Advertisement

Electrochemical Wastewater Treatment Processes

  • Guohua Chen
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 5)

Abstract

Using electricity to treat water was first proposed in England in 1889 (1). The application of electrolysis in mineral beneficiation was patented by Elmore in 1904 (2). Electrocoagulation (EC) with aluminum and iron electrodes was patented in the United States in 1909. The EC of drinking water was first applied on a large scale in the United States in 1946 (3,4). Because of the relatively large capital investment and the expensive electricity supply, electrochemical water or wastewater technologies did not find wide application worldwide then. However, in the United States and the former USSR extensive research during the following half century has accumulated abundant amount of knowledge. With the ever increasing standard of drinking water supply and the stringent environmental regulations regarding the wastewater discharge, electrochemical technologies have regained their importance worldwide during the past two decades. There are companies supplying facilities for metal recoveries, for treating drinking water or process water, treating various wastewaters resulting from tannery, electroplating, diary, textile processing, oil and oil in water emulsion, and so on. Nowadays, electrochemical technologies have reached such a state that they are not only comparable with other technologies in terms of cost but also are more efficient and more compact. For some situations, electrochemical technologies may be the indispensable step in treating wastewaters containing refractory pollutants. In this chapter, the established technologies such as electrochemical reactors for metal recovery, EC, electroflotation (EF), and electro-oxidation (EO) will be examined. The emerging technologies such as electrophoto-oxidation, electro disinfection will not be discussed. Focus will be more on the technologies rather than analyzing the sciences or mechanisms behind them. For books dealing with environmentally related electrochemistry, the readers are referred to other publications (5, 6, 7, 8). Before introducing the specific technologies, are reviewed few terminologies that are concerned by electrochemical process engineers. The most frequently referred terminology besides potential and current may be the current density (i) the current per area of electrode. It determines the rate of a process. The next parameter is current efficiency (CE) the ratio of current consumed in producing a target product to that of total consumption. Current efficiency indicates both the specificity of a process and also the performance of the electrocatalysis involving surface reaction as well as mass transfer. The space-time yield, Y ST, of a reactor is defined as the mass of product produced by the reactor volume in unit time with
$$ Y_{ST} = \frac{{iaM}} {{1000zF}}CE $$
(1)

The space—time yield gives an overall index of a reactor performance, especially the influence of the specific electrode area (a).

Keywords

Current Efficiency Anodic Oxidation Diamond Film Metal Recovery Electrochemical Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. P. Strokach, Electrochem. Ind. Process. Bio. 55, 375 (1975).Google Scholar
  2. 2.
    F. E. Elmore, A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore, British patent 13, 578 (1905).Google Scholar
  3. 3.
    F. E. Stuart, Electronic water purification; Progress report on the electronic coagulator—a new device which gives promise of unusually speedy and effective results, Water and Sewage, 84, 24–26 (1946).Google Scholar
  4. 4.
    C. F. Bonilla, Possibilities of the electronic coagulator for water treatment, Water andSewage, 85, 21–22, 44–45 (1947).Google Scholar
  5. 5.
    T. R. Yu and G. L. Ji, Electrochemical Methods in Soil and Water Research, Pergamon Press, Oxford, 1993.Google Scholar
  6. 6.
    F. Goodridge and K. Scott, Electrochemical Process Engineering, A guide to the design of electrolytic plant, Plenum Press, NY, 1995.Google Scholar
  7. 7.
    K. Scott, Electrochemical Processes for Clean Technology, The Royal Society of Chemistry, London, 1995.Google Scholar
  8. 8.
    K. Rajeshwar and J. Ibanez, Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement, Academic Press, San Diago, 1997.Google Scholar
  9. 9.
    G. Dubpernel, In Selected Topics in the History of Electrochemistry; The Electrochemical Society: Princeton, p. 1, 1978.Google Scholar
  10. 10.
    K. C. Bailey, The Elder Pliny′s Chapters on Chemical Subjects, Part II, Edward Arnold: London, p. 60, 1932.Google Scholar
  11. 11.
    B. Fleet, Evolution of Electrochemical Reactor Systems for Metal Recovery and Pollution Control, in Electrochemistry, Past and Present, J. T. Stock and M. V. Orna (eds.), Americal Chemical Society, Washington, DC, 1989.Google Scholar
  12. 12.
    J. J. Leddy, Industrial Electrochemistry, in Electrochemistry, Past and Present, J. T. Stock and M. V. Orna, (eds.), Americal Chemical Society, Washington, DC, p. 478, 1989.Google Scholar
  13. 13.
    S. Ehdaie, M. Fleischmann, R. E. W. Jansson, and A. E. Alghaoui, Application of the trickle tower to problems of pollution-control. I. the scavenging of metal-ions, J. Appl. Electrochem. 12, 59–67 (1982).CrossRefGoogle Scholar
  14. 14.
    D. R. Gabe and F. C. Walsh, The rotating cylinder electrode—a review of development, J. Appl. Electrochem. 13(1), 3–22 (1983).CrossRefGoogle Scholar
  15. 15.
    F.C. Walsh, D. R. Gabe, and N. A. Gardner, Development of the eco-cascade—cell reactor, J. Appl. Electrochem. 12(3), 299–309 (1982).CrossRefGoogle Scholar
  16. 16.
    R. E. W. Jasson and N. R. Tomov, Chem. Eng. 316, 867 (1977).Google Scholar
  17. 17.
    R. E. W. Jasson, R. J. Marshall, and J. E. Rizzo, The rotating electrolyser, I: The velocity field, J. Appl. Electrochem. 8, 281–285 (1978).CrossRefGoogle Scholar
  18. 18.
    R. E. W. Jasson, R. J. Marshall, and J. E. Rizzo, The rotating electrolyser, II: Transport properties and design equations, J. Appl. Electrochem. 8, 287–291 (1978).CrossRefGoogle Scholar
  19. 19.
    R. Kammel and E. Hasan Guenduez, Review and outlook on continuous metal electrowinning and recovery processes from aqueous solutions, Metallurgical Soc. of AIME, Warrendale, PA, USA. 647–657 (1982).Google Scholar
  20. 20.
    J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley, and M. Fleischmann, A preliminary investigation of fluidised bed electrodes, J. Electrochem. Soc. 116, 1600–1607 (1969).CrossRefGoogle Scholar
  21. 21.
    G. Van der Heiden, C. M. S. Raats, and H. F. Boon, Chem and Ind. (London), 13, 465 (1978).Google Scholar
  22. 22.
    G. Kreysa, Chem. Ing. Tech. 50, 332 (1978).CrossRefGoogle Scholar
  23. 23.
    G. Kreysa and C. Reynvaan, Optimal-design of packed-bed cells for high conversion, J. Appl. Electrochem. 12(2), 241–251 (1982).CrossRefGoogle Scholar
  24. 24.
    J. G. Sunderland and I. M. Dalrymple, Cell and method for the recovery of metal from dilute solutions, US Patent, 5, 690, 806 (1997).Google Scholar
  25. 25.
