Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies

  • J. Paul Chen
  • Lawrence K. Wang
  • Lei Yang
  • Soh-Fong Lim
Part of the Handbook of Environmental Engineering book series (HEE, volume 5)


In the last 20 yr, the water industry has been faced with a series of great challenges. Industries have discharged wastewater that contains various new compounds. In addition, the demand for high-quality water has been significantly increasing. As a result, new water treatment technologies have been developed. In this chapter, three novel technologies are introduced. The emerging technologies for the removal of heavy metals, disinfection byproducts, total organic carbons (TOC), and arsenic are illustrated.


Activate Carbon Calcium Alginate Liquid Membrane Hydrous Ferric Oxide Arsenic Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Volesky, Biosorption of Heavy Metals. CRC Press, Inc., 1990.Google Scholar
  2. 2.
    P. X. Sheng, L. H. Tan, J. P. Chen, and Y. P. Ting, Biosorption performance of two brown marine algae for removal of chromium. J. Dispersion Set Technol. 25(5), 681–688 (2004).Google Scholar
  3. 3.
    P. X. Sheng, Y. P. Ting, J. P. Chen, and L. Hong, Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interf. Sci. 275(1), 131–141 (2004).CrossRefGoogle Scholar
  4. 4.
    J. P. Chen and S. N. Wu, Copper adsorption behaviors of acid/base treated activated carbons. Langmuir 20(6), 2233–2242 (2004).CrossRefGoogle Scholar
  5. 5.
    J. P. Chen and L. Wang, Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors. Chemosphere 54(3), 397–404 (2004).CrossRefGoogle Scholar
  6. 6.
    S. B. Deng, R. B. Bai, and J. P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19(12), 5058–5064 (2003).CrossRefGoogle Scholar
  7. 7.
    J. P. Chen, L. Hong, S. N. Wu, and L. Wang, Elucidation of interactions between metal ions and ca-alginate based ion exchange resin by spectroscopic analysis and modeling simulation. Langmuir 18(24), 9413–9421 (2002).CrossRefGoogle Scholar
  8. 8.
    J. P. Chen and L. L. Lim, Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49(4), 363–370 (2002).CrossRefGoogle Scholar
  9. 9.
    J. P. Chen, D. Lie, L. Wang, S. N. Wu, and B. P. Zhang, Dried waste activated sludge as biosorbents for metal removal: adsorptive characterization and prevention of organic leaching. J. Chem. Technol. Biotechnol. 77(6), 657–662 (2002).CrossRefGoogle Scholar
  10. 10.
    J. P. Chen and M. S. Lin, Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res. 35(10), 2385–2394 (2001).CrossRefGoogle Scholar
  11. 11.
    J. P. Chen and L. Wang, Characterization of a ca-alginate based ion exchange resin and its applications in lead, copper and zinc removal. Sep. Sci. Technol. 36(16), 3617–3637 (2001).CrossRefGoogle Scholar
  12. 12.
    J. P. Chen and J. Peng, Uptake of toxic metal ions by novel calcium alginate beads. Adv. Environ. Res. 3(4), 439–449 (1999).Google Scholar
  13. 13.
    J. P. Chen, F. Tendeyong, and S. Yiacoumi, Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Environ. Sci. Technol. 31(5), 1433–1439 (1997).CrossRefGoogle Scholar
  14. 14.
    J. R Chen and S. Yiacoumi, Biosorption of metal ions from aqueous solutions. Sep. Sci. Technol. 32(1-4), 51–69 (1997).CrossRefGoogle Scholar
  15. 15.
    Z. Aksu, Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40(3-4), 997–1026 (2005).CrossRefGoogle Scholar
  16. 16.
    W. Zhao, Y. P. Ting, J. P. Chen, C. H. Xing and S. Q. Shi, Advanced primary treatment of wastewater using a bio-flocculation-adsorption sedimentation process. Acta Biotechnol. 20(1), 53–64 (2000).CrossRefGoogle Scholar
  17. 17.
