Advertisement

Nonthermal Plasma Technology

  • Toshiaki Yamamoto
  • Masaaki Okubo
Part of the Handbook of Environmental Engineering book series (HEE, volume 5)

Abstract

All substances change from solid to liquid, and from liquid to gas when energy or heat is added. This change is called phase change and occurs at constant temperature. When energy is added to the gas, electrons emerge from the neutral particles and become ions. The state in which many ions and electrons are intermingled is called “plasma” (Fig. 1) (1, 2, 3, 4). The change from gas to plasma is based on an ionization reaction. The energy needed for the reaction is in the range of 1–50 eV, which is generally much more than latent heat energy in the phase change (0.01 eV). Therefore, the change from gas to plasma is not strictly classified into the phase change. However, plasma is often called the fourth state, whereas solid, liquid, and gas are the other states of substance. Plasma is generally defined as an ionization gas, which is electrically neutral macro-scopically (the local number density of ion n i is equal to the number density of electrons nnie). Both ion and electron particles in plasma are moved by the heat. In particular, the speed of electrons is much more than other particles because of their small mass and mobility.

Keywords

Nitric Oxide Corona Discharge Plasma Reactor Diesel Particulate Filter Decomposition Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kanzawa, Plasma Dennetsu (English Translated Title: Heat Transfer in Plasma). Shinzan-sha Saitek Publ. Co., Tokyo, (in Japanese), 1992.Google Scholar
  2. 2.
    R. J. Roza, Magnetohydrodynamic Energy Conversion. McGraw-Hill Book Company, New York, NY, 1968.Google Scholar
  3. 3.
    M. Mitchner and C. H. Kruger, Partially Ionized Gas. John Wiley and Sons, New York,NY, 1973.Google Scholar
  4. 4.
    S. Teii, Plasma Kiso Kogaku (English Translated Title: Basic Plasma Engineering). Uchida Rokakuho Publishing Co. LTD., (in Japanese), 1997.Google Scholar
  5. 5.
    E. Hinnov and J. Hirschberg, Electron-ion recombination in dense plasmas. Phys. Rev. 125(3), 795–801 (1962).CrossRefGoogle Scholar
  6. 6.
    F. F. Chen, Introduction to Plasma Physics. Plenum Press, New York, NY, 1974.Google Scholar
  7. 7.
    E. M. Lifshits, Physical Kinetics (Course of Theoretical Physics). Butterworth-Heinemann Publication 1981.Google Scholar
  8. 8.
    N. G. Van Kampen and B. U. Felderhof, Theoretical Method in Plasma Physics. North-Holland Publ. Co., 1967.Google Scholar
  9. 9.
    D. R. Nicholson, Introduction to Plasma Theory. John Wiley & Sons, Inc. New York, NY, 1986.Google Scholar
  10. 10.
    A. B. Cambel, Plasma Physics and Magnetohydrodynamics. McGraw-Hill Inc. New York, NY, 1963.Google Scholar
  11. 11.
    J. S. Chang and T. Kaneda, Denri Kitai No Gensi Bunsi Katei (English Translated Title: Atoms and Molecular Processes of Ionized Gases). Tokyo Denki Daigaku Publ. Co., (in Japanese), 1982.Google Scholar
  12. 12.
    J. S. Chang, P. A. Lawless, and T. Yamamoto, Corona discharge processes. IEEE T. Plasma Sci. 19(6), 152–1166(1991).Google Scholar
  13. 13.
    D. K. Cheng, Field and Wave Electromagnetics (2nd ed.). Addison-Wesley Publishing Company, Reading, MA, 1992.Google Scholar
  14. 14.
    K. Kanaya and A. Iijima, Kodenatsu Kogaku Ensyu (English Translated Title: Problems on High Voltage Engineering). Maki Syoten Publishing Co. LTD., 7 and 37 (in Japanese), 1989.Google Scholar
  15. 15.
    A. Gal, M. Kurahashi, and M. Kuzumoto, An energy-consumption and byproduct-generation analysis of the discharge nonthermal plasma NO-reduction process. J. Phys. D. Appl. Phys. 32, 1–6 (1999).CrossRefGoogle Scholar
  16. 16.
    T. Yamamoto, K. Sonoyama, and S. Hosokawa, Gas-phase dioxins and NOχ control from incinerator plant using the pilot-scale PPCP. Proc. ofESCAMPIG16/icrp5, 2, 373–374 (2002).Google Scholar
  17. 17.
    T. Hirao, T. Yoshida, and S. Hayakawa, Hakumaku Gijyutsu no Shin Choryu (English Translated Title: New Trend in Thin film Manufacturing Technologies). Kogyo Chosakai Publishing Co. LTD., (in Japanese), 1997.Google Scholar
  18. 18.
    H. Yamasaki, K. Hayakawa, Y. Nagasaki, et al., Performances of closed cycle disk MHD generator with Ar/Cs. Proc. of 31st Intersociety Energy Conversion Eng. Conf. 2, Washington DC, pp. 854–859 (1996).Google Scholar
  19. 19.
    K. Wada, Performance and Transient Characteristics of Closed Cycle Disk MHD Generator. Master Course Thesis, Graduate School of Nagatsuta, Tokyo Institute of Technology, Yokohama, Japan, 1998.Google Scholar
  20. 20.
    M. Sadakata, Taiki Kuriin Kano Tameno Kagaku Kougaku (English Translated Title: Chemical Engineering for Atmospheric Clean-up). Baifukan Publishing Co., 75–78, (in Japanese), 1999.Google Scholar
  21. 21.
    Y. Nakano, Daigaku Katei Koudenatsu Kogaku (English Translated Title: Undergraduate Course, High Voltage Engineering) 2nd ed. Ohmsha Publishing Co., Vol. 132, 1991.Google Scholar
  22. 22.
    T. Murayama and H. Tsunemoto, Jidosya Engine Kogaku (English Translated Title: Automobile Engine Engineering). San-kai do Publ., 79–81 (in Japanese), 1997.Google Scholar
  23. 23.
    T. Oda, S. Kozuma, and T. Takahashi, Dilute trichloroethylene decomposition by using non-thermal discharge plasma cooperation with catalysis. Proc. of 1998 Annual Meeting of the Institute of Electrostatics Japan, 1–4, (in Japanese), 1998.Google Scholar
  24. 24.
    M. Okubo, T. Kuroki, Y. Miyairi, and T. Yamamoto, Low temperature soot incineration of DPF using non-thermal plasma induced radical injection. Proc. of ESA-IEEE Joint Meeting on Electrostatics, 416–430, 2003.Google Scholar
  25. 25.
    NOx analyzer, Horiba Corp. Portable Gas Analyzer PG-200 Series. Product manual, 58, 2003.Google Scholar
  26. 26.
    Horiba Corp., Analyzer of CO, CO 2 and N 2 O Gas Analyzer Unit for General Purpose VIA-510, Product manual, 2, 2003.Google Scholar
  27. 27.
    Shimazu, Co. Instruction Manual of GC-14 Gas Chromatograph. 12(1) (1997).Google Scholar
  28. 28.
    M. Takuma, (ed.) Fundamentals and Applications of FT-IR. 2nd ed., Tokyo Kagaku Dojin Publ. Co., 3–16 (in Japanese), 1994.Google Scholar
  29. 29.
    Biorad Laboratories, Inc. Spectrometer Manual of EXCALIBUR (1998).Google Scholar
  30. 30.
    C. D. Cooper and F. C. Alley, Air Pollution Control (A Design Approach). 2nd ed., Chapter 5, Waveland Press, Inc. 1994.Google Scholar
  31. 31.
    Japan Society of Electrostatics Electrostatics Handbook. Chapter 9, Ohm Sya Publ. (1981).Google Scholar
  32. 32.
    S. Oglesby and G. B. Nichols, A Manual of Electrostatic Precipitator Technology. National Technical Information Service, Springfield, VA, 1970.Google Scholar
  33. 33.
    H. J. White, Industrial Electrostatic Precipitation. Addison-Wesley, Reading, MA, 1963.Google Scholar
  34. 34.
    W. T. Davis (ed.), Air Pollution Engineering Manual. Air and Waste Management Association, Van Nostrand Reinhold, New York, NY.Google Scholar
  35. 35.
    A. D. Moore (ed.), Electrostatics and Its Applications. John Wiley, 1973.Google Scholar
  36. 36.