    H. B. Beer, Electrode and coating therefore, US patent 3, 632, 498 (1972).Google Scholar
  26. 26.
    F. Shen, P. Gao, X. Chen, and G. Chen, Electrochemical removal of fluoride ions from industrial wastewater, Chem. Eng. Sci. 58, 987–993 (2003).CrossRefGoogle Scholar
  27. 27.
    V. K. Kovatchva and M. D. Parlapanski, Sono-electrocoagulation of iron hydroxides, Col. Surf. 149, 603–608 (1999).CrossRefGoogle Scholar
  28. 28.
    L. A. Kul′skii, P. P. Strokach, V. A. Slipchenko, and E. I. Saigak, Water Purification by Electrocoagulation Kiev, Budivel′nik (1978).Google Scholar
  29. 29.
    X. Chen, G. H. Chen, and P. L. Yue, Separation of pollutants from restaurant wastewater by electrocoagulation. Separ. Pur. Technol. 19, 65–76 (2000).CrossRefGoogle Scholar
  30. 30.
    H. M. Wong, C. Shang, Y. K. Cheung, and G. Chen, Chloride Assisted Electrochemical Disinfection, The Eighth Mainland-Taiwan Environmental Protection Conference, Tsin Chu, Taiwan, 2002.Google Scholar
  31. 31.
    E. A. Vik, D. A. Carlson, A. S. Eikum, and E. T. Gjessing, Electrocoagulation of potable water. Water Res. 18, 1355–1360 (1984).CrossRefGoogle Scholar
  32. 32.
    F. Li, S. Li, C. Zhang, and H. Zhao, Application of corrosive cell process in treatment of printing and dyeing wastewater, Chem. Eng. Environ. Protec. 15, 157–161 (1995).Google Scholar
  33. 33.
    M. Qiu, Water Purification by Electrocoagulation, Chinese Translation from Russian of the book by L. A. Kul′skii, P. P. Strokach, V. A. Slipchenko, and E. I. Saigak, Kiev, Budivel′nik, 1978. Shanghai Jiaotong University Press, 1988.Google Scholar
  34. 34.
    T. Ya. Pazenko, T. I. Khalturina, A. F. Kolova, and I. S. Rubailo. Electrocoagulation treatment of oil-containing wastewaters. J. Appl. USSR, 58, 2383–2387 (1985).Google Scholar
  35. 35.
    X. Chen, G. Chen, and P. L. Yue, Modeling the Electrolysis Voltage of Electrocoagulation Process Using Aluminum Electrodes, Chem. Eng. Sci. 57(13), 2449–2455 (2002).CrossRefGoogle Scholar
  36. 36.
    P. E. Ryan, T. F. Stanczyk, and B. K. Parekh, Solid/liquid separation using alternating current electrocoagulation, 1989 International Symposium on Solid/Liquid Separation: Waste Management and Productivity Enhancement, pp. 469–478, 1989.Google Scholar
  37. 37.
    V. A. Matveevich, Electrochemical methods of natural and waste water purifying, Elektronnaya Obrabotka Materialov, 5, 1030114 (2000).Google Scholar
  38. 38.
    S. H. Lin and C. F. Peng, Treatment of textile waste-water by electrochemical method. Water Res. 28(2), 277–282 (1994).CrossRefGoogle Scholar
  39. 39.
    S. H. Lin and C. F. Peng, Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Water Res. 30, 587–592 (1996).CrossRefGoogle Scholar
  40. 40.
    S. H. Lin and M. L. Chen, Treatment of textile waste-water by chemical methods for reuse, Water Res. 31(4), 868–876 (1997).CrossRefGoogle Scholar
  41. 41.
    L. J. Gao and Y. F. Cheng, Treatment of printing and dyeing wastewater using pulsed high voltage electrocoagulation flocculation method, Environ. Pollut. Control 14(5), 10–13 (Chn) 1992.Google Scholar
  42. 42.
    G. Chen, X. Chen, and P. L. Yue, Electrocoagulation and Electroflotation of Restaurant Wastewater, J. Envir. Eng. 126(9), 858–863 (2000).CrossRefGoogle Scholar
  43. 43.
    R. R. Renk, Electrocoagulation of tar sand and oil shale wastewaters, Energy Prog. 8, 205–208 (1988).Google Scholar
  44. 44.
    T. R. Demmin and K. D. Uhrich, Improving carpet wastewater treatment, Am. Dyestuff Rep. 77, 13–18, 32 (1988).Google Scholar
  45. 45.
    M. F. Pouet and A Grasmick, Urban wastewater treatment by electrocoagulation and flotation, Water Sci. Technol. 31, 275–283 (1995).CrossRefGoogle Scholar
  46. 46.
    S. H. Lin and C. S. Lin, Reclamation of wastewater effluent from a chemical fiber plant, Desalination 120, 185–195 (1998).CrossRefGoogle Scholar
  47. 47.
    G. V. Sleptsov, A. I. Gladkii, E. Ya. Sokol, and S. P. Novikova, Electrocoagulation treatment of oil emulsion wastewaters of industrial enterprises, Elektronnaya Obrabotka Materialov 6, 69–72 (1987).Google Scholar
  48. 48.
    U. B. Ogutveren and S. Koparal Electrocoagulation for oil-water emulsion treatment J. Environ. Sci. Health A 329-10 2507–2520 1997Google Scholar
  49. 49.
    J. Szynkarczuk, J. Kan, T. A. T. Hassan, and J. C. Donini, Clays, Clay Miner. 42, 667 (1994).CrossRefGoogle Scholar
  50. 50.
    N. S. Abuzaid, Z. Al-Hamouz, A. A. Bukhari, and M. H. Essa, Electrochemical treatment of nitrite using stainless steel electrodes, Water Air and Soil Poll. 109, 429–442 (1999).CrossRefGoogle Scholar
  51. 51.
    U. B. Ogutveren and S. Koparal, Electrochemical treatment of water containing dye-stuffs: nodic oxidation of congo red and xiron blau 2RHD, Int. J. Environ. Studies, 42, 41–52 (1992).CrossRefGoogle Scholar
  52. 52.
    R. S. Yeh, Y. Y. Wang, and C. C. Wan, Removal of Cu-EDTA compounds via electrochemical process with coagulation, Water Res. 29(2), 597–599 (1994).CrossRefGoogle Scholar
  53. 53.
    G. B. Raju and Khangaonkar, Electroflotation-A critical review, Trans. Indian Inst. Metals 37(1), 59–66 (1984).Google Scholar
  54. 54.
    Y. Fukui and S. Yuu, Removal of colloidal particles in electroflotation, AIChE J. 31(2), 201–208 (1985).CrossRefGoogle Scholar
  55. 55.
    V. A. Glembotskii, A. A. Mamakov, A. M. Ramanov, and V. E. Nenno, 11th International Mineral Processing Congress, Caglairi, 562–581, 1975.Google Scholar
  56. 56.