    C. Tien, Adsorption Calculations and Modeling. Butterworth-Heinemann, Boston,MA, 1994.Google Scholar
  18. 18.
    W. D. Schecher and D. C. McAvoy, MINEQL+ chemical equilibrium modeling system, version 4.5 for windows. Environ. Res. Software Hallowell, ME, 2001.Google Scholar
  19. 19.
    A. Herbelin and J. Westall, FITEQL: A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. Ver. 4.0. Technical Report. Department of Chemistry, Oregon State University, Corvallis,Oregon, 1999Google Scholar
  20. 20.
    R. Hausmann, C. Hoffmann, M. Franzreb, and W. H. Holl, Mass transfer rates in liquid magnetically stabilized fluidized bed of magnetic ion-exchange particles. Chem. Eng. Sci. 55, 1477–1482 (2000).CrossRefGoogle Scholar
  21. 21.
    H. Humbert, H. Gallard, H. Suty, and J. Croué, Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Res. 39(9), 1699–1708 (2005).CrossRefGoogle Scholar
  22. 22.
    C. J. Johnson and P. C. Singer, Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment. Water Res. 38(17), 3738–3750 (2004).CrossRefGoogle Scholar
  23. 23.
    D. A. Fearing, Combination of ferric and Miex® for the treatment of a humic rich water. Water Res. 38(10), 2551–2558 (2004).CrossRefGoogle Scholar
  24. 24.
    .P.C. Singer and K. Bilyk, Enhanced coagulation using a magnetic ion exchange resin. Water Res. 36(16), 4009–4022 (2002).CrossRefGoogle Scholar
  25. 25.
    T. H. Boyer and P. C. Singer bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Res. 39, 1265–1275 (2005).CrossRefGoogle Scholar
  26. 26.
    Y. Lee, J. Rho, and B. Jung, Preparation of magnetic ion exchange resins by the suspension polymerization of styrene with magnetite. J. Appl. Polymer Sci. 89, 2058–2067 (2003).CrossRefGoogle Scholar
  27. 27.
    R. S. Summers, Assessing DBP yield: uniform formation conditions. J. Am. Water Works Assoc. 88(6), 80–93 (1996).Google Scholar
  28. 28.
    R. Molinari, P. Argurio, and F. Pirillo, Comparison between stagnant sandwich and supported liquid membranes in copper(II) removal from aqueous solutions: flux, stability and model elaboration. J. Membr. Sci. 256(1-2), 158–168 (2005).CrossRefGoogle Scholar
  29. 29.
    W. Furst and R. Marr, Separation of metal species by emulsion liquid membranes. J. Membr. Sci. 38, 281–293 (1988).CrossRefGoogle Scholar
  30. 30.
    W. S. Winston Ho and K. K. Sirkar, Membrane Handbook. Van Nostrand Reinhold, New York, 1992.Google Scholar
  31. 31.
    M. Ma, Study on the transport selectivity and kinetics of amino acids through Di(2-ethylhexyl) phosphoric acid-kerosene bulk liquid membrane. J. Membr. Sci. 234, 101–109 (2004).CrossRefGoogle Scholar
  32. 32.
    S. Datta, P. K. Bhattacharya, N. Verma, Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. J. Membr. Sci. 226, 185–201 (2003).CrossRefGoogle Scholar
  33. 33.
    J. Luan and A. Plaisier, Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process. J. Membr. Sci. 229, 235–239 (2004).CrossRefGoogle Scholar
  34. 34.
    US EPA, Arsenic Rule Benefits Analysis: An SAB Review. EPA-SAB-EC-01-008. US Environmental Protection Agency, Washington,DC, August 2001.Google Scholar
  35. 35.
    P. R. Kumar, S. Chaudhari, K. C. Khilarand, and S. P. Mahajan, Removal of arsenic from water by electrocoagulation. Chemosphere 55(9), 1245–1252 (2004).CrossRefGoogle Scholar
  36. 36.