    G. W. Penny, A new electrostatic precipitator. Electr. Eng. 56, 159–163 (1937).Google Scholar
  37. 37.
    H. Lim, K. Yatsuzuka, and K. Asano, Fundamental characteristics of a two-stage electrostatic precipitator. J. Institute of Electrostat. Jpn. (in Japanese) 22(3), 145–152 (1998).Google Scholar
  38. 38.
    Y. Kawada, T. Kubo, Y. Ehara, et al., Development of high collection efficiency ESP by barrier discharge system. Proc. of IEEE/IAS Annual Meetings, 1130–1135 (1999).Google Scholar
  39. 39.
    S. Jayaram, G. S. P. Castle, J. S. Chang, et al., Semipilot plant pulse energized cold-precharger electrostatic precipitator tests for collection of moderately high resistivity flyash particles. IEEE T. Ind. Appl. 32(4), 851–857 (1996).CrossRefGoogle Scholar
  40. 40.
    A. Zukeran, P. C. Looy, A. Chakrabarti, et al., Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes. IEEE T. Ind. Appl. 35(5), 1184–1191 (1999).CrossRefGoogle Scholar
  41. 41.
    W. C. Hinds, Aerosol Technology. John Wiley & Sons, Inc, USA (Chapters 3 and 5), 1982.Google Scholar
  42. 42.
    T. Yamamoto and H. R. Velkoff, Electrohydrodynamics in an electrostatic precipitator. J. Fluid Mech. 108, 1–18 (1981).CrossRefGoogle Scholar
  43. 43.
    T. Yamamoto, M. Okuda, and M. Okubo, Three-dimensional ionic wind and electrohydro-dynamics of tuft/point corona electrostatic precipitator. IEEE T. Ind. Appl. November/ December (in printing) 2003.Google Scholar
  44. 44.
    A. Mizuno, K. Shimizu, K. Yanagihara, et al., Effect of additives and catalysts on removal of nitrogen oxides using pulsed discharge. Proc. of 1996 IEEE/IAS Annual Meeting 3, October 6–10, San Diego, CA, 1808–1812 (1996).Google Scholar
  45. 45.
    T. Oda, T. Kato, T. Takahashi, and K. Shimizu, Nitric oxide decomposition in air by using non-thermal plasma processing-with additives and catalyst. IEEE T. Ind. Appl. 34(2), 268–272 (1998).CrossRefGoogle Scholar
  46. 46.
    H. H. Kim, K. Tsunoda, S. Katsura, and A. Mizuno, A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection. Proc. of 1997 IEEE/IAS meeting, New Orleans, October 5–9, 1937–1941 (1997).Google Scholar
  47. 47.
    S. Masuda, Pulse corona induced plasma chemical process: a horizon of new plasma chemical technologies. Pure Appl. Chem. 60, 727–731 (1988).Google Scholar
  48. 48.
    S. Masuda, S. Hosokawa, X. Tu, and Z. Wang, Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics. J. Electrostat. 34, 415–438 (1995).CrossRefGoogle Scholar
  49. 49.
    R. Hackam and H. Akiyama, Application of pulsed power for the removal of nitrogen oxides from pollution air. IEEE Electr. Insul. M. 17(5), 8–13 (2001).CrossRefGoogle Scholar
  50. 50.
    T. Yamamoto, M. Okubo, K. Hayakawa, and K. Kitaura, Towards ideal NOx control technology using a plasma-chemical hybrid process. IEEE T. Ind. Appl. 37(5), September/ October, 1492–1498 (2001).CrossRefGoogle Scholar
  51. 51.
    T. Yamamoto, M. Okubo, T. Nagaoka, and K. Hayakawa, Simultaneous removal of NOx, SOx, and CO2 at elevated temperature using a plasma-chemical hybrid process. IEEE T Ind. Appl. 38(5), 1168–1173 (2002).CrossRefGoogle Scholar
  52. 52.
    T. Kuroki, M. Takahashi, M. Okubo, and T. Yamamoto, Single-stage plasma-chemical process for particulates, NOx and SOx simultaneous removal. IEEE T. Ind. Appl. 38(5), 1204–1209 (2002).CrossRefGoogle Scholar
  53. 53.
    B. M. Penetrante, Non-thermal plasma reactors for treatment of NOx and other hazardous gas emissions. Task 1.1 Report for CRADA T No. 336-92-1-C, October 1993.Google Scholar
  54. 54.
    B. M. Penetrante, Plasma chemistry and power consumption in non-thermal plasma DeNOx. Non-thermal Plasma Techniques for Pollution Control, NATO ASI Series 34, Part A, B.M. Penetrante (ed.), 65–89 (1993).Google Scholar
  55. 55.
    T. Oda, T. Kato, T. Takahashi, and K. Shimizu, Nitric oxide decomposition in air by using non-thermal plasma processing. Proc. of IEJ-ESA 1996 Joint Symposium on Electrostatics, Univ. of Tokyo, Tokyo, Japan, October, 30–31 1996, 17–28.Google Scholar
  56. 56.
    G. E. Vogtlin and B. E. Penetrante, Pulsed corona discharge for removal of NOxfrom flue gas. Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series G34, PartB, B. M. Penetrante (ed.), 187–198 (1993).Google Scholar
  57. 57.
    K. Fujii, M. Higashi, and N. Suzuki, Simultaneous removal of NOx, COx, SOx, and soot in diesel engine exhaust. Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series G34, Part B, B. M. Penetrante (ed.), 257–279, 1993.Google Scholar
  58. 58.
    H. Shaw, Aqueous solution scrubbing for NOx control in munitions incineration. TheAmr. Soc. of Mechanical Engineers, August(1976).Google Scholar
  59. 59.
    T. Yamamoto, C. L. Yang, Z. Kravets, and M. Beltran, Plasma assisted chemical reactor for NOx decomposition. IEEE T. Ind. Appl. 36(3), 923–927, May/June (2000).Google Scholar
  60. 60.
    A. Ogata, N. Shintani, K. Mizuno, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using non-thermal plasma reactor packed with ferroelectric pellet. Proc. of 1997 IEEE/IAS Annual Meeting, New Orleans, LA, October 6–9, 1975–1982, 1997.Google Scholar
  61. 61.
    T. Yamamoto, K. Ramanathan, P. A. Lawless, et al., Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE T. Ind. Appl. 28(3), 528–534 (1992).CrossRefGoogle Scholar
  62. 62.
    M. Sadakata, Taiki Kuriin Kano Tameno Kagaku Kougaku (English Translated Title: Chemical Engineering for Atmospheric Clean-up). Baifukan Publishing Co., Tokyo, Japan, (in Japanese), p. 140 (1999).Google Scholar
  63. 63.
    Z. Kiji and N. Kato, Kankyo Kaizen no Kagaku (English Translated Title: Chemical Engineering for Environmental Improvement). Dai Nippon Tosyo Publ. Co., Tokyo, Japan, (in Japanese), p. 9 (1986).Google Scholar
  64. 64.
    S. Masuda, S. Hosokawa, X. Tu, and Z. Wang, Novel cold plasma technologies for pollution control. Proc. of 2nd International Conf. on Applied Electrostatics, Beijing, China 1–24 (1993).Google Scholar
  65. 65.
    A. Tamaki and S. Hosokawa, Reduction of chemical pollutants in the exhaust gas of the municipal waste incinerator by PPCP. Proc. of 6th International Conf. on Electrostatic Precipitation, Budapest, Hungary 544–549 (1996).Google Scholar
  66. 66.
    H. H. Kim, I. Yamamoto, K. Takashima, S. Katsura, and A. Mizuno, Incinerator flue gas cleaning using wet-type electrostatic precipitator. J. Chem. Eng. Jpn., 33(4), 669–674 (2000).CrossRefGoogle Scholar
  67. 67.
    S. Hosokawa, A. Tamaki, and K. Sonoyama, Application of PPCP for reduction of gaseous pollutants exhausted from incineration plant. Proc. of NEDO Symposium on Non-Thermal Discharge Plasma Technology for Air Pollution Control, Beppu and Oita, Japan, 109–114 (1997).Google Scholar
  68. 68.
    S. Hosokawa, Application of PPCP as gas treatment system in incineration plants. Proc. of The Asia-Pacific Workshop on Water and Air Treatment by Advanced Oxidation Technologies: Innovation and Commercial Applications, Tukuba, Japan, 182–183, 1998.Google Scholar
  69. 69.