    C. Llerena, J. C. K. Ho, D. L. Piron, Effect of pH on electroflotation of sphalerite, Chem. Eng. Commun. 155, 217–228 (1996).CrossRefGoogle Scholar
  57. 57.
    D. R. Ketkar, R. Mallikarjunan, and S. Venkatachalam, 1988, Size determination of elec-trogenerated gas bubbles, J. Electrochem. Soc. India 37(4), 313 (1996).Google Scholar
  58. 58.
    D. R. Ketkar, R. Mallikarjunan, and S. Venkatachalam, Electroflotation of quartz fines, Int. J. Miner. Proc. 31, 127–138 (1991).CrossRefGoogle Scholar
  59. 59.
    S. E. Burns, S. Yiacoumi, and C. Tsouris, Microbubble generation for environmental and industrial separations, Separ. Pur. Technol. 11, 221–232 (1997).CrossRefGoogle Scholar
  60. 60.
    C. P. C. Poon, Electroflotation for groundwater decontamination, J. Hazard. Mater. 55, 159–170 (1997).CrossRefGoogle Scholar
  61. 61.
    A. Y. Hosny, Separating oil from oil-water emulsions by electroflotation technique, Separ. Technol. 6, 9–17 (1996).CrossRefGoogle Scholar
  62. 62.
    X. Chen, G. Chen, and P. L. Yue, A Novel Electrode System for Electro-flotation of Wastewaters, Environ. Sci. Technol. 36(4), 778–783 (2002).CrossRefGoogle Scholar
  63. 63.
    D. G. Stevenson, Water Treatment Unit Processes, Imperial College Press: London, 1997.Google Scholar
  64. 64.
    C. Tsouris, D. W. Depaoli, J. Q. Feng, O. A. Basaran, and T. C. Scott, Electrostatic spraying of nonconductive fluids into conductive fluids, AIChE J. 40(11), 1920–1923 (1994).CrossRefGoogle Scholar
  65. 65.
    V. I. Il′in and O. N. Sedashova, An electroflotation method and plant for removing oil products from effluents, Chem. Petrol. Eng. 35(7-8), 480–481 (1999).CrossRefGoogle Scholar
  66. 66.
    M. Y. Ibrahim, S. R. Mostafa, M. F. M. Fahmy, and A. I. Hafez, Utilization of electroflotation in remediation of oily wastewater, Separ. Sci. Technol. 36(16), 3749–3762 (2001).CrossRefGoogle Scholar
  67. 67.
    L. Alexandrova, T. Nedialkova, I. Nishkov, Electroflotation of metal ions in waste water, Int. J. Miner. Process. 41, 285–294 (1994).CrossRefGoogle Scholar
  68. 68.
    C. C. Ho and C. Y. Chan, The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent, Water Res. 20, 1523–1527 (1986).CrossRefGoogle Scholar
  69. 69.
    F. Hine M. Yasuda T. da T. Yoshida and J. Okuda Electrochemical behavior of the oxide-coated metal ades J. Electrochem. Soc. 126 1439–1445 1979CrossRefGoogle Scholar
  70. 70.
    V. A. Alves, L. A. D. Silva, E. D. Oliveira, and J. F. C. Boodts, Investigation under conditions of accelerated anodic corrosion of the effect of TiO2 substitution by CeO2 on the stability of Ir-based ceramic coatings, Mater. Sci. Forum 289–292, 655–666 (1998).Google Scholar
  71. 71.
    J. Rolewicz, Ch. Comninellis, E. Plattner, and J. Hinden, Characterisation des electrodes de type DSA pour le degagement de O2-I. l′electrode Ti/IrO2-Ta2O5, Electrochim. Acta 33, 573–580 (1988).CrossRefGoogle Scholar
  72. 72.
    Ch. Comninellis and G. P. Vercesi, Problems in DSA® coating deposition by thermal decomposition, J. Appl. Electrochem. 21, 136–142 (1991).CrossRefGoogle Scholar
  73. 73.
    Ch. Comninellis and G. P. Vercesi, Characterization of DSA-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem. 21, 335–345 (1991).CrossRefGoogle Scholar
  74. 74.
    G. P. Vercesi, F. Rolewicz, and Ch. Comninellis, Characterization of DSA-type oxygen evolving electrodes: choice of base metal, Thermochim. Acta 176, 31–47 (1991).CrossRefGoogle Scholar
  75. 75.
    V. A. Alves, L. A. D. Silva, J. F. C. Boodts, and S. Trasatti, Kinetics and mechanism of oxygen evolution on IrO2-based electrodes containing Ti and CE acidic solutions, Electrochim. Acta 39, 1585–1589 (1994).CrossRefGoogle Scholar
  76. 76.
    R. Mraz and J. Krysa, Long service life IrO2/Ta2O5 electrodes for electroflotation, J. Appl. Electrochem. 24, 1262–1266 (1994).CrossRefGoogle Scholar
  77. 77.
    X. Chen, G. H. Chen, and P. L. Yue, Stable Ti/IrOχ-Sb2O5-SnO2 anode for O2 evolution with low Ir content, J. Phys. Chem. B 105, 4623–4628 (2001).CrossRefGoogle Scholar
  78. 78.
    G. Chen, X. Chen, and P. L. Yue, Electrochemical behavior of stable Ti/IrOχ-Sb2O5-SnO2 anodes for oxygen evolution, J. Phys. Chem. B 106(17), 4364–4369 (2002).CrossRefGoogle Scholar
  79. 79.
    V. K. Makarenko and A. Yu. Klimov, An electroflotation device for extracting suspended particles from liquids, Elektronnaya Obrabotka Materialov 4(106), 89–90 (1982).Google Scholar
  80. 80.
    V. I. Il′in, V. A. Kolesnikov, and Yu. I. Parshina, Purification of highly concentrated industrial sewage from the porcelain and faience industry by the electric flotation method, Glass and Ceramics 59(7-8), 242–244 (2002).CrossRefGoogle Scholar
  81. 81.
    V. D. Gvozdez and B. S. Ksenofontov, Waste water treatment in an electroflotation apparatus with a fluidized media, Khimiya I Tekhnologiya Vody 8(4), 70–72 (1986).Google Scholar
  82. 82.
    I. A. Zolotukhin, Effect of built-in partitions and electrode systems on the operating efficiency of an electroflotation unit, Khimiya i Tekhnologiya Vody 10(4), 342–344 (1988).Google Scholar
  83. 83.
    C. Camilleri, Electroflottation et flotation al′air disous, Indus. Miner. Les Techniques 67(1), 25–30 (1985).Google Scholar
  84. 84.
    V. A. Kolesnikov, V. I. Il′in, S. O. Varaksin, and V. T. Shaturov, Electroflotation method and equipment for removing metals and organic contaminants from waste waters, Russian J. Heavy Machinery 1, 37–38 (1996).Google Scholar
  85. 85.
