Skip to main content

Reverse Osmosis Technology for Desalination

  • Chapter

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 5))

Abstract

Desalination technologies are intended for the removal of dissolved salts that cannot be removed by conventional treatment processes. Thermal distillation technologies have been used in some ships for more than 100 yr. Desalination was used on a limited scale for municipal water treatment in the late 1960s. The past four decades can be divided into three phases of development: (1) 1950s was the time for discovery; (2) 1960s was concerned with research; and (3) 1970s and 1980s has been the time for commercialization. In the beginning of the 1970s, the industry began to concentrate on commercially viable desalination applications and processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sourirajan, Reverse Osmosis, Academic Press, New York, 1970.

    Google Scholar 

  2. S. Loeb and S. Sourirajan, Sea water demineralization by means of a semipermeable membrane. UCLA engineering report 60-60, University of California, Los Angeles, LA, 1960.

    Google Scholar 

  3. H. E. Podall, Reverse osmosis, in Recent Developments in Separation Science, Vol. 2, N.N. Li (ed.), CRC Press, Cleveland, Ohio, pp. 171–203 (1972).

    Google Scholar 

  4. H. Sun-tak and K. Kammermeyer, Membrane in separations, in Techniques of Chemistry, Vol. 7, John Wiley and Sons, New York, 1975.

    Google Scholar 

  5. T. Matsuura, P. Blais, L. Pageau, and S. Sourirajan, Parameters for prediction of reverseosmosis performance of aromatic polyamide-hydrazide (1:1) copolymer membranes. Indus. Eng. Chem. Process Design Dev. 16, 361–372 (1977).

    Article  Google Scholar 

  6. S. Sourirajan, Reverse osmosis—a new field of applied chemistry and chemical engineering, Plenary lecture at ACS symposium on synthetic membranes and their applications. SanFrancisco, California, CA, 1980.

    Google Scholar 

  7. E. D. Howe, Fundamentals of Water Desalination, Marcel Dekker, Inc., New York, NY, 1974.

    Google Scholar 

  8. L. T. Rozelle, J. E. Cadotte, K. E. Cobian, and C. V. Kopp, Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes, in Reverse Osmosis and Synthetic Membranes,Theory-Technology-Engineering, S. Sourirajan (ed.), National Research Council, Canada,pp. 249–312 (1977).

    Google Scholar 

  9. D. Mukherjee, A. Kulkami, and W. N. Gill, Flux enhancement of reverse osmosis membranes by chemical surface modification. J. Membr. Sci. 97, 231–249 (1994).

    Article  CAS  Google Scholar 

  10. R. D. Noble and S. A. Stern, Membrane Separations Technology: Principles and Applications, Elsevier, Amsterdam, New York, NY, 1995.

    Google Scholar 

  11. G. Jonsson, Overview of theories for water and solute transport in UF/RO membranes, Desalination 35, 21–28 (1980).

    Article  CAS  Google Scholar 

  12. M. Soltanieh and W. Gill, Review of reverse osmosis membranes and transport models. Chem. Eng. Commun. 12, 279–287 (1981).

    Article  CAS  Google Scholar 

  13. M. Mazid, Mechanisms of transport through reverse osmosis membranes. Sep. Sci.Technol. 19, 357–364 (1984).

    Article  CAS  Google Scholar 

  14. W. Pusch, Measurement techniques of transport through membranes, Desalination 59, 105–115(1986).

    Article  CAS  Google Scholar 

  15. J. Dickson, Fundamental aspects of reverse osmosis, in Reverse Osmosis Technology, B. Parekh (ed.), Marcel Dekker, Inc., New York, NY, pp. 1–51 (1998).

    Google Scholar 

  16. R. Rautenbach and R. Albrecht, Membrane Processes, John Wiley & Sons, New York, NY, 1989.

    Google Scholar 

  17. D. Bhattacharyya and M. Williams, Theory—reverse osmosis, in Membrane Handbook, W. Ho and K. Sirkar (eds.), Van Nostrand Reinhold, New York, NY, pp. 269–280 (1992).

