout and Application of Overfire Jets for Smoke Control in Coal Fired Furnaces, Section F-3, Fuel Engineering Data, National Coal Association, Washington, DC, December (1962).Google Scholar
  39. 39.
    M. A. Patrick, Experimental investigation of the mixing and penetration of a round turbulent jet injected perpendicularly into a transverse stream, Transactions of the Institute of Chemical Engineering, 45, T-16 to T-31 (1967).Google Scholar
  40. 40.
    W. R. Niessen, Municipal waste combustors: environmentally sound power plants, Solid Waste and Power, 7, 12–16, January/February (1993).Google Scholar
  41. 41.
    N. P. Getz, and R. W. Pease, Jr., Design considerations for dry scrubbers, in Proceedings of the ASME National Solid Waste Processing Conference, Philadelphia, pp. 113–118, May 1–4 (1988).Google Scholar
  42. 42.
    J. R. Donnelly, M. T. Quoch, and J. T. Moller, Joy/Niro spray dryer absorption flue gas cleaning system, Acid Gas and Dioxin Control Conference, Washington, DC (1985).Google Scholar
  43. 43.
    H. H. Krause, D. A. Vaughan, and W. K. Boyd, Corrosion and Deposits from Combustion of Solid Waste. Part IV. Combined Firing of Refuse and Coal, in Proceedings of the ASME Winter Annual Meeting, Houston, Texas (1975).Google Scholar
  44. 44.
    H. H. Krause, D. A. Vaughan, and W. K. Boyd, Corrosion and Deposits from Combustion of Solid Waste. Part III. Effects of Sulfur on Boiler Tube Metals, in Proceedings of the ASME Winter Annual Meeting (1974).Google Scholar
  45. 45.
    H. H. Krause, D. A. Vaughan, and P. D. Miller, Journal of Engineering and Power Transmission ASME, A, 95, 45–52 (1973).CrossRefGoogle Scholar
  46. 46.
    H. H. Krause, D. A. Vaughan, and P. D. Miller, Journal of Engineering and Power Transmission ASME, A, 96, 216–222 (1974).CrossRefGoogle Scholar
  47. 47.
    P. D. Miller and H. H. Krause, Corrosion of Carbon and Stainless Steels in Flue Gases from Municipal Incinerators, in Proceedings of the 1972 ASME National Incineration Conference, New York (1972).Google Scholar
  48. 48.
    P. D. Miller and H. H. Krause, Corrosion, 27, 31–45 (1971).Google Scholar
  49. 49.
    F. Nowak, Considerations in the Construction of Large Refuse Incinerators, in Proceedings of the 1970 ASME National Incineration Conference, pp. 86–92, New York (1970).Google Scholar
  50. 50.
    D. L. Klumb, Union electric facilities for burning municipal refuse at the Meramec power plant, paper presented at the Union Electric Co. Solid Waste Seminar, St. Louis, Mo., 26 October (1972).Google Scholar
  51. 51.
    A. J. Chandler, T. T. Eighmy, J. Hartlen, O. Hjelmar, D. S. Kosson, S. E. Sawell, H. A. van der Sloot, and J. Vehlow, Municipal Solid Waste Incinerator Residues, The International Ash Working Group, Elsevier Publishing (1997).Google Scholar
  52. 52.
    W. R. Niessen, C. H. Marks, and R. E. Sommerlad, Evaluation of Gasification and Novel Thermal Processes for the Treatment of Municipal Solid Waste, Report to the National Renewable Energy Laboratory, Contract YAR-5-15116-01, Golden, CO, July (1996).Google Scholar
  53. 53.
    Process Design Manual for Biosolids Treatment and Disposal, US EPA, Municipal Environmental Research laboratory, Office of Research and Development, Center for Environmental Research Information Technology Transfer, Cincinnati, OH (1979).Google Scholar
  54. 54.
    W. R. Niessen, Air emissions from thermal processing of wastewater sludges, conflicts in priorities, Sludge Management Conference, Boston, June (1987).Google Scholar
  55. 55.
    Solid waste resource recovery full scale test report, Report to Central Contra Costa Sanitary District, Brown and Caldwell, Inc., March (1977).Google Scholar
  56. 56.
    C. F. von Dreusche, and J. S. Netfa, Pyrolysis design alternatives and economic factors for pyrolyzing sewage sludge in multiple hearth furnaces, American Chemical Society Symposium Series No. 76, Solid Waste and Residues: Conversion by Advanced Thermal Processes (1978).Google Scholar
  57. 57.
    A. E. Gay, T. G. Beam, and B. W. Mar, Cost-effective solid waste characterization methodology, Journal of Environmental Engineering, ASCE, 119(4), 631, July/August (1993).CrossRefGoogle Scholar
  58. 58.
    W. A. Sanders, II, and D. J. Birnesser, Use of solid waste quantification and characterization program to implement an integrated system in Mercer County, New Jersey,” Proceedings of the ASME National Solid Waste Processing Conference, Long Beach, CA, pp. 221–227, June 3–6 (1990).Google Scholar
  59. 59.
    W. R. Niessen, and S. H. Chansky, The nature of refuse, Proceedings of the 1970 ASME Incineration Conference, New York, p. 1 (1970).Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Walter R. Niessen
    • 1
  1. 1.S. P., Andover

Personalised recommendations