    N. V. Tyabin, G. L. Dakhina, A. G. Golovanchikov, and A. A. Mamakov, Design of ideal displacement reactos for the separation of fine suspensions by electrolytic gases, Theoretical Foundations of Chem. Eng. 13(6), 757–761.Google Scholar
  86. 86.
    V. E. Nenno, V. I. Zelentsov, E. V. Mel′nichuk, A. M. Romanov, T. Ya. Datsko, and T. M. Radzilevich, Experience in operating a device for concentration of mineral raw material combining electroflotation and separation in a froth layer, Electronnaya Obrabotka Materialov 6, 77–79 (1988).Google Scholar
  87. 87.
    W. Chen and N. J. Horan, The treatment of a high strength pulp and paper mill effluent for wastewater re-use—III) Tertiary treatment options for pulp and paper mill wastewater to achieve effluent recycle, Environ. Technol. 19, 173–182 (1998).Google Scholar
  88. 88.
    C. J. Huang and J. C. Liu, Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer, Wat. Res. 33, 3403–3412 (1999).CrossRefGoogle Scholar
  89. 89.
    P. Lafrance and D. Grasso, Trajectory modelling of non-Brownian particle flotation using an extended Derjaguin-Landau-Verwey-Overbeek approach, Environ. Sci. Technol. 29, 1346–1352 (1995).CrossRefGoogle Scholar
  90. 90.
    N. T. Manjunath, I. Mehrotra, and R. P. Mathur, Treatment of wastewater from slaughterhouse by DAF-UASB system, Water Res. 34, 1930–1936 (2000).CrossRefGoogle Scholar
  91. 91.
    R. L. Vaughan, B. E. Reed, G. W. Roark, and D. A. Masciola, Pilot-scale investigation of chemical addition-dissolved air flotation for the treatment of an oily wastewater, Environ. Eng. Sci. 17, 267–277 (2000).Google Scholar
  92. 92.
    L. M. Balmer and A. W. Foulds, Separation oil from oil-in-water emulsions by elec-troflocculation/electroflotation. Fil. Separ. 23(11/12), 366–369 (1986).Google Scholar
  93. 93.
    V. I. Il′in, Unit for sewage cleaning from petroleum products, Khimicheskoe i Neftyanoe Mashinostroenie 5, 41–42 (2002).Google Scholar
  94. 94.
    M. F. Prokop′eva, V. N. Tkacheva, and E. Yu. Kirshina, A gas chromographic investigation of the composition of spent cooloing lubricants and the products formed during their electroflotation-coagulation treatment, Khimiya i Tekhnologia Vody 10(4), 335–337 (1988).Google Scholar
  95. 95.
    I. V. Aleksandrov, O. I. Rodyushkin, and K. S. Ibraev, Electroflotation treatment of waste-waters from by-product coke production to remove tars and oils, Koks I Khimiya 7, 41–44 (1992).Google Scholar
  96. 96.
    B. J. Hernlem and L. S. Tsai, Chlorine generation and disinfection by electroflotatioin, J. FoodSci. 65, 834–837 (2000).Google Scholar
  97. 97.
    O. R. Shendrik, E. E. Andreeva, M. I. Ponomareva, and I. B. Ivanenko, Electroflotation treatment of fat containing solutions, Khimiya i Tekhnologiya Vody 15(1), 54–56 (1993).Google Scholar
  98. 98.
    T. D. Kubritskaya, I. V. Drako, V. N. Sorokina, and R. V. Drondina, Use of electrochemical methods to purify the waste water from the production of concentrates in the food industry, Surface Engineering and Applied Electrochemistry 6, 62–68 (2000).Google Scholar
  99. 99.
    M. N. Rabilizirov and A. M. Gol′man, Treatment of diary waste waters by foam elec-troflotation-separation, Khimiya i Tekhnologiya Vody 8(4), 87–88 (1986).Google Scholar
  100. 100.
    M. Krofta and L. K. Wang, Development of innovative flotation-flitration systems for water treatment, part c: an electroflotation plant fro single families and institutions, Proceedings of the American Water Works Association Water Reuse Symposium III Vol. 3, 1251–1264(1984).Google Scholar
  101. 101.
    M. Krofta and L. K. Wang, Investigation of water treatment alternative fro single families and small communities in rural areas, US Dept. of Commerce, National Information Service, Springfield, VA. Technical Report Nos. PB86-175312/AS, p. 38 and PB85-207595/AS, p. 52, 1984.Google Scholar
  102. 102.
    L. K. Wang, Treatment of septic tank effluent by electroflotation and filtration, Lenox Institute of Water Technology, Lenox, MA. Technical Reports Nos. LIR/03-88-290S, p. 21 and LIR/03-88290L, p. 92, 1988.Google Scholar
  103. 103.
    I.A. Zolotukhin, V. A. Vasev, and A. L. Lukin, Electroflotation purification of the pit waters of the Kuzbass, Khimiya i Tekhnologiya Vody 5(3), 252–255 (1983).Google Scholar
  104. 104.
    V. Srinivasan and M. Subbaiyan, Electroflotation studies on Cu, Ni, Zn, and Cd with ammonium dodecyl dithiocarbamate, Separ. Sci. Technol. 24(1-2), 145–150 (1989)CrossRefGoogle Scholar
  105. 105.
    G. Ramadorai and J. P. Hanten, Removal of molybdenum and heavy metals from effluents by flotation, Miner. Metall. Processing, 149–154 (1986).Google Scholar
  106. 106.
    V. I Zelentsov and K. A. Kiselev, An investigation of separation of valuable components from solutions with electrical flotation, Elektronnaya Obrabotka Materialov 4, 50–54 (1986).Google Scholar
  107. 107.
    V. E. Nenno, V. I. Zelentsov, T. Ya, Datsko, E. E. Dvornikova, and T. M. Radzilevich, Gold and silver sorption from cyanide solutions by activated coal and metal isolation by electroflotation, Electronnaya Obrabotka Materialov 3, 42–44 (1994).Google Scholar
  108. 108.
    A. T. Kuhn, Electrolytic decomposition of cyanides, phenols and thiocyanates in effluents streams—a literature review, J. Appl. Chem. Biotechnol. 21, 29–34 (1971).CrossRefGoogle Scholar
  109. 109.
    M. O. Azzam, Y. Tahboub, and M. Al-Tarazi, Effect of counter electrode material on the anodic destruction of 4-Cl phenol solution, Trans. IChemE 77, Part B, 219–226 (1999).Google Scholar
  110. 110.
    L. Szpyrkowicz, J. Naumczyk, and F. Zilio-Grandi, Application of electrochemical processes for tannery wastewater treatment, Toxicol. Environ. Chem. 44, 189–202 (1994).Google Scholar
  111. 111.
    S. J. Allen, K. Y. H. Khader, and M. Bino, Electrooxidation of dyestuffs in waste waters, J. Chem. Tech. Biotechnol 62, 111–117 (1995).CrossRefGoogle Scholar
  112. 112.
    J. Naumczyk, L. Szpyrkowicz, and F. Z. Grandi, Electrochemical treatment of textile wastewater, Water Sci. Tech. 34(11), 17–24 (1996).CrossRefGoogle Scholar
  113. 113.