    M. A. Edwards, Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. J. Am. Water Works Assoc. 64–77 (1994).Google Scholar
  37. 37.
    T. J. Sorg and G. S. Logsdon, Treatment technology to meet the interim primary drinking water regulations for inorganics. Part 2 J. Am. Water Works Assoc. 70, 379–393 (1978).Google Scholar
  38. 38.
    J. G. Hering, P. Chen, J. A. Wilkie, M. Elimelech, and S. Liang, Arsenic removal by ferric chloride. J. Am. Water Works Assoc. 88(4), 155–167 (1996).Google Scholar
  39. 39.
    G. S. Logsdon, T. J. Sorg, and J. M. Symons, Removal of heavy metals by conventional treatment, Proc. 16th Water Quality Conference-Trace Metals In Water Occurrence, Significance, and Control. University Bulletin. U. of Illinois. No. 71 (1974).Google Scholar
  40. 40.
    J. Gregor, Arsenic removal during conventional aluminium-based drinking-water treatment. Water Res. 35(7), 1659–1664 (2001).CrossRefGoogle Scholar
  41. 41.
    J. P. Chen, S. Y. Chang and Y. T. Hung, Electrolysis. In: Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas,(eds.), Humana Press, Totowa, NJ, 359–378, 2005.Google Scholar
  42. 42.
    L. Lorenzen, J. S. J. Deventer and W. M. Landi, Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng. 8(4-5), 557–569 (1995).CrossRefGoogle Scholar
  43. 43.
    G. S. Gupta, G. Prasad and V. N. Singh, Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Res. 24, 45–50 (1990).CrossRefGoogle Scholar
  44. 44.
    R. L. Vaughan, Jr. and B. E. Reed, Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res. 39(6), 1005–1014 (2005).CrossRefGoogle Scholar
  45. 45.
    B. Daus, R. Wennrich, and H. Weiss, Sorption materials for arsenic removal from water: a comparative study. Water Res. 38(12), 2948–2954 (2004).CrossRefGoogle Scholar
  46. 46.
    D. Clifford, Ion exchange and inorganic adsorption. In: Water Quality and Treatment, American Water Works Association, McGraw Hill,New York. 1999.Google Scholar
  47. 47.
    US EPA, Case Study—Arsenic Treatment Technologies, Tucson, AZ, EPA 816-F-03-015, US Environmental Protection Agency, Washington DC, 2003.Google Scholar
  48. 48.
    US EPA, Arsenic Removal from Drinking Water by Ion Exchange and Activated Alumina Plants, EPA 600-R-00-088, US Environmental Protection Agency, Washington DC, 2000.Google Scholar
  49. 49.
    L. Zeng, A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal. Water Res. 37(18), 4351–4358 (2003).CrossRefGoogle Scholar
  50. 50.
    M. L. Pierce and C. B. Moore, Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16(7), 1247–1253 (1982).CrossRefGoogle Scholar
  51. 51.
    A. Sperlich, A. Werner, A. Genz, G. Amy, E. Worch and M. Jekel, Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches. Water Res. 39(6), 1190–1198 (2005).CrossRefGoogle Scholar
  52. 52.
    M. Badruzzaman, P. Westerhoff and D. R. U. Knappe, Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Res. 38(18), 4002–4012 (2004).CrossRefGoogle Scholar
  53. 53.
    J. A. Wilkie and J. G. Hering, Adsorption of arsenic onto hydrous ferric oxide effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf. A Physicochem. Eng. Aspects. 107, 97–110 (1996).CrossRefGoogle Scholar
  54. 54.
    Y. Zhang, M. Yang and X. Huang, Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere 51(9), 945–952 (2003).CrossRefGoogle Scholar
  55. 55.
    V. Lenoble, C. Chabroullet, R. al Shukry, B. Serpaud, V. Deluchat and J. Bollinger, Dynamic arsenic removal on a MnO2-loaded resin. J. Colloid Interf. Sci.3 280(1), 62–67 (2004).CrossRefGoogle Scholar
  56. 56.