    S. Hosokawa, Application of PPCP for exhaust gases from incineration plants. Electrical Discharges for Environmental Purposes, E. M. VanVeldhuizen (ed.), NOVA Science Publishers, Inc. New York, NY, pp. 377–404 (1999).Google Scholar
  70. 70.
    S. Hosokawa, K. Sonoyama, and T. Yamamoto, PPCP pilot plant experiments for decomposition of dioxins. Proc. of Third International Symp. on Nonthermal Plasma Technology for Pollution Control, Cheju Island, Republic of Korea, April 23–27 (2001).Google Scholar
  71. 71.
    T. Yamamoto, K. Sonoyama, and S. Hosokawa, Emission control from incinerator plant using non-thermal plasma-chemical process. Proc. of Third International Symp. on Non-thermal Plasma Technology for Pollution Control, Cheju Island, Republic of Korea, April 23–27 (2001).Google Scholar
  72. 72.
    S. Masuda, Y. Wu, T. Urabe, and Y. Ono, (1987) Pulse corona induced plasma chemical process for DeNOx, DeSOx and mercury vapour control of combustion gas. Proc. of Third International Conf. on Electrostatic Precipitation, 667–676, Abono-Padova, Italy, October. It also appears in J. S. Chang and T. Oda (eds.), Applied Electrostatic Studies of Senichi Masuda (2002).Google Scholar
  73. 73.
    P. M. Castle, I. E. Kanter, P. K. Lee, and L. E. Kline, Corona Glow Detoxification Study. Westinghouse Corporation, final report, contract DAAA09-82-C-5396.Google Scholar
  74. 74.
    Y. Kondo and Y. Miyoshi, Pulseless corona in negative point to plane gap. Jpn. J. Appl. Phys. 17, 643–649 (1978).CrossRefGoogle Scholar
  75. 75.
    T. Yamamoto, P. A. Lawless, and L. E. Sparks, Narrow-gap point-to-plane corona with high velocity flows. IEEE T. Ind. Appl. September/October, 24(3), 934–939 (1988).Google Scholar
  76. 76.
    T. Yamamoto, P. A. Lawless, and L. E. Sparks, Triangle-shaped DC corona discharge device for molecular decomposition. IEEE Tran. Ind. Appl. July/August, 35(4), 743–749 (1989).Google Scholar
  77. 77.
    K. Hinokiyama, Jiturei ni Miru Datsusyu Gijyutu (English Translated Title: Odor Control Technologies with Industrial Applications). Kogyo Chosa Kai Pub. Co., Tokyo, Japan (in Japanese), 1999.Google Scholar
  78. 78.
    R. Zhang, T. Yamamoto, and D. S. Bundy, Control of ammonia and odors in animal houses by a ferroelectric plasma reactor. IEEE T. Ind. Appl. 32(1), 113–117 (1996).CrossRefGoogle Scholar
  79. 79.
    Ishiguro, S. and Sugawara, S. (1981) Tobacco smoke and tobacco smoke flavor. Koryo (in Japanese), 130, 31–39 (1996).Google Scholar
  80. 80.
    A. Mizuno, Y. Yamazaki, H. Ito, and H. Yoshida, AC energized ferroelectric pellet bed gas cleaner. IEEE T. Ind. Appl. 28(3), 535–540 (1992).CrossRefGoogle Scholar
  81. 81.
    S. Masuda, S. Hosokawa, X. L. Tu, et al., The performance of an integrated air purifier for control of aerosol, microbial, and odor. IEEE T. Ind. Appl. 29(4), 774–780 (1993).CrossRefGoogle Scholar
  82. 82.
    A. Mizuno, Y. Kisanuki, M. Noguchi, et al., Indoor air cleaning using a pulsed discharge plasma. IEEE T. Ind. Appl. 35(6), 1284–288 (1999).CrossRefGoogle Scholar
  83. 83.
    H. Yoshida, Z. Marui, M. Aoyama, J. Sugiura, and A. Mizuno, Removal of odor gas component utilizing plasma chemical reactions promoted by the partial discharge in a ferroelectric pellet layer. J. Institute of Electrostat. Jpn. (in Japanese), 13(5), 425–430 (1989).Google Scholar
  84. 84.
    Y. Kisanuki, M. Yoshida, K. Takashima, et al., Study on indoor air cleaning using plasma reactor combined with catalyst—experimental study on activation mechanism of TiO2J. Institute of Electrostat. Jpn. (in Japanese), 24(3), 153–158 (2000).Google Scholar
  85. 85.
    H. Suda, T. Ueno, T. Yamauchi, and Y. Sainomoto, Plasma discharge deodorizing system. Matsushita Electric Works, Ltd. Technical Report, December 2001, 58–63 (in Japanese), 2001.Google Scholar
  86. 86.
    M. Okubo, T. Yamamoto, T. Kuroki, and H. Fukumoto, Electric air cleaner composed of non-thermal plasma reactor and electrostatic precipitator. IEEE T. Ind. Appl. 37(5), 1505–1511 (2001).CrossRefGoogle Scholar
  87. 87.
    M. Okubo, T. Kuroki, H. Kametaka, and T. Yamamoto, Odor control using the ac barrier-type plasma reactors. IEEE T. Ind. Appl. 37(5), 1447–1455 (2001).CrossRefGoogle Scholar
  88. 88.
    S. K. Friedlander, Smoke, Dust, and Haze—Fundamental of Aerosol Dynamics —Oxford University Press, NY, 2000.Google Scholar
  89. 89.
    M. Horvath, Ozone. Amsterdam The Netherlands: Elsevier Science, 1980.Google Scholar
  90. 90.
    M. Kuzumoto, Extremely narrow discharge gap ozone generator. J. Plasma and Fusion Research (in Japanese), 74(10), 1144–1150 (1998).Google Scholar
  91. 91.
    Y. Kamase, T. Mizuno, and M. Sakurai, Development of ozone sterilization system for pharmacy plant. Ishikawajima-Harima Engineering Review (in Japanese), 40(1), 3–6 (2000).Google Scholar
  92. 92.
    Masuda Research Inc. Plasma Deodorization System—ADO Series—Products catalog, Tokyo, Japan, (in Japanese), 2002.Google Scholar
  93. 93.
    Masuda Research Inc., Ceramic Ozonizer and Small Ozonizers. Products Catalog, Tokyo, Japan, 2002.Google Scholar
  94. 94.
    N. Tabata, Ozone generation and generation efficiency. J. Plasma and Fusion Research (in Japanese), 74(10), 1119–1126 (1998).Google Scholar
  95. 95.
    NGK Insulators, LTD. NGK Deodorization Systems. Products Catalog, Environmental Systems & Equipment Division, Nagoya, Japan, 2002.Google Scholar
  96. 96.
    J. A. Libra and A. Saupe, Ozonation of Water and Wastewater: A Practical Guide to Understanding Ozone and Its Application. John Wiley & Sons Inc., 2000.Google Scholar
  97. 97.
    J. J. McKetta (ed.), Encyclopedia of Chemical Processing and Design: Wastewater Treatment with Ozone to Water and Wastewater Treatment. 66, Marcel Dekker Publisher, 1999.Google Scholar
  98. 98.
    A. Kanazawa, H. Sekiguchi, and T. Honda, Destruction technologies of substances that deplete the stratospheric ozone layer. Ed. Japanese Committee of Technologies for Destruction of Substances that Deplete the Stratospheric Ozone Layer, JICOP, November, 53, 1991.Google Scholar
  99. 99.
    D. J. Helfritch, Plasma technologies applied to air pollution control. IEEE T. Ind. Appl. 29(5), 882–886 (1993).CrossRefGoogle Scholar
  100. 100.
    E. Odic, M. Paradisi, M. Rea, L. Parissi, A. Goldman, and M. Goldman, Treatment of organic pollutants by corona discharge plasma. The Modern Problems of Electrostatics with Application in Environment Protection, NATO Science Series, 2. Environmental Security, I. I. Inculet, F. T. Tanasescu, and R. Cramariuc, (eds.), 63, 143–160 (1999).Google Scholar
  101. 101.
    E. N. Ruddy and L. A. Caroll, Select the best VOC control strategy. Chem. Eng. Progress 89(7), 28–35 (1993).Google Scholar
  102. 102.