    J. Naumczyk, L. Szpyrkowicz, M. D. D. Faveri, and F. Zilio-Grandi, Electrochemical treatment of tannery wastewater containing high strength pollutants, Trans IChemE, B 74, 59–68 (1996).Google Scholar
  114. 114.
    A. G. Vlyssides and C. J. Israilides, Detoxification of tannery waste liquors with an electrolysis system, Environ. Pollut. 97(1-2), 147–152 (1997).CrossRefGoogle Scholar
  115. 115.
    A. G. Vlyssides, C. J. Israilides, M. Loizidou, G. Karvouni, and V. Mourafeti, Electrochemical treatment of vinasse from beet molasses, Water Sci. Tech. 36(2-3), 271–278 (1997).CrossRefGoogle Scholar
  116. 116.
    S. H. Lin and C. L. Wu, Electrochemical nitrite and ammonia oxidation in sea water, J. Environ. Sci. Health A, 32, 2125–2138 (1997).Google Scholar
  117. 117.
    L. C. Chiang, J. E. Chang, and T. C. Wen, “Electrochemical oxidation process for the treatment of coke-plant wastewater,” J. Environ. Sci. Health A, 30, 753–771 (1995).Google Scholar
  118. 118.
    L. C. Chiang, J. E. Chang, and T. C. Wen, Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate, Water Res., 29, 671–678 (1995).CrossRefGoogle Scholar
  119. 119.
    A. G. Vlyssides and C. J. Israilides, Electrochemical oxidation of a textile dye and finishing wastewater using a Pt/Ti electrode, J. Environ. Sci. Health A, 33, 847–862 (1998).Google Scholar
  120. 120.
    T. Matsue, M. Fujihira, and T. Osa, Oxidation of alkylbenzenes by electrogenerated hydroxyl radical, J. Electrochem. Soc. 128, 2565–2569 (1981).CrossRefGoogle Scholar
  121. 121.
    E. Brillas, R. M. Bastida, and E. Llosa, Electrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O2-fed cathode, J. Electrochem. Soc. 142, 1733–1741 (1995).CrossRefGoogle Scholar
  122. 122.
    E. Brillias, E. Mur, and J. Casado, Iron(II) catallysis of the mineralization of aniline using a carbon-PTFE O2-fed cathode, J. Electrochem. Soc. 143, L49–53 (1996).CrossRefGoogle Scholar
  123. 123.
    E. Brillas, R. Sauleda, and J. Casado, Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode, J. Electrochem. Soc. 144, 2374–2379 (1997).CrossRefGoogle Scholar
  124. 124.
    E. Brillas, R. Sauleda, and J. Casado, Degradation of 4-chlorophenol by anodic oxidation, electro-Fenton, photoelectro-Fenton, and peroxi-coagulation processes, J. Electrochem. Soc. 145, 759–765 (1998).CrossRefGoogle Scholar
  125. 125.
    E. Brillas, E. Mur, R. Sauleda, L. Sanchez, F. Peral, X. Domenech, and J. Casado, Aniline mineralization by AOP′s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes, Appl. Catal. B: Environ. 16, 31–42 (1998).CrossRefGoogle Scholar
  126. 126.
    S. Stucki, H. Baumann, H. J. Christen, and R. Kotz, Performance of a pressurized electrochemical ozone generator, J. Appl. Electrochem. 17(4), 773–778 (1987).CrossRefGoogle Scholar
  127. 127.
    W. El-Shal, H. Khordagui, O. El-Sebaie, F. El-Sharkawi, and G. H. Sedahmed, Electrochemcial generation of ozone for water treatment using a cell operating under natural convection, Desalination 99, 149–157 (1991).CrossRefGoogle Scholar
  128. 128.
    J. C. Farmer, F. T. Wang, R. A. Hawley-Fedder, P. R. Lewis, L. J. Summers, and L. Foiles, Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver (II), J. Electrochem. Soc. 139, 654–662 (1992).CrossRefGoogle Scholar
  129. 129.
    J. C. Farmer and F. T. Wang, Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol by cobalt (III) and iron (III), IChemE Symp. Series, 127, 203–214 (1992).Google Scholar
  130. 130.
    R. G. Hickman, J. C. Farmer, and F. T. Wang, Mediated electrochemical process for hazardous waste destruction, ACS symposium Series 518, Emerging Technologies in Hazardous Waste Management III, Am. Chem. Soc. 430–438 (1993).Google Scholar
  131. 131.
    F. Bringmann, K. Ebert, U. Galla, and H. Schmieder, Electrochemical mediators for total xidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV), J. Appl. Electrochem. 25, 846–851 (1995).CrossRefGoogle Scholar
  132. 132.
    V. Cocheci, C. Radovan, G. A. Ciorba, and I. Vlaiciu, Mediate electrochemical wastewater treatment, Revue Roumaine de Chimie 40, 615–619 (1995)Google Scholar
  133. 133.
    A. Paire, D. Espinoux, M. Masson, and M. Lecomte, Silver (II) mediated electrochemical treatment of selected organics: hydrocarbon destruction mechanism, Radiochim. Acta 78, 137–143 (1997).Google Scholar
  134. 134.
    Ch. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment, Electrochim. Acta 39, 1857–1862 (1994).CrossRefGoogle Scholar
  135. 135.
    M. Gattrell and D. W. Kirk, The electrochemical oxidation of aqueous phenol at a glassy carbon electrode, Can. J. Chem. Eng. 68, 997–1003 (1990).Google Scholar
  136. 136.
    O. J. Murphy, G. D. Hitchens, L. Kaba, and C. E. Verostko, Direct electrochemical oxidation of organics for wastewater treatment, Wat. Res. 26, 443–451 (1992).CrossRefGoogle Scholar
  137. 137.
    G. Rajalo and T. Petrovskaya, Selective electrochemical oxidation of sulphides in tannery wastewater, Environ. Technol. 17, 605–612 (1996).CrossRefGoogle Scholar
  138. 138.
    N. N. Rao, K. M. Somasekhar, S. N. Kaul, and L. Szpyrkowicz, Electrochemical oxidation of tannery, J. Chem. Tech. Biotechnol. 76, 1124–1131 (2001).CrossRefGoogle Scholar
  139. 139.
    J. L. Boudenne, O. Cerclier, J. Galea, and E. V. Vlist, Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode, Appl. Catal. A: General, 143, 185–202 (1996).CrossRefGoogle Scholar
  140. 140.
    J. L. Boudenne and O. Cerclier, Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation, Water Res. 33, 494–504 (1999).CrossRefGoogle Scholar
  141. 141.
    A. M. Polcaro and S. Palmas, Electrochemical oxidation of chlorophenols, Ind. Eng. Chem. Res. 36, 1791–1798 (1997).CrossRefGoogle Scholar
  142. 142.