    K. N. Ghimire, K. Inoue, H. Yamaguchi, K. Makino and T. Miyajima, Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 37(20), 4945–4953 (2003).CrossRefGoogle Scholar
  57. 57.
    L. Dambies, T. Vincent and E. Guibal, Treatment of arsenic-containing solutions using chi-tosan derivatives: uptake mechanism and sorption performances. Water Res. 36(15), 3699–3710 (2002).CrossRefGoogle Scholar
  58. 58.
    Editor, Filtration media shown to effectively remove arsenic, Filtration & Separation, 42(3), 14 (2005).Google Scholar
  59. 59.
    Editor, Dow licenses arsenic removal technology, Filtration & Separation, 41(3), 8 (2004).Google Scholar
  60. 60.
    Filtration & Separation, First commercial-scale arsenic removal system In USA. Filtration & Separation, 40(6), 13 (2003).Google Scholar
  61. 61.
    M. X. Loukidou, K. A. Matis, A. I. Zouboulis and M. Liakopoulou-Kyriakidou, Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res. 37(18), 4544–4552 (2003).CrossRefGoogle Scholar
  62. 62.
    S. N. Kartal and Y. Imamura, Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresou. Technol. 96(3), 389–392 (2005).CrossRefGoogle Scholar
  63. 63.
    N. K. Lazaridis, A. Hourzemanoglou and K. A. Matis, Flotation of metal-loaded clay anion exchangers. Part II: The Case of Arsenates. Chemosphere 47(3), 319–324 (2002).CrossRefGoogle Scholar
  64. 64.
    S. Shevade and R. G. Ford, Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 38(14-15), 3197–3204 (2004).CrossRefGoogle Scholar
  65. 65.
    M. H. Polyák and J. Hlavay, Removal of pollutants from drinking water by combined ion exchange and adsorption methods. Environ. Int. 21(3), 325–331 (1995).CrossRefGoogle Scholar
  66. 66.
    L. S. McNeill and M. Edwards, Arsenic removal during precipitative softening. J. Environ. Eng. 125(5), 453 (1997).CrossRefGoogle Scholar
  67. 67.
    T. Urase, J. Oh, and K. Yamamoto, Effect of pH on rejection of different species of arsenic by nanofiltration. Desalination 117(1-3), 11–18 (1998).CrossRefGoogle Scholar
  68. 68.
    Y. Sato, M. Kang, T. Kamei and Y. Magara, Performance of nanofiltration for arsenic removal. Water Res. 36(13), 3371–3377 (2002).CrossRefGoogle Scholar
  69. 69.
    R. Y. Ning, Arsenic removal by reverse osmosis. Desalination 143(3), 237–241 (2002).CrossRefGoogle Scholar
  70. 70.
    F. W. Pontius, N. Renouf, and R. McCutchen. Magnetic ion exchange solves problems. Opflow 32(8), 28–30 (2006).Google Scholar
  71. 71.
    L. K. Wang. Innovative Ultraviolet, Ion Exchange, Membrance and Flotation Technologies for Water and Waste Treatment. National Engineers Week Seminar, Traning Manual. Practicing Institute of Engineers, Albany, NY. February 12–14, 2006.Google Scholar
  72. 72.
    L. K. Wang, L. Kurylko, and M. H. S. Wang. Sequencing Batch Liquid Treatment. US Patent No. 5354458, US Patent and Trademark Office, Washington,DC, 1996.Google Scholar

Copyright information

© The Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • J. Paul Chen
    • 1
  • Lawrence K. Wang
    • 2
    • 3
    • 4
  • Lei Yang
    • 5
  • Soh-Fong Lim
    • 5
  1. 1.Division of Environmental Science and EngineeringNational University of SingaporeSingapore
  2. 2.Lenox Institute of Water TechnologyLenox
  3. 3.Krofta Engineering CorporationLenox
  4. 4.Zorex CorporationNewtonville
  5. 5.Department of Chemical and Environmental EngineeringNational University of SingaporeSingapore

Personalised recommendations