    J. J. Sudnick and D. L. Corwin, VCR control techniques. Hazard. Waste Hazard. 11(1), 129–143(1994).Google Scholar
  103. 103.
    K. L. L. Vercamnen, A. A. Berezin, F. Lox, and J. S. Chang, Destruction of volatile organic compounds by non-thermal plasmas, a critical review. J. Adv. Oxid. Technol. 2(2), 312–329 (1997).Google Scholar
  104. 104.
    K. Mizuno, Stratospheric ozone depletion and its countermeasures. J. Institute of Electrostat. Jpn. 17(4), 251–258 (1993).Google Scholar
  105. 105.
    T. Yamamoto, Control of NOx and volatile organic compounds using catalyst/chemical combined packed-bed plasma reactor. OYO BUTURI 69(3), 284–289 (2000).Google Scholar
  106. 106.
    C. Lahousse, A. Bernier, P. Grange, et al., Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a nobel metal catalyst. J. Catal. 178, CA982148, 214–225 (1998).CrossRefGoogle Scholar
  107. 107.
    A. Czernichowski, Gliding arc. applications to engineering and environment control. Pure Appl. Chem. 66(6), 1301–1310 (1994).CrossRefGoogle Scholar
  108. 108.
    J. Teply, M. Dressler, J. Janca, and C. Tesar, Destruction of organic compounds in a high-frequency discharge plasma at reduced pressure. Plasma Chem. Plasma P. 15(3), 465–479 (1995).Google Scholar
  109. 109.
    J. Arno, J. W. Bevan, and M. Moisan, Acetone conversion in a low-pressure oxygen surface wave plasma. Environ. Sci. Technol. 29(8), 1961–1965 (1995).CrossRefGoogle Scholar
  110. 110.
    T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, The mechanism of the stabilization of glow plasma at atmospheric pressure. J. Phys. D. Appl. Phys. 23, 1125–1128 (1990).CrossRefGoogle Scholar
  111. 111.
    D. G. Storch and M. J. Kushner, Destruction mechanisms for formaldehyde in atmosphericpressure low temperature plasmas. J. Appl. Phys. 73(3), 51–55 (1993).CrossRefGoogle Scholar
  112. 112.
    J. S. Chang and F. Kaufman, Kinetics if the reactions of hydroxyl radicals with some halocarbons: CHFCl2, CHF2Cl, CH3CCl3, C2HCl3 and C2Cl4. J. Chem. Phys. 66(11), 4989–4994 (1997).CrossRefGoogle Scholar
  113. 113.
    J. S. Chang, Energetic electron induced plasma processes for reduction of acid and greenhouse gases in combustion flue gas. Non Thermal Plasma Techniques for Pollution Control, NATO ASI Series, Series G: Ecological Sciences G34, Part A, B. M. Penetrante, and S. E. Schulthis(ed.), Springer-Verlag, Berlin, 1–32 (1993).Google Scholar
  114. 114.
    A. W. Miziolek, J. T. Herron, W. G. Mallard, et al., Importance of chemistry in non-thermal plasma control of volatile organic compounds and air toxics. Proc. of ELMECO94, Lublin, 65–71 (1994).Google Scholar
  115. 115.
    B. M. Penetrante, M. C. Hsiao, J. N. Bardsley, et al., Electron bean and pulsed corona processing of carbon tertachloride in atmospheric pressure gas streams. Phys. Lett. (A) 209(1 and 2), 69–77 (1995).Google Scholar
  116. 116.
    H. Matzing, K. Woletz, and H. R. Paur, Abscheidung von fluchtigen organischen verbindungen (VOC) aus abluft durch elektronenstrahl. Statuskolloquium des PEF:9. Karlsruhe vom 9–11. Maerz, Vorhanden in Kernforschungzentrum Karlsruhe: KfK-PEF 104, 445–455 (1993).Google Scholar
  117. 117.
    H. Matzing, K. Hirota, W. Baumann, and H. R. Paur, Abscheidung von organischen verbindungen (VOC) aus abluft durch elektronenstraahl. Statuskolloquium des PEF:10. Karlsruhe vom 15–17. Maerz, Vorhanden in Kemforschungzenturm Karlsruher: KfK-PBF 118, (1994).Google Scholar
  118. 118.
    H. Matzing, W. Baunann, and H. R. Paur, Abscheidung von fluchtigen orsanischen verbindungen (VOC) aus abluft durch elektronenstrahl. Vorhanden in Kernforschungzenturn, Karlsruhe, PEF11 (1996).Google Scholar
  119. 119.
    H. R. Paur, H. Matzing, and K. Woletz, Removal of volatile organic compounds from industria1 off gas by irradiation induced aerosol formation. J. Aerosol Sci. 22, 509–512 (1991).CrossRefGoogle Scholar
  120. 120.
    L. Bromberg, D. R. Cohn, M. Koch, R. M. Patrick, and P. Thomas, Decomposition of dilute concentrations of carbon tetrachloride in air by an electron-bean generated plasma. Phys. Lett. (A), 173, 293–299 (1993).CrossRefGoogle Scholar
  121. 121.
    M. C. Hsiao, B. T. Merritt, B. M. Penetrante, G. E. Vogtlin, and P. H. Wallman, Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. J. Appl. Phys. 78(5), 3451–3456 (1995).CrossRefGoogle Scholar
  122. 122.
    C. M. Nunez, G. H. Ramsey, W. H. Ponder, J. H. Abbott, L. E. Hamel, and R. H. Kariher, Corona destruction: an innovative control technology for VOCs and air toxics. Air & Waste 43, 242–247 (1993).Google Scholar
  123. 123.
    M. B. Chang and C. C. Chang, Destruction and removal of volatile organic compounds(VOCs) from gas streams with dielectric barrier discharge plasmas. In 88th Annual Meeting & Exhibition, Air and Waste Management, 95-WP77 B.05, 1995.Google Scholar
  124. 124.
    D. Evans, L. A. Rosocha, G. K Anderson, J. J. Coogan, and M. J. Kushner, Plasma remediation of trichloroethylene in silent discharge plasmas. J. Appl. Phys. 74(9), 5378–5386 (1993).CrossRefGoogle Scholar
  125. 125.
    M. B. Chang and C. C. Lee, Destruction of formaldehyde with dielectric barrier discharge plasmas. Environ. Sci. Technol. 29, 181–186 (1995).CrossRefGoogle Scholar
  126. 126.
    M. B. Chang and C. C. Chang, Destruction and removal of toluene and MEK from gas streams with silent discharge plasmas. AICHE J. 43(5), 1325–1330 (1997).CrossRefGoogle Scholar
  127. 127.
    Z. Falkenstein, Proceeding of C3H7OH, C2HCl3 and CCl4 in flue gases using silent discharge plasmas (SDPs), enhanced by (V)UV at 172 nm and 253.7 nm. J. Adv. Oxid. Technol. 2(1), 223–237 (1997).Google Scholar
  128. 128.
    A. Sjoberg, T. H. Teich, E. Heinzle, and K. Hungerbuhler, Oxidation products of toluene in a dielectric barrier plasma reactor. J. Adv. Oxid. Technol. 4(3), 319–327 (1999).Google Scholar
  129. 129.
    S. Yamaguma, A. Osawa, T. Kodama, and Y. Tabata, Detoxification of hazardous gaseous substances by discharge plasma-decomposition of aromatic organic solvents by surface discharge plasma. Res. Rep. of the Res. Inst. Industrial Safety in Japan, R1 1 S-RR-92, l57–166(1993).Google Scholar
  130. 130.
    T. Oda, R. Yamashita, I. Haga, T. Takahasi, and S. Masuda, Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing-SPCP. IEEE T. Ind. Appl. 32(1), 118–124 (1996).CrossRefGoogle Scholar
  131. 131.
    T. Oda, R. Yamashita, K. Tanaka, T. Takahasi, and S. Masuda, Atmospheric pressure discharge plasma decomposition for gaseous air contaminants—trichlorotrifuluorethane and trichloroethylene. IEEE T. Ind. Appl. 32(2), 227–232 (1996).CrossRefGoogle Scholar
  132. 132.
    T. Oda, T. Takahashi, and K. Tada, Decomposition of dilute trichloroethylene by non-thermal plasma. IEEE T. Ind. Appl. 35(2), 373–379 (1999).CrossRefGoogle Scholar
  133. 133.