    J. Manriquez, J. L. Bravo, S. Gutierrez-Granados, et al., Electrocatalysis of the oxidation of alcohol and phenol derivative pollutants at vitreous carbon electrode coated by nickel macrocyclic complex-based films, Anal. Chim. Acta 378, 159–168 (1999).CrossRefGoogle Scholar
  143. 143.
    C. S. Hofseth and T. W. Chapman, Electrochemical destruction of dilute cyanide by copper-catalyzed oxidation in a flow-through porous electrode, J. Electrochem. Soc. 146, 199–207 (1999).CrossRefGoogle Scholar
  144. 144.
    X. Chen, G. Chen, and P. L. Yue, Anodic oxidation of dyes at novel Ti/B-Diamond electrode, Chem. Eng. Sci. 58, 995–1001 (2003).CrossRefGoogle Scholar
  145. 145.
    I. Troster, L. Schafer, and M. Fryda, Recent developments in production and application of DiaChem-electrodes for wastewater treatment, New Diam. Front. C. Tec. 12(2), 89–97 (2002).Google Scholar
  146. 146.
    Ch. Comninellis and E. Plattner, Electrochemical wastewater treatment, Chimia 42(7/8), 250–252 (1988).Google Scholar
  147. 147.
    Y. M. Awad and N. S. Abuzaid, Electrochemical treatment of phenolic wastewater: efficiency, design considerations and economic evaluation, J. Environ. Sci. Health, A 32, 1393–1414 (1997).Google Scholar
  148. 148.
    N. Kannan, S. N. Sivadurai, L. J. Berchmans, and R. Vijayavalli, Removal of phenolic compounds by electrooxidation method, J. Environ. Sci. Health. A 30, 2185–2203 (1995).Google Scholar
  149. 149.
    L. Marincic and F. B. Leitz (1978), Electro-oxidation of ammonia in wastewater, J. Appl. Electrochem. 8, 333–345.CrossRefGoogle Scholar
  150. 150.
    C. C. Ho, C. Y. Chan, and K. H. Khoo, Electrochemical treatment of effluents: a preliminary study of anodic oxidation of simple sugars using lead dioxide-coated titanium anodes, J. Chem. Tech. Biotechnol. 36, 7–14 (1986).Google Scholar
  151. 151.
    S. Stucki, R. Kotz, B. Carcer, and W. Suter, Electrochemical wastewater treatment using high overvoltage anodes part II: Anode performance and applications, J. Appl. Electrochem. 21, 99–104 (1991).CrossRefGoogle Scholar
  152. 152.
    Ch. Comninellis, Electrochemical treatment of wastewater containing phenol, Trans Ichem E. B 70, 219–224 (1992).Google Scholar
  153. 153.
    J. D. Rodgers, W. Jedral, and N. J. Bunce, Electrochemical oxidation of chlorinated phenols, Environ. Sci. Technol. 33, 1453–1457 (1999).CrossRefGoogle Scholar
  154. 154.
    C. Pulgarin, N. Adler, P. Peringer, and Ch. Comninellis, Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment, Water Res. 28, 887–893 (1994).CrossRefGoogle Scholar
  155. 155.
    Ch. Comninellis and E. Plattner, The preparation and behaviour of Ti/Au/PbO2 anodes, J. Appl. Electrochem. 10, 399–404 (1982).CrossRefGoogle Scholar
  156. 156.
    D. W. Kirk, H. Sharifian, and F. R. Foulkes, Anodic oxidation of aniline for waste water treatment, J. Appl. Electrochem. 15, 285–292 (1985).CrossRefGoogle Scholar
  157. 157.
    I. H. Yeo and D. C. Johnson, Electrocatalysis of anodic oxygen-transfer reactions: effect of groups IIIA and VA metal oxides in electrodeposited ß-lead dioxide electrodes in acidic media, J. Electrochem. Soc. 134, 1973–1977 (1987).CrossRefGoogle Scholar
  158. 158.
    J. Feng and D. C. Johnson, Electrocatalysis of anodic oxygen-transfer reaction: Titanium substrates for pure and doped lead dioxide films, J. Electrochem. Soc. 138, 3329–3337 (1991).CrossRefGoogle Scholar
  159. 159.
    J. Feng, L. L. Houk, and D. C. Johnson, Electroatalysis of anodic oxygen-transfer reactions: the electrochemical incineration of benzoquinone, J. Electrochem. Soc. 142, 3626–3631 (1995).CrossRefGoogle Scholar
  160. 160.
    A. M. Polcaro, S. Palmas, F. Renoldi, and M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment, J. Appl. Electrochem. 29, 147–151 (1999).CrossRefGoogle Scholar
  161. 161.
    A. Nanthakumar and N. R. Armstrong, in Studies in physical and theoretical chemistry 55, Semiconductor Electrodes, H. O. Finklea, (Ed.), New York, Elsevier Science Publishing Company Inc., p. 203, 1988.Google Scholar
  162. 162.
    C. A. Vincent and D. G. C. Weston, Preparation and properties of semiconducting poly-crystalline tin oxide, J. Electrochem. Soc. 119, 518–521 (1972).CrossRefGoogle Scholar
  163. 163.
    J. A. Aboaf and V. C. Marcotte, Chemical composition and electrical properties of tin oxide films prepared by vapor deposition, J. Electrochem. Soc. 120, 701–702 (1973).Google Scholar
  164. 164.
    Z. M. Jarzebski and J. P. Marton, Physical properties of SnO2 materials I. Preparation and defect structure, J. Electrochem. Soc. 123, 199C–205C (1976).CrossRefGoogle Scholar
  165. 165.
    Y. S. Hsu and S. K. Ghandhi, The preparation and properties of arsenic-doped tin oxide films, J. Electrochem. Soc. 126, 1434–1435 (1979).CrossRefGoogle Scholar
  166. 166.
    Y. S. Hsu and S. K. Ghandhi, The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin I: Growth and etching properties, J. Electrochem. Soc. 127, 1592–1595 (1980).CrossRefGoogle Scholar
  167. 167.
    Y. S. Hsu and S. K. Ghandhi, The effect of phosphorus doping on tin oxide films made by the oxidation of phosphine and tetramethyltin II: Electrical properties, J. Electrochem. Soc. 127, 1595–1599 (1980).CrossRefGoogle Scholar
  168. 168.
    R. Kotz, S. Stucki, and B. Carcer, Electrochemical wastewater treatment using high over-voltage anodes part I: physical and electrochemical properties of SnO2 anodes, J. Appl. Electrochem. 21, 14–20 (1991).CrossRefGoogle Scholar
  169. 169.
    E. Giani and R. Kelly, A study of SnO2 thin films formed by sputtering and by anodising, J. Electrochem. Soc. 121, 394–399 (1974).Google Scholar
  170. 170.
    B. Correa-Lozano, Ch. Comninellis, and A. D. Battisti, Preparation of SnO2-Sb2O5 films by the spray pyrolysis technique, J. Appl. Electrochem. 26, 83–89 (1996).CrossRefGoogle Scholar
  171. 171.