    Google Scholar 

  18. S. Lee and R. M. Lueptow, Reverse osmosis filtration for space mission wastewater: membraneproperties and operating conditions. J. Membr. Sci. 182, 77–90 (2001).

    Article  CAS  Google Scholar 

  19. H. Burghoff, K. Lee, and W. Pusch, Characterization of transport across cellulose acetatemembranes in the presence of strong solute-membrane interactions. J. Appl. Polymer Sci. 25, 323–329 (1980).

    Article  CAS  Google Scholar 

  20. S. Sourirajan and T. Matsuura, Reverse Osmosis/Ultrafiltration Principles, National Research Council of Canada, Ottawa, Canada, 1985.

    Google Scholar 

  21. T. Matsuura and S. Sourirajan, Reverse osmosis transport through capillary pores under the influence of surface forces. Indus. Eng. Chem. Process Design and Dev. 20, 273–279 (1981).

    Article  CAS  Google Scholar 

  22. H. Mehdizadeh, J. Dickson, and P. Eriksson, Temperature effects on the performance of thin-film composite, aromatic polyamide membranes. Indus. Eng. Chem. Res. 28, 814–819 (1989).

    Article  CAS  Google Scholar 

  23. D. Bhattacharyya, M. Jevtitch, J. Schrodt, and G. Fairweather, Prediction of membraneseparation characteristics by pore distribution measurements and surface force-pore flowmodel. Chem. Eng. Commun. 42, 111–123 (1986).

    Article  CAS  Google Scholar 

  24. M. Jevtitch, Reverse osmosis membrane separation characteristics of various organics:prediction of separation by surface force-pore flow model and solute surface concentration by finite element method, Dissertation, D. Bhattacharyya, Director, Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky, 1986.

    Google Scholar 

  25. E. Matthiasson and B. Sivik, Concentration polarization and fouling. Desalination 35, 59–65 (1980).

    Article  CAS  Google Scholar 

  26. V. Gekas and B. Hallstrom, Mass transfer in the membrane concentration polarization layer under turbulent cross flow. J. Membr. Sci. 30, 153–161 (1987).

    Article  CAS  Google Scholar 

  27. W. N. Gill, M. R. Matsumoto, A. L. Gill, and Y. T. Lee, Flow patterns in radial flow hollow fiber reverse osmosis systems. Desalination 68, 11–28 (1988).

    Article  CAS  Google Scholar 

  28. S. Kimura and S. Sourirajan, Mass transfer coefficients for use in reverse osmosis process design. Indus. Eng. Chem. Process Design Dev. 7, 539–547 (1968).

    Article  CAS  Google Scholar 

  29. K. K. Sirkar and G. H. Rao, Additivity between donnan salt and ion-exchanged salt in the specific conductance of membranes. Desalination 48, 25–31 (1983).

    Article  CAS  Google Scholar 

  30. G. Jonsson, The influence of pressure in the compaction of asymmetric cellulose acetate membranes. Proceedings of the 6th International Symposium in Fresh Water from Sea, Athens, 1978.

    Google Scholar 

  31. S. Judd and B. Jefferson, Membrane for Industrial Wastewater Recovery and Re-use, Elsevier Advanced Technology, Oxford, 2003.

    Google Scholar 

  32. T. Matsuura, Progress in membrane science and technology for seawater desalination a review. Desalination 134, 47–54 (2001).

    Article  CAS  Google Scholar 

  33. P. Geisler, W. Krumm, and T. A. Peters, Reduction of the energy demand for seawater RO with the pressure exchange system PES. Desalination 135, 205–210 (2001).

    Article  CAS  Google Scholar 

  34. B. A. Winfield, A study of the factors affecting the rate of fouling of reverse osmosis mem-branes treating secondary sewage effluent. Water Res. 13, 565–569 (1979).

    Article  CAS  Google Scholar 

  35. M. R. Weisner and P. Aptel, Mass transport and permeate flux and fouling in pressure-driven processes, in Water Treatment Membrane Processes, P. E. Odendaal, M. R. Wiesner,and J. Mallevialle (eds.), McGraw-Hill Company, New York, pp. 4.1–4.30 (1996).

    Google Scholar 

  36. S. Lee, J. Cho, and M. Elimelech, Influence of colloidal fouling and feed water recovery on salt rejection of RO and NF membranes. Desalination 160, 1–12 (2004).

    Article  CAS  Google Scholar 

  37. H. Winter, Control of organic fouling at two seawater reverse osmosis plants. Desalination 66, 319–325 (1987).

    Article  Google Scholar 

  38. S.B. Sadr Ghayeni, P. J. Beatson, R. P. Schneider, and A. G. Fane, Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): preliminary performance data and microbiological aspects of system operation. Desalination 116, 65–80 (1998).

    Article  Google Scholar 

  39. J. S. Baker and L. Y. Dudley, Biofouling in membrane systems—a review. Desalination 118, 81–90 (1998).

    Article  CAS  Google Scholar 

  40. S. Bou-Hamad, M. Abdel-Jawad, S. Ebrahim, A. Al-Mansour, and A. Al-Hijji, Performance evaluation of three different pretreatment systems for seawater reverse osmosis technique. Desalination 110, 85–92 (1997).

    Article  CAS  Google Scholar 

  41. A. Adin and C. Klein-banay, Pretreatment of seawater by flocculation and settling for particulates removal. Desalination 58, 227–241 (1986).

    Article  CAS  Google Scholar 

  42. Y. Taniguchi, An overview of pretreatment technology for reverse osmosis desalination plants in Japan. Desalination 110, 21–36 (1997).

    Article  CAS  Google Scholar 

  43. S. Ebrahim, Cleaning and regeneration of membranes in desalination and wastewater applications: state-of-the-art. Desalination 96, 225–238 (1994).

    Article  CAS  Google Scholar 

  44. L. B. Yeatts, P. M. Lantz, and W. L. Marshall, Calcium sulfate solubility in brackish water concentrates and applications to reverse osmosis processes; polyphosphate additives. Desalination 15, 177–192 (1974).

    Article  CAS  Google Scholar 

  45. Z. Amjad, Applications of antiscalants to control calcium sulfate scaling in reverse osmosis systems. Desalination 54, 263–276 (1985).

    Article  CAS  Google Scholar 

  46. M. M. Reddy and G. H. Nancollas, Calcite crystal growth inhibition by phosphonates. Desalination 12, 61–73 (1973).

    Article  CAS  Google Scholar 

  47. F. H. Butt, F. Rahman, and U. Baduruthamal, Pilot plant evaluation of advanced vs. conventional scale inhibitors for RO desalination. Desalination 103, 189–198 (1995).

    Article  CAS  Google Scholar 

  48. K. T. Chua, M. N. A. Hawlader, and A. Malekb, Pretreatment of seawater: results of pilot trials in Singapore. Desalination 159, 225–243 (2003).

    Article  CAS  Google Scholar 

  49. A. Brehant, V. Bonnelyeb, and M. Perez, Comparison of MF/UF pretreatment with conventiotial filtration prior to RO membranes for surface seawater desalination. Desalination 144, 353–360 (2002).

    Article  CAS  Google Scholar 

  50. E. Van Houtte, J. Verbauwhede, F. Vanlerberghe, S. Demunter, and J. Cabooter, Treating different types of raw water with micro and ultrafiltration for further desalination using reverse osmosis. Desalination 117, 49–60 (1998).

    Article  Google Scholar 

  51. A. G. Fane, Membranes for water production and wastewater reuse. Desalination 106, 1–9 (1996).

    Article  CAS  Google Scholar 

  52. J. C. Kruithof, J. C. Schippers, P. C. Kamp, H. C. Folmer, and J. A. M. H. Hofman, Integratedmulti-objective membrane systems for surface water treatment: pretreatment of reverse osmosis by conventional treatment and ultrafiltration. Desalination 117, 37–48 (1998).

    Article  CAS  Google Scholar 

  53. P. Hills, M. B. Padley, N. I. Powell, and P. M. Gallegher, Effects of backwash conditions on out-to-in membrane microfiltration. Desalination 118, 197–204 (1998).

    Article  Google Scholar 

  54. P. Aptel and C. A. Buckley, Categories of membrane operations, in Water Treatment Membrane Processes, P. E. Odendaal, M. R. Wiesner, and J. Mallevialle, (eds.), No. 2.1-2.24, McGraw-Hill Company, New York, 1996.

    Google Scholar 

  55. C. A. Buckley and Q. E. Hurt, Membrane applications: a contaminant-based perspective, in Water Treatment Membrane Processes, P. E. Odendaal, M. R. Wiesner, and J. Mallevialle, (eds.), No. 3.1-3.24, McGraw-Hill Company, New York, 1996.

    Google Scholar 

  56. D. Jolis, R. A. Hirano, P. A. Pitt, A. Müller, and D. Mamais, Assessment of tertiary treatment technology for water reclamation in San Francisco, California. Water Sci. Technol. 33, 181–192 (1996).

    Article  CAS  Google Scholar 

  57. G. Trägårdh, Membrane cleaning. Desalination 71, 325–335 (1989).

    Article  Google Scholar 

  58. L. Y. Dudley, Membrane autopsies for reversing fouling in reverse osmosis. Membr.Technol. 95, 9–12 (1998).

    Google Scholar 

  59. R. Sheikholeslami, Fouling mitigation in membrane processes. Desalination 123, 45–53 (1999).

    Article  CAS  Google Scholar 

  60. M. Wilf and P. Glueckstern, Restoration of commercial reverse osmosis membranes under field conditions. Desalination 54, 343–350 (1985).

    Article  CAS  Google Scholar 

  61. S. I. Graham, R. L. Reitz, and C. E. Hickman, Improving reverse osmosis performance by periodic cleaning. Desalination 74, 113–124 (1989).

    Article  CAS  Google Scholar 

  62. S. Ebrahim and H. El-Dessouky, Evaluation of commercial cleaning agents for seawater reverse osmosis membranes. Desalination 99, 169–188 (1994).

    Article  CAS  Google Scholar 

  63. H. F. Ridgway, C. A. Justice, C. Whittaker, D. G. Argo, and B. H. Olson, Biofilm fouling of RO membranes—its nature and effect on treatment of water reuse. J. Am. Water Works Assoc. 76, 94–102 (1984).

    CAS  Google Scholar 

  64. J. Johnson and M. Leahy, Development of New Cleaning Techniques for Reverse Osmosis Membranes. OWRT Contract 14-340-001-8519. Office of Water Research and Technology, Washington, DC, 1982.

    Google Scholar 

  65. L. K. Wang and S. P. Kopko, City of Cape Coral Reverse Osmosis Water Treatment Facility.Technical report No. NTIS-PB97-139547. US Department of Commerce, National Technical Information Service, Springfield, VA 22161, 1997.

    Google Scholar 

  66. L. K. Wang, Innovative Ultraviolet, Ion Exchange, Membrane and Flotation Technologies for Water and Waste Treatment, National Engineers Week Seminar, Training Manual, National Association of Professional Engineers and Practicing Institute of Engineers, Albony, NY, February 12–14, 2006.

    Google Scholar 

  67. K. Benko, J. Pellegrino, and M. K. Price, Measurement of water permeation kinetics across reverse osmosis and nanofiltration membranes—apparatus development, J. Membr. Sci. 270, 187–195 (2006).

    Article  CAS  Google Scholar 

  68. AWWA, Desalination of Seawater and Brackish Water, American Water Works Association, Denver, CO, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 The Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chian, E.S.K., Chen, J.P., Sheng, PX., Ting, YP., Wang, L.K. (2007). Reverse Osmosis Technology for Desalination. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Technologies. Handbook of Environmental Engineering, vol 5. Humana Press. https://doi.org/10.1007/978-1-59745-173-4_6

Download citation

Publish with us

Policies and ethics