    T. Oda, T. Takahashi, H. Nakano, and S. Masuda, Decomposition of fluorocarbon gaseous contaminants by surface discharge induced plasma chemical processing. IEEE T. Ind. Appl. 29(1), 787–792 (1993).CrossRefGoogle Scholar
  134. 134.
    S. Masuda, S. Hosokawa, X. L. Tu, K. Sakakibara, S. Kitoh, and S. Sakai. Destruction of gaseous pollutants by surface-induced plasma chemical process (SPCA). IEEE T. Ind. Appl. 29(4), 781–786 (1993).CrossRefGoogle Scholar
  135. 135.
    A. Mizuno, Y. Yamazaki, S. Obama, E. Suzuki, and K. Okazaki, Effect of voltage waveform on partial discharge in ferroelectric pellet layer for gas clearing, IEEE T. Ind. Appl. 29(2), 262–267 (1993).CrossRefGoogle Scholar
  136. 136.
    R. A. Korzekwa and L. A. Rosocha, Treatment of a multicomponent VOC mixture in air using a dielectric barrier discharge. J. Adv. Oxid. Technol. 4(4), 390–399(1999).Google Scholar
  137. 137.
    S. Futamura and T. Yamamoto, Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethlene. IEEE T. Ind. Appl. 33(2), 447–453 (1997).CrossRefGoogle Scholar
  138. 138.
    S. Futamura, A. Zhang, G. Prieto, and T. Yamamoto, Factors and intermediates governing byproduct distribution for decomposition of butane in nonthermal plasma. IEEE T. Ind. Appl. 34(5), 967–974 (1998).CrossRefGoogle Scholar
  139. 139.
    T. Yamamoto, J. S. Chang, A. A. Berezin, H. Kohno, S. Honda, and A. Shibuya, Decomposition of toluene, o-xylene, trichloroethyelen and their mixture using a BaTiO3 packed-bed plasma reactor. J. Adv. Oxide. Technol. 1(1), 67–78 (1996).Google Scholar
  140. 140.
    T. Yamamoto, P. A. Lawless, M. K. Owen, D. S. Ensor, and C. Boss, Decomposition of volatile organic compounds by a packed-bed reactor and a pulsed-corona plasma reactor.In:Nonthermal Plasma Techniques for Pollution Control, NATO ASI Series, Series G:Ecological Sciences G34, Part B, B. M. Penetrante and S. E. Schultheis (eds.), Springer-Verlag, Berlin, 223–237, 1993.Google Scholar
  141. 141.
    J. D. Skalny, V. Sobek, and P. Lukac, Negative corona induced decomposition of CCl2F2. In:Now-ThermaI Plasma Techniques for Pollulion Control, NATO ASI Series, Series G: Ecological Sciences G34, Part A, B. M. Penetrante and S. E. Schultheis, (eds.), Springer-Verlag, Berlin, 151–165, 1993.Google Scholar
  142. 142.
    H. Kohno, M. Tamura, S. Honda, et al., Generation of aerosol particles during the destruction of xylene and trichloroethylene from air stream by a pulse corona discharge. J. Aerosol Sci. 26(Suppl.1), S585–S586 (1995).CrossRefGoogle Scholar
  143. 143.
    J. S. Chang, T. Yamamoto, H. Kohno, et al., Removal of xylene, trichloroethylene and their mixtures from air stream by a pulsed corona discharge induced plasma reactor. J. Adv. Oxi.Technol. 2(2), 346–352 (1997).Google Scholar
  144. 144.
    H. Kohno, A. A. Berezin, J. S. Chang, et al., Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE T. Ind. Appl. 34(5), 953–966 (1998).CrossRefGoogle Scholar
  145. 145.
    J. S. Chang, A. Chakrabarti, T. A. Myint, and A. W. Miziolek, The effect of corona wire geometries on the destruction of volatile organic compounds in air by a pulsed corona discharge plasma reactor—adsorbent hybrid system. J. Adv. Oxid. Technol. 4(3), 297–304 (1999).Google Scholar
  146. 146.
    J. S. Chang, K. Urashima, T. Ito, and T. Misaka, Removal of volatile organic compounds by an electrical discharge/activated carbon filter hybrid system. Electrostatic 95. IOP Press, Bristol, Inst. Phys, Conf. Ser. 143, 183–186 (1995).Google Scholar
  147. 147.
    T. Yamamoto, K. Mizuno, I. Tamori, et al., Catalysis-assisted plasma technology for carbon tetrachloride destruction. IEEE T. Ind. Appl. 32(1), 100–105 (1996).CrossRefGoogle Scholar
  148. 148.
    K. Urashima, J. S. Chang, T. Ito, and T. Misaka, Destruction of volatile organic compounds in air by a superimposed barrier discharge plasma reactor and activated carbon filter hybrid system. Proc. of IEEE/LAS Annual Meeting, 1969–1974, 1997.Google Scholar
  149. 149.
    J. S. Chang, K. Urashima, and T. Ito, Mechanism of non-thermal plasma treatment of volatile organic compounds in dry air. Emerging Technologies in Hazardous Waste Management, D. W. Tedder (ed.), ACS Press, Atlanta, 203–206, 1994.Google Scholar
  150. 150.
    S. Futamura, A. Zhang, and T. Yamamoto, The dependence of nonthermal plasma behavior of VOCs on their chemical structures. J. Electrostat. 42, 51–62 (1997).CrossRefGoogle Scholar
  151. 151.
    A. Zhang, S. Futamura, and T. Yamamoto, Nonthermal plasma chemical processing of bro-momethane. J. Air & Waste Manage. Assoc., 49, 1442–1448 (1999).Google Scholar
  152. 152.
    S. Futamura, H. Einaga, and A. Zhang, Comparison of reactor performance in the non-thermal plasma chemical processing of hazardous air pollutants. IEEE T. Ind. Appl. 37(4), 978–985 (2001).CrossRefGoogle Scholar
  153. 153.
    H. Einaga, T. lbusuki, and S. Futamura, Perfomance evaluation of hybrid system comprising silent discharge plasma and manganese oxide catalysts for benzene decomposition. IEEE T. Ind. Appl. 37(5), 1476–1482 (2001).CrossRefGoogle Scholar
  154. 154.
    S. Futamura, H. Einaga, A. Zhang, and H. Kabashima, Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catal. Today 72, 259–265 (2002).CrossRefGoogle Scholar
  155. 155.
    M. B. Chang and S. J. Yu, An atmospheric-pressure plasma process for C2F6 removal. Environ. Sci Technol. 35, 1587–1592 (2001).CrossRefGoogle Scholar
  156. 156.
    S. J. Yu and Chang, M.B. Oxidative conversion of PFC via plasma processing with dielectric discharge. Plasma Chem. Plasma P. 21, 311–327 (2001).CrossRefGoogle Scholar
  157. 157.
    D. A. Li, D. Yakushiji, S. Kanazawa, T. Ohkubo, and Y. Nomoto, Decomposition of toluene by streamer corona discharge with catalyst. J. Electrostat. 55, 311–319 (2002).CrossRefGoogle Scholar
  158. 158.
    M. Kang, B. J. Kim, S. M. Cho, et al., Decomposition of toluene using an atmospheric pressure plasma/TiO2 catalytic system. J. Mol. Catal. A-Chem. 180, 125–132 (2002).CrossRefGoogle Scholar
  159. 159.
    T. Oda, T. Takahashi, and K. Yamaji, Nonthermal plasma processing for dilute VOCs. IEEE T. Ind. Appl. 38, 873–878 (2002).CrossRefGoogle Scholar
  160. 160.
    D. W. Park, S. H. Yoon, G. J. Kim, and H. Sekiguchi, The effect of catalyst on the decomposition of dilute benzene using dielectric barrier discharge. J. Ind. Eng. Chem. 8, 393–398 (2002).Google Scholar
  161. 161.
    U. Roland, F. Holzer, and F. D. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma. Catal. Today 73, 315–323 (2002).CrossRefGoogle Scholar
  162. 162.
    X. Chen, J. Rozak, J. C. Lin, S. L. Suib, Y. Hayashi, and H. Matsumoto, Oxidative decomposition of chlorinated hydrocarbons by glow discharge in PACT reactors. Appl. Catal. A-Gen. 219, 25–31 (2001).CrossRefGoogle Scholar
  163. 163.