    J. P. Chatelon, C. Terrir, E. Bernstein, R. Berjoan, and J. A. Roger, Morphology of SnO2 thin films obtained by the sol-gel technique, Thin Solid Films 47, 162–168 (1994).CrossRefGoogle Scholar
  172. 172.
    L. Lipp and D. Pletcher, The preparation and characterization of tin dioxide coated titanium electrodes, Electrochim. Acta 42, 1091–1099 (1997).CrossRefGoogle Scholar
  173. 173.
    B. Correa-Lozano, Ch. Comninellis, and A. D. Battisti, Physicochemical properties of SnO2-Sb2O5 films prepared by the spray pyrolysis technique. Electrochem. Soc. 143, 203–209 (1996).CrossRefGoogle Scholar
  174. 174.
    F. Grimm, D. Bessarabov, W. Maier, S. Storck, and R. D. Sanderson, Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water, Desalination 115, 295–302 (1998).CrossRefGoogle Scholar
  175. 175.
    R. Cossu, A. M. Polcaro, M. C. Lavagnolo, M. Mascia, S. Palmas, and F. Renoldi, Electrochemical treatment of landfill leachate: oxidation at Ti/PbO2 and Ti/SnO2 anodes, Environ. Sci. Technol. 32, 3570–3573 (1998).CrossRefGoogle Scholar
  176. 176.
    B. Correa-Lozano, Ch. Comninellis, and A. Debattisti, Service life of Ti/SnO2-Sb2O5 anodes, J. Appl. Electrochem. 28(8), 970–974 (1997).CrossRefGoogle Scholar
  177. 177.
    X. Chen and G. Chen, Comparison of BDD and with SnO2 electrodes, J. Environ. Sci. Technol. submitted (2003).Google Scholar
  178. 178.
    R. Hutchings, K. Muller, F. Kotz, and S. Stucki, A structural investigation of stabilized oxygen evolution catalysts, J. Mater. Sci. 19, 3987–3994 (1984).CrossRefGoogle Scholar
  179. 179.
    O. Weres and M. R. Hoffmann, Electrode, electrode manufacturing process and electrochemical cell, US patent 5,419,824 (1995).Google Scholar
  180. 180.
    J. M. Kesselman, O. Weres, N. S. Lewis, and M. R. Hoffmann, Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways, J. Phys. Chem. B 101, 2637–2643 (1997).CrossRefGoogle Scholar
  181. 181.
    J. R. Smith and F. C. Walsh, Electrodes based on magneli phase titanium oxides: the properties and applications of Ebonex® materials, J. Appl. Electrochem. 28, 1021–1033 (1998).CrossRefGoogle Scholar
  182. 182.
    G. Chen, E. A. Betterton, and R. G. Arnold, Electrolytic oxidation of trichloroethylene using a ceramic anode, J. Appl. Electrochem. 29, 961–970 (1999).CrossRefGoogle Scholar
  183. 183.
    M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of industrial diamonds and diamond films, New York, Marcel Dekker, Inc., 1023–1147, 1998.Google Scholar
  184. 184.
    G. M. Swain, The use of CVD diamond thin films in electrochemical systems, Adv. Mater. 6, 388–392 (1994).CrossRefGoogle Scholar
  185. 185.
    G. M. Swain, The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes, Anal. Chem. 65, 345–351 (1993).CrossRefGoogle Scholar
  186. 186.
    J. Isberg, J. Hammersberg, E. Johansson, et al., High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond, Science 297, 1670–1672 (2002).CrossRefGoogle Scholar
  187. 187.
    J. Asmussen and D. K. Reinhard, Diamond Film Handbook, Michigan State University East Lansing, Michigan (2002).Google Scholar
  188. 188.
    W. G. Eversole, Synthesis of Diamond, US patents 3,030,187, and 3,030,188 (1962).Google Scholar
  189. 189.
    J. C. Angus, H. A. Will, and W. S. Stanko, Growth of diamond seed crystals by vapor deposition, J. Appl. Phys. 39, 2915–2922 (1968).CrossRefGoogle Scholar
  190. 190.
    B. V. Derjaguin, D. V. Fedoseev, B. V. Spitzyn, D. V. Lukyanovich, B. V. Ryabov, and A. V. Lavrntev, Filamentary diamond crystals, J. Cryst. Growth, 2, 380–384 (1968).CrossRefGoogle Scholar
  191. 191.
    B. V. Derjaguin and D. V. Fedoseev, Vapor growth of diamond on diamond and other surfaces, Scientific Am. 233(5), 102–109 (1975).CrossRefGoogle Scholar
  192. 192.
    S. Matsumoto, Y. Sato, M. Kakmo, and N. Setaka, Growth of diamond particles from methanae-hydrogen gas, J. Mater. Sci 17, 3106–3112 (1982).CrossRefGoogle Scholar
  193. 193.
    S. Matsumoto, Y. Sato, M. Kakmo, and N. Setaka, Vapor deposition of diamond particles from methane, Jpn. J. Appl. Phys. 2, L183–L185 (1982).CrossRefGoogle Scholar
  194. 194.
    M. Kamo, S. Sato, S. Matsumoto, and N. Setake, Diamond synthesis from gas phase microwave plasma, J. Cryst. Growth. 62, 642–644 (1983).CrossRefGoogle Scholar
  195. 195.
    K. Suzuki, A. Sawabe, H. Yasuda, and T. Inuzuka, Growth of diamond thin films by DC plasma chemical vapor deposition, Appl. Phys. Lett. 50, 728–729 (1987).CrossRefGoogle Scholar
  196. 196.
    P. K. Bachmann, Microwave plasma CVD, and related techniques for low pressure diamond synthesis, in Thin Film Diamond, A. Lettington and J. W. Steeds (ed.), London, Chapman and Hall, 31–53, 1Google Scholar
  197. 197.
    J. Mort, D. Kuhman, M. Machonkin, et al., Boron doping of diamond thin-films, Appl. Phys. Let. 55(11), 1121–1123 (1989).CrossRefGoogle Scholar
  198. 198.
    N. Fujimori, H. Nakahata, and T. Imai, Properties of boron-doped epitaxial diamond films, Jpn. J. Appl. Phys. 29, 824–827 (1990).CrossRefGoogle Scholar
  199. 199.
    J. G. Ran, C. Q. Zheng, J. Ren, and S. M. Hong, Properties and texture of B-doped diamond films as thermal sensor, Diam. Relat. Mater. 2, 793–796 (1993).CrossRefGoogle Scholar
  200. 200.
    M. Fryda, D. Herrmann, L. Schafer, et al., Properties of diamond electrodes for wastewa-ter treatment, New Diam. Front. C. Technol. 9, 229–240 (1999).Google Scholar
  201. 201.
    S. A. Grot, G. S. Gildenblat, C. W. Hatfield, C. R. Wronski, A. R. Badzian, T. Badzian, and R. Messier, The effect of surface treatment on the electrical properties of metal contacts to boron-doped homoepitaxial diamond film, IEEE Electron Device Lett. 11, 100–102 (1990).CrossRefGoogle Scholar
  202. 202.
    J. J. Carey, J. C. S. Christ, and S. N. Lowery, Method of electrolysis employing a doped diamond anode to oxidize solutes in wastewater, US patent 5,399,247 (1995).Google Scholar
  203. 203.
    H. B. Martin, A. Argoitia, U. Landau, A. B. Anderson, and J. C. Angus, Hydrogen and oxygen evolution on boron-doped diamond electrodes, J. Electrochem. Soc. 143, L133–L136 (1996).CrossRefGoogle Scholar
  204. 204.
    R. Tenne, K. Patel, K. Hashimoto, and A. Fujishima, Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes, J. Electroanal. Chem. 347, 409–415 (1993).CrossRefGoogle Scholar
  205. 205.
    J. Iniesta, P. A. Michaud, M. Panizza, and Ch. Comninellis, Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and wastewater treatment, Electrochem. Commun. 3, 346–351 (2001).CrossRefGoogle Scholar
  206. 206.
    X. Chen, G. Chen, and P. L. Yue, High performance Ti/BDD electrodes for pollutant oxidation, J. Environ. Sci. Technol. 37, 5021–5026 (2003).CrossRefGoogle Scholar
  207. 207.
    I. Troster, M. Fryda, D. Herrmann, et al., Electrochemical advanced oxidation process for water treatment using DiaChem (R) electrodes, Diam. Rela. Mater. 11(3-6), 640–645.Google Scholar
  208. 208.
    L. Schafer, M. Fryda, T. Matthee, et al., Investigation of DiaChem electrodes for industrial applications, in Proc. 6th Applied Diamond Conference/2nd Frontier Carbon Technology Joint Conference (ADC/FCT 2001), Y. Tzeng et al., (ed.), (NASA Center for Aerospace Information, Hanover, 2001, NASA/CP-2001-210948) p. 158, 2001.Google Scholar
  209. 209.
    A. Perret, W. Haenni, N. Skinner, et al., Electrochemical behavior of synthetic diamond thin film electrodes, Diam. Relat. Mater. 8, 820–823 (1999).CrossRefGoogle Scholar
  210. 210.
    D. Gandini, E. Mahe, P. A. Michaud, W. Haenni, A. Perret, and Ch. Comninellis, Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment, J. Appl. Electrochem. 30, 1345–1350 (2000).CrossRefGoogle Scholar
  211. 211.
    F. Beck, B. Kaiser, and H. Krohn, Boron doped diamond (BDD)-layers on titanium substrates as electrodes in applied electrochemistry, Electrochim. Acta 45, 4691–4695 (2000).CrossRefGoogle Scholar
  212. 212.
    W. Hanni, A. Perret, and Ch. Comninellis, Electrolytic cell with bipolar electrode including diamond, US Patent No. 6,306,270 (2001).Google Scholar
  213. 213.
    S. Wodiunig, F. Bokeloh, and Ch. Comninellis, Electrochemical promotion of bipolar electrodes: an estimation of the current bypass, Electrochimica Acta 46, 357–363 (2000).CrossRefGoogle Scholar
  214. 214.
    H. Sharifian and D. W. Kirk, Electrochemical oxidation of phenol, J. Electrochmem. Soc. 133, 921–924 (1986).CrossRefGoogle Scholar
  215. 215.
    C. L. K. Tennakoon, R. C. Bhardwaj, J. O′. M. Bockris, Electrochemical treatment of human wastes in a packed bed reactor, J. Appl. Electrochem. 26, 18–29 (1996).CrossRefGoogle Scholar
  216. 216.
    E. A. El-Ghaoui, R. E. W. Jansson, and C. Moreland, Application of the trickle tower to problems of pollution control. II. The direct and indirect oxidation of cyanide, J. Appl. Electrochem. 12, 69–73 (1982).CrossRefGoogle Scholar
  217. 217.
    U. B. Ogutveren, N. Gonen, and S. Koparal, Removal of dye stuffs from wastewater: elec-trocoagulation of acilan blau using soluble anode, J. Environ. Sci. Health, A 27(5), 1237–1247 (1992).CrossRefGoogle Scholar
  218. 218.
    A. Lopez-lopez, E. Exposito, J. Anton, F. Rodriguez-Valera, and A. Aldaz, Use of Thiobacillus ferrooxidans in a coupled microbiological-electrochemical system for wastewater detoxification, Biotechnol. Bioeng. 63, 79–86 (1999).CrossRefGoogle Scholar
  219. 219.
    K. B. Holt, J. D. Campo, J. S. Foord, R. G. Compton, F. Marken, Sonoelectrochemistry at platinum and boron-doped diamond electrodes: achieving fast mass transport for slow diffusers, J. Electroanal. Chem. 513, 94–99 (2001).CrossRefGoogle Scholar
  220. 220.
    R. H. De Lima Leite, P. Cognet, A.-M. Wilhelm, H. Delmas, Anodic oxidation of 2,4-dihy-droxybenzoic acid for wastewater treatment: study of ultrasound activation, Chem Eng. Sci. 57, 767–778 (2002).CrossRefGoogle Scholar
  221. 221.
    M. Kuroda, T. Watanabe, and Y. Umedu, Simultaneous oxidation and reduction treatments of polluted water by a bio-electro reactor, Water Sci Tech. 34(9), 101–108 (1996).CrossRefGoogle Scholar
  222. 222.
    G. M. Swain, B. A. B. Anderson, and J. C. Angus, Applications of diamond thin films in electrochemistry, MRS Bulletin 23(9), 56–60 (1998).Google Scholar
  223. 223.
    M. Panizza, I. Duo, P. A. Michaud, G. Cerisola, and Ch. Comninellis, Electrochemical generation of Silver (II) at boron-doped diamond electrodes, Electrochem. Solid-state Lett. 3(12), 550–551 (2000).CrossRefGoogle Scholar
  224. 224.
    F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi, and A. Debattisti, Electrochemical incineration of glucose as a model organic substrate I—Role of the electrode material, J. Electrochem. Soc. 146(6), 2175–2179 (1999).CrossRefGoogle Scholar
  225. 225.
    J. P. Chen, S. Y. Chang, and Y. T. Hung. Electrolysis. In:Physicochemical Treatment Processes. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.). Humana Press, Totowa, NJ, pp. 359–378.Google Scholar
  226. 226.
    L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis (eds.). Waste Treatment in the Food Processing Industry. CRC Press, NY, 2006, pp. 119–192.Google Scholar
  227. 227.
    TWRI. Field Demonstration of Performance of an Electrocoagulation System to Reduce Phosphorus from Dairy Lagoon Effluent. Eng. Report, Texas Water Resources Institute, College Station, TX, 2006.Google Scholar

Copyright information

© The Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Guohua Chen
    • 1
  • Yung-Tse Hung
    • 2
  1. 1.Department of Chemical EngineeringHong Kong University of Science & TechnologyHong KongChina
  2. 2.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland

Personalised recommendations