Advertisement

Wet Air Oxidation for Waste Treatment

  • Linda Y. Zou
  • Yuncang Li
  • Yung-Tse Hung
Part of the Handbook of Environmental Engineering book series (HEE, volume 5)

Abstract

Wet air oxidation (WAO) is a technology used to treat the waste streams which are too dilute to incinerate and too concentrated for biological treatment. The WAO process was originally developed by Zimmermann and its first industrial applications appeared in the late 1950s. It can be defined as the oxidation of organic and inorganic substances in an aqueous solution or suspension by means of oxygen or air at elevated temperatures and pressures either in the presence or absence of catalysts. According to this method, the dissolved or suspended organic matter is oxidized in the liquid phase by some gaseous source of oxygen, that may be either pure oxygen, or air. The usual temperature range, 150–320°C, requires high pressure to maintain a liquid phase. Typical conditions for WAO are 150–320°C for temperature, 2–15 MPa for pressure, and 15–120 min for residence time; the preferred chemical oxidation demand (COD) load ranges from 10 to 80 kg/m3 (1,2). WAO destroys toxics in industrial wastewater by breaking down complex molecular structures into simpler components such as water and carbon dioxide, without emissions of NOx SO2, HCl, dioxins, furans, and fly ash. It is reported that the WAO process is capable of a high degree of conversion of toxic organics with more than 99% destruction rate; however, some materials are not oxidized completely to carbon dioxide and water, instead, some intermediate compounds are formed, which represent a quarter of the original mass of organic matter. For example, small carboxylic acids: acetic acid and propionic acids, methanol, ethanol, and acetaldehyde. Removal of acetic is usually negligible at temperature less than 300°C. On the other hands, organic nitrogen compounds are easily transformed into ammonia, which is also very stable in WAO process. Therefore, WAO is pretreated of liquid wastes which requires additional treatment processes, for example, a bio-treatment is usually provided for final clean-up (3).

Keywords

Photocatalytic Degradation Supercritical Water Subcritical Water Carbonaceous Deposit Bubble Column Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Luck, Wet air oxidation: past, present and future, Catal. Today 53, 81–91 (1999).CrossRefGoogle Scholar
  2. 2.
    H. Debellefontaine and J. N. Foussard, Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manage. 20, 15–25 (2000).CrossRefGoogle Scholar
  3. 3.
    W. G. May, Scientific advances in alternative demilitarization technologies F. W. Holm (ed.) Dodrechi/Boston/London: Kluwer Academic Publishers, 111–128 (1995).Google Scholar
  4. 4.
    S. W. Maloney et al., TNT Red Water Treatment by Wet Air Oxidation, USACERL Technical Report EP-95/01, 1994.Google Scholar
  5. 5.
    M. Jouffret, Les oxydations radicalaires par l′air ou l′oxyene en phase liquide ou gazeuse. Aspects theoriques et pratique de catalyse d′oxydation. In CNRS Conference, Lyon France, May 12–18 (1978).Google Scholar
  6. 6.
    L Lixiong, P. Chen, and E. F. Gloyna, Generalized kinetic model for wet oxidation of organic compounds. AICHE J. 31(11), 1687–1697 (1991).Google Scholar
  7. 7.
    J. M. Smith, H. C. V. Ness, and M. M. Abbott, Introduction to chemical engineering thermodynamics. 5th ed., McGraw Hill, Sydney, 1996.Google Scholar
  8. 8.
    M. I. Cabrera et al., Photocatalytic reactions involving hydroxyl radical attack. J. Catal. 172(2), 380–390 (1997).CrossRefGoogle