    T. Oda, T. Takahashi, and S. Kohzuma, Decomposition of dilute trichloroetylene by using nonthermal plasmas processing-frequency and catalyst effects. IEEE T. Ind. Appl. 37, 965–970 (2001).CrossRefGoogle Scholar
  164. 164.
    H. Holzer, U. Roland, and F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds, Part1. Accessibility of intra-particle volume. Appl. Catal. B-Environ. 38, 163–181 (2002).CrossRefGoogle Scholar
  165. 165.
    A. Gervasini and V. Ragaini, Catalytic technology assisted with ionization/ozonization phase for the abatement of volatile organic compounds. Catal. Today 60, 129–138 (2000).CrossRefGoogle Scholar
  166. 166.
    Y. H. Song, S. J. Kim, K. I. Choi, and T. Yamamoto, Effect of adsorption and temperature on a nonthermal plasma process for removing VOCs. J. Electrostat. 55, 189–201 (2002).CrossRefGoogle Scholar
  167. 167.
    K. P. Francke, H. Miessner, and R. Rudolph, Cleaning of air stream from organic pollutants by plasma-catalytic oxidation. Plasma Chem. Plasma P. 20, 393–403 (2000).CrossRefGoogle Scholar
  168. 168.
    H. Sekiguchi, Catalysis assisted plasma decomposition of benzene using dielectric barrier discharge. Can. J. Chem. Eng. 79, 512–516 (2001).CrossRefGoogle Scholar
  169. 169.
    A. Gervasini, G. C. Vezzoli, and V. Ragaini, VOC removal by synergic effect of combustion catalyst and ozone. Catal. Today 29, 449–455 (1996).CrossRefGoogle Scholar
  170. 170.
    K. P. Francke, H. Miessner, and R. Rudolph, Plasmacatalytic processes for environmental problems. Catal. Today 59, 411–416 (2000).CrossRefGoogle Scholar
  171. 171.
    V. Demidiouk, S. I. Moon, and J. O. Chae, Toluene and butyl acetate removal from air by plasma-catalytic system. Catal. Commun. 4, 51–56 (2003).CrossRefGoogle Scholar
  172. 172.
    A. Ogata, D. Ito, K. Mizuno, S. Kushiyama, and T. Yamamoto, Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE T. Ind. Appl. 37, 959–964 (2001).CrossRefGoogle Scholar
  173. 173.
    A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactor. IEEE T. Ind. Appl. 35, 1289–1295 (1999).CrossRefGoogle Scholar
  174. 174.
    A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Oxidation of dilute benzene in an alumina hybrid plasma reactor at atmospheric pressure. Plasma Chem. Plasma P. 19, 383–394 (1999).CrossRefGoogle Scholar
  175. 175.
    T. Ohkubo, D. Li, D. Yakushiji, S. Kanazawa, and Y. Nomoto, Decomposition of VOC in air using a streamer corona discharge reactor combinated with catalyst. J. Adv. Oxi. Technol. 6, 75–79 (2003).Google Scholar
  176. 176.
    B. Penetrante and S. E. Schultheis, Edited, Non-Thermal Plasma Techniques for Pollution Control, Springer-Verlag, NATO ASI Series 34, Part B, 223–237 (1993).Google Scholar
  177. 177.
    A. Ogata, D. Ito, K. Mizuno, S. Kushiyama, A. Gal, and T. Yamamoto, Effects of coexisting components on aromatic decomposition in a packed-bed plasma reactor. Appl. Catal. A-Gen. 236, 9–15 (2002).CrossRefGoogle Scholar
  178. 178.
    G. Saithamoorthy, B. R. Locke, W. C. Finney, R. C. Clark, and T. Yamamoto, Halon destruction in a gas phase pulsed streamer corona reactor. J. Adv. Oxi. Technol. 4(4), 375–379 (1999).Google Scholar
  179. 179.
    S. Futamura, A. Zhang, and T. Yamamoto, Mechanisms for formation of inorganic byproducts in plasma chemical processing of hazardous air pollutants. IEEE T. Ind. Appl. 35(4), 760–766 (1999).CrossRefGoogle Scholar
  180. 180.
    T. Yamamoto and B. L. Jang, Aerosol generation and decomposition of CFC-113 by the ferroelectric plasma reactor. IEEE Tran. Ind. Appl. 35(4), 736–742 (1999).CrossRefGoogle Scholar
  181. 181.
    T. Yamamoto, Optimization of nonthermal plasma for the treatment of gas streams. J. Hazard. Mater. B67, 165–181 (1999).CrossRefGoogle Scholar
  182. 182.
    T. Yamamoto and S. Futamura, Nonthermal plasma processing for controlling volatile organic compounds. Combust. Sci. Tech. 133, 117–133 (1998).CrossRefGoogle Scholar
  183. 183.
    H. Kohno, M. Tamura, A. Shibuya, et al., Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. IEEE Tran. Ind. Appl. 34(5), 953–966 (1998).CrossRefGoogle Scholar
  184. 184.
    A. Ogata, K. Mizuno, S. Kushiyama, and T. Yamamoto, Methane decomposition in a barium titanate packed-bed nonthermal plasma reactor. Plasma Chem. Plasma P. 18(3), 363–373 (1998).CrossRefGoogle Scholar
  185. 185.
    G. Prieto, O. Prieto, C. R. Gay, K. Mizuno, I. Tamori, and T. Yamamoto, Decomposition of carbon tetrachloride by a packed-bed plasma reactor. J. Adv. Oxi. Technol. for Water and Air Remediation 2(2), 330–336 (1997).Google Scholar
  186. 186.
    T. Yamamoto, VOC decomposition by nonthermal plasma processing—a new approach. J. Electrostat. 42, 227–238 (1997).CrossRefGoogle Scholar
  187. 187.
    T. Yamamoto, VOC decomposition technology using electrical discharge. Proc. of Institute of Electrostat. Jpn. 19(4), 301–305 (1995).Google Scholar
  188. 188.
    K. Jorgan, A. Mizuno, T. Yamamoto, and J. S. Chang, The effect of residence time on the CO2 reduction from combustion flue gases by an ac ferroelectric packed bed reactor. IEEE T. Ind. Appl. 29(5), 876–882 (1993).CrossRefGoogle Scholar
  189. 189.
    H. Kohno, S. Honda, J. S. Chang, T. Yamamoto, and A. A. Berezin, Generation of aerosol particles by spark discharges in a capillary tube under air flow with trace organic compounds. J. Aerosol Sci. 25 (Suppl. 1), S41–S42 (1994).CrossRefGoogle Scholar
  190. 190.
    J. S. Chang, The role of H2O and NH3 on the formation of NH4NO3 aerosol particles and De-NOx under the corona discharge treatment of combustion flue gases. J. Aerosol Sci. 20, 1087–1097(1989).CrossRefGoogle Scholar
  191. 191.
    H. H. Kim, H. Kobara, A. Ogata, and S. Futamura, Nono-sized aerosol formation from benzene decomposition using non-thermal plasma. J. Institute of Electrostat. Jpn. 27(1), 45–46 (2003).Google Scholar
  192. 192.
    T. Murayama and H. Tsunemoto, Jidosya Engine Kogaku (English Translated Title: Automobile Engine Engineering). Sankai-do Publ. Corp., 142 (in Japanese), 1997.Google Scholar
  193. 193.
    B. J. Cooper, The catalytic control of motor vehicle emissions. Preprint of Commemorative Lecture at the Twenty-third Honda Prize Awarding Ceremony, 15th November, Tokyo 2002.Google Scholar
  194. 194.
    M. Okubo and T. Yamamoto, Recent studies on regeneration of DPF using nonthermal plasma. J. Institute of Electrostat. Jpn. (in Japanese), 26(6), 254–255 (2002).Google Scholar
  195. 195.
    N. Kajiwara, (ed.) Particle Removal Technologies of Diesel Car Exhaust Gas. CMC books Corp., 203 (in Japanese) 2001.Google Scholar
  196. 196.
    M. Okubo, T. Miyashita, K. Kitaura, and T. Yamamoto, NOx removal characteristics in diesel engine exhaust using plasma-chemical hybrid process, Proc. 4th ESA/IEJ Joint Symposium in Electrostatics, Kyoto, Japan, September 25–26, 341–354 (2000).Google Scholar
  197. 197.
    T. Yamamoto, M. Okubo, T. Miyashita, and K. Kitaura, NOx removal in diesel engine exhaust using nonequilibrium plasma and chemical process, Trans. of Jpn. Society of Mech. Eng. (in Japanese), 67B, 663, 2891–2897 (2000).Google Scholar
  198. 198.
    M. Okubo, M. Takahashi, K. Kuroki, and T. Yamamoto, Simultaneous removal of NOx, SOx and soot particles in diesel engine exhaust gas using corona plasma-chemical hybrid process, Proc. of ESCAMPIG16/icrp5 2, Grenoble, France, 363–364, 2002.Google Scholar
  199. 199.
    T. Murayama, and H. Tsunemoto, Jidosya Engine Kogaku (English Translated Title: Automobile Engine Engineering). Sankai do Publ. (in Japanese) 1997.Google Scholar
  200. 200.
    N. Miyoshi, T. Tanaka, and S. Matsumoto, Development of NOx storage-reduction catalysts. TOYOTA Technical Rev. (in Japanese) 50(2), 28–33 (2000).Google Scholar
  201. 201.
    T. Hirayama and T. Uekusa, Aftertreatment technologies for diesel engines. Engine Technol (in Japanese) 2(2), 13–17 (2000).Google Scholar
  202. 202.
    S. E. Thomas, A. R. Martin, D. Raybone, J. T. Shawcross, K. L. Ng, and P. Beech, Non thermal plasma aftertreatment of particulates—theoretical limits and impact on reactor design. Presented at International Spring Fuels & Lubricants Meeting & Exposition, Paris,France, June 19–22, 1–13 (2000).Google Scholar
  203. 203.
    K. Fujii, Plasma treatment of the exhaust gas from vehicles. J. Plasma and Fusion Research (in Japanese) 74(2), 151–154 (1998).Google Scholar
  204. 204.
    B. R. Locke, A. Ichihashi, H. H. Kim, and A. Mizuno, Diesel engine exhaust cleanup with a pulsed streamer corona reactor equipped with reticulated vitreous carbon electrodes. IEEE T. Ind. Appl., 1111–1116 (1999).Google Scholar
  205. 205.
    A. Mohammadi, Y. Kaneda, T. Sogo, Y. Kidoguchi, and K. Miwa, Study of NO into NO2 conversion by high-frequency dielectric barrier discharge plasma for diesel exhaust aftertreatment. Preprints of 17th JSAE Internal Combustion Engine Symposium, (in Japanese) pp. 257–262, 2002.Google Scholar
  206. 206.
    S. Yamada, Honeycomb Ceramics for Air Pollution Control. Nihon Ceramics Kyo-kai, 27th Kosyukai shiryo (in Japanese), 1995.Google Scholar
  207. 207.
    H. Ogawa, and T. Ogasawara, Honeycomb Ceramics,Past, Present and Future. Ceramics data book 99, Kogyo to Seihin, (in Japanese) 27-81, 219–224(1999).Google Scholar
  208. 208.
    P. Kojetin, F. Janezich, L. Roth, and D. Tuma, Production experience of a ceramic wall flow electric regeneration diesel particulate trap. SAE paper, 930129, Febraury 1993.Google Scholar
  209. 209.
    Y. Ichikawa, S. Yamada, and T. Yamada, Development of wall-flow type diesel particulate filter system with efficient reverse pulse air regeneration. SAE paper, 950735, Febraury 1995.Google Scholar
  210. 210.
    J. Kupe, D. Goulette, M. Hemingway, et al., Non-thermal plasma approach to simultaneous removal of NOx & particulate matter. Presented at Diesel Engine Emission Reduction 2000 Workshop, SanDiego, CA., August 20–24, 2000.Google Scholar
  211. 211.
    J. Kupe, J. Bonadies, D. Goulette, et al., Delphi enhanced NTP emission solution tested on light-duty vehicle. Presented at Diesel Engine Emission Reduction 2001 Workshop, Portsmouth, Virginia, August 5–9, 2001.Google Scholar
  212. 212.
    S. Müller, J. Conrads, and W. Best, Reactor for decomposing soot and other harmful substances contained in flue gas. Proc. of Int. Symp. High Pressure Low Temperature Plasma Chemistry (Hakone VII) 2, 340–344 (2000).Google Scholar
  213. 213.
    M. Okubo, T. Miyashita, T. Kuroki, S. Miwa, and T. Yamamoto, Regeneration of diesel particulate filter using nonthermal plasma without catalyst. Proc. of 2002 IEEE/IAS Annual Meeting, CD-ROM, 2002.Google Scholar
  214. 214.
    T. Yamamoto, M. Okubo, T. Kuroki, and Y. Miyairi, Nonthermal plasma regeneration of diesel particulate filter. SAE paper, 2003-01-1182, presented at 2003 SAE World Congress, Detroit, Michigan, March 3–6, 2003.Google Scholar
  215. 215.
    M. Okubo, T. Kuroki, T. Yamamoto, and S. Miwa, SAE paper, 2003-01-1886, JSAE 20030309 presented at JSAE/SAE International Spring Fuels & Lubricants Meeting, Yokohama, Japan, May 19–22, 2003.Google Scholar
  216. 216.
    M. Okubo, T. Yamamoto, and S. Miwa, Exhaust gas cleaning system. Japanese patent pending, No. 2002-227920, August 5, 2002, PCT international patent pending, July 29, 2002.Google Scholar
  217. 217.
    P. C. Wankat, Cyclic separation processes (review). Separation Sci. 9, (2), 85–116 (1974).CrossRefGoogle Scholar
  218. 218.
    D. Diagne, M. Goto, and T. Hirose, New PSA process with intermediate feed inlet position operated with dual refluxes: application to carbon dioxide removal and enrichment. J. Chem. Eng. Jpn. 27, 85–89 (1994).CrossRefGoogle Scholar
  219. 219.
    H. Tominaga, Zeolite no Kagaku to Ouyo (English Translated Title: Science and Applications of Zeolite), Kodansha LTD., 1 (in Japanese), 1987.Google Scholar
  220. 220.
    M. Suzuki, Adsorption Engineering, Kodansha LTD. and Elsevier Science Publishers, p. 245, 1990.Google Scholar
  221. 221.
    T. Yamamoto and C. L. Yang, Plasma desorption and decomposition. Proc. of IEEE/IAS Annual Meeting, St. Louis, MO, 12–16, pp. 1877–1883, (1998).Google Scholar
  222. 222.
    T. Yamamoto, M. Okubo, and T. Kuroki, Nonthermal plasma desorption for NOx control. Trans. of the Institute of Fluid-Flow Machinery 107, 111–120 (2000).Google Scholar
  223. 223.
    T. Yamamoto, M. Okubo, and M. Fujimoto, Desorption and regeneration of NO using non-equilibrium plasma. J. Institute of Electrostat. Jpn. 24(3), 161–162 (2000).Google Scholar
  224. 224.
    K. L. Mittal, and W. J. Ooji (van(eds.), Special Issue on Plasma Surface Modification. J. Adhesion Sci. and Technol. 7(10), 1 (1993).Google Scholar
  225. 225.
    W. W. Balwanz, Plasma Cleaning of Surfaces. Surface Contamination: Genesis. Detection and Control 1, 255–269 (1979).Google Scholar
  226. 226.
    Y. Matsushita, Activities of PFCs emission reduction by EIAJ CVD & dry etching working group. OYO BUTURI (in Japanese), 69(3) 305–309 (2000).Google Scholar
  227. 227.
    M. Yamamoto, Q. Li, M. Nishioka, and M. Sadakata, Decomposition of CF4 and C2H6 by gas-phase ion-molecule reaction. Proc. of 6th World Congress of Chemical Engineering, (September 23–27, Melbourne, Australia), 2001.Google Scholar
  228. 228.
    J. S. Chang, K. G. Kostov, K. Urashima, et al., Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and absorbent hybrid system. IEEE T. Ind. Appl. 36(5), 1251–1259 (2000).CrossRefGoogle Scholar
  229. 229.
    T. Yamamoto, J. S. Chang, K. Yoshimura, S. Okayasu, T. Iwaizumi, and T. Kato, NF3 treatment by ferroelectric packed bed plasma reactor. J. Adv. Oxid. Technol. 4, 454–457 (1999).Google Scholar
  230. 230.
    T. Oda and M. Itoh, Dilute PFC decomposition by the non-thermal plasma. Proc. of 2001 Annual Meeting of the Institute of Electrostatics Japan, (Tokyo, Japan, September 11–12), 25–26 (in Japanese), (2001).Google Scholar
  231. 231.
    R. Itatani, M. Deguchi, T. Toda, and H. Ban, Abatement of CF4 using atmospheric pressure discharge plasma. Proc. of Second Asia-Pacific International Symposium on the Basis and Application of Plasma Technology, (Kaohsiung, Taiwan, April 30–31), 37–38 (2001).Google Scholar
  232. 232.
    M. Kogoma, PFC abatement System with using the atmospheric pressure glow plasma. Proc. of Second Polish-Japanese Hakone Group Symposium on Nonthermal Plasma Processing of Water and Air, 49–54 (2001).Google Scholar
  233. 233.
    H. H. Sawin, Abatement of PFC′s in a plasma reactor using O2 as an additive gas. B. Am. Phys. Soc. 43, 475 (1998).Google Scholar
  234. 234.
    J. D. Crip, Microwave PFC treatments. presented at the NIST Work-shop on Pollution Control Technol., Washington, DC, 1995.Google Scholar
  235. 235.
    E. J. Tonnis, V. Vartanian, L. Beu, T. Lii, R. Jewett, and D. Graves, Evaluation of a litmas “Blue” point-of-use (POU) plasma abatement device for perfluorocompound (PFC) destruction. Technology Transfer No. 98123605A-ENG, International SEMATECH, 1998.Google Scholar
  236. 236.
    V. Vartanian, L. Beu, T. Stephens, et al., Long-term evaluation of the litmas “Blue” plasma device for point-of-use (POU) perfluorocompound and hydrofluorocarbon abatement. Technology Transfer No. 99123865B-ENG, International SEMATECH, 2000.Google Scholar
  237. 237.
    K. Urashima, K. G. Kostov, J. S. Chang et al., Removal of C2F6 from a semiconductor process flue gas by a ferroelectric packed-bed barrier discharge reactor with an adsorber. IEEE T. Ind. Appl. 37(5), 1456–1463 (2001).CrossRefGoogle Scholar
  238. 238.
    Y. Inanaga, K. Ohta, N. Wada, M. Doi, K. Yoshida, and M. Kuzumoto, Destruction of perflu-oro compounds by atmospheric pressure plasma. Proc. of 2002 Annual Meeting of The institute of Electrostatics Japan, (Toyohashi, Japan, August 29–30), (in Japanese), 79–82 (2002).Google Scholar
  239. 239.
    N. Hayashi, K. Yamamoto, S. Ihara, S. Satoh, and C. Yamabe, Treatment of fluorocarbon using non-thermal plasma produced by atmospheric discharge. Proc. of 8th International Symposium on High Pressure Low Temperature Plasma Chemistry, (Pühajärve, Estonia, July 21–25), 361–362 (2002).Google Scholar
  240. 240.
    H. Nishiyama and M. Shigeta, Numerical simulation of an RF inductively coupled plasma for functional enhancement by seeding vaporized alkali metal. Eur. Phys. J. Appl. Phys., 125–133 (2002).Google Scholar
  241. 241.
    T. Yamamoto, J. R. Newsome, and D. S. Ensor, Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed corona plasma. IEEE T. Ind. Appl. 31(3), 494–499 (1995).CrossRefGoogle Scholar
  242. 242.
    T. Yamamoto, M. Okubo, N. Imai, and Y. Mori, Improvement on hydrophilic and hydrophobic properties of glass surface treated by nonthermal plasma induced by silent corona discharge. Plasma Chem. Plasma P. 24, (1) (in printing), (2003).Google Scholar
  243. 243.
    H. Yasuda, Glow discharge polymerization. J. Polymer Sci.: Macromolecular Reviews 16, 199–293 (1981).CrossRefGoogle Scholar
  244. 244.
    M. Yekta-Fard and A. B. Ponter, Surface treatment and its influence on contact angles of water drops residing on polymers and metals. Phys. Chem. Liq. 15, 19–30 (1985).CrossRefGoogle Scholar
  245. 245.
    Y. Qiu, S. Deflon, and P. Schwartz, Plasma surface treatment of poly (p-phenylenebenzo-bisthiozol) fibers. J. Adhesion Sci. and Tech. (K. L. Mittal, and W. J. Ooji, eds., Special Issue on Plasma Surface Modification) 7(10), 1041–1049 (1993).Google Scholar
  246. 246.
    N. Inagaki, S. Takasa, and H. Kawai, Surface modification of Kevlar© fiber by a combination of plasma treatment and coupling agent treatment for silicone rubber composite. J. Adhesion Sci. and Tech. K. L. Mittal and W. J. Ooji, (eds.), Special Issue on Plasma Surface Modification 7(10), 279–291 (1993).Google Scholar
  247. 247.
    T. Minami and S. Tadanaga, Preparation of functional thin films by sol-gel method. Surf. Technol. 48(3), 298–303 (1997).Google Scholar
  248. 248.
    New energy and industrial technology development organization (NEDO) report, Development of comfortable cloth with moisture breath prepared by plasma process. Nedo report (Heisei 10 Nendo Chi-iki Konsosiam Kenkyu Kaihatu Jigyou), (Researchers:Kataoka, S. and Saeki, N. et al.), 1 (in Japanese), 1999.Google Scholar
  249. 249.
    M. Okubo, J. Mine, T. Kuroki, T. Yamamoto, N. Saeki, and S. Kataoka, Preparation of functional cloth with moisture breath and odor control properties using atmospheric-pressure plasma-graft polymerization. Proc. of 2nd Asia Aerosol Conf., Pusan, Korea, July 1–4, 361–362 (2001).Google Scholar
  250. 250.
    M. Okubo, T. Yamamoto, T. Kuroki, J. Mine, N. Saeki, and S. Kataoka, Odor control and moisture breath of functional cloth prepared by plasma-graft polymerization. J. Institute of Electrostat. Jpn. 25(6), 328–329 (2001).Google Scholar
  251. 251.
    S. Sakuhana, Fundamentals and Applications for Glass Surface. Uchida Rokaku-Ho Publ., Tokyo, (in Japanese), 103–107 (1985).Google Scholar
  252. 252.
    T. Yamamoto, A. Yoshizaki, T. Kuroki, and M. Okubo, Aluminum surface treatment using plasma-assisted dry chemical process. Proc. of ESA-IEEE Joint Meeting on Electrostatics, 846–857 (2003).Google Scholar
  253. 253.
    T. Kuroki, T. Yamamoto, and M. Okubo, Surface treated metal, its manufacturing method and equipment. Japanese patent pending, no. 2003-173519, June 18, 2003.Google Scholar
  254. 254.
    T. Karube and R. Haku, Cr+6 free surface treatment technology. Surf. Technol. (in Japanese), 53(6), 368–371 (2002).Google Scholar
  255. 255.
    S. Wolf and R. N. Tauber eds., Silicon processing for the VLSI. Era. Vol. 1 Process Technology. Sunset Beach, CA: Lattice, 1986.Google Scholar
  256. 256.
    I. Jacob and N. Israelachvili, Intermolecular and Surface Forces, Academic Press Ltd (1992).Google Scholar
  257. 257.
    T. Okamoto and K. Inoue, Corrosion and Protection. Dainippon Tosho Publ., (in Japanese), 150 (1987).Google Scholar
  258. 258.
    J. M. Kogoma, The characteristics of atmospheric pressure non-equilibrium plasma processing. Surf. Technol. 51(2), 21(2000).Google Scholar
  259. 259.
    H. F. Webster and J. P. Wrightman, Effects of oxygen and ammonia plasma treatment on polyphenylene sulfide thin films and their interaction with epoxy adhesive. J. Adhesion Sci. Technol. 5(1), 93–106 (1991).CrossRefGoogle Scholar
  260. 260.
    H. P. Godard, Oxide film growth over five years on some aluminum sheet alloys in air of varying humidity at room temperature. J. Electrochem. Soc. 114(4), 354–356 (1967).CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Toshiaki Yamamoto
    • 1
  • Masaaki Okubo
    • 1
  1. 1.Department of Mechanical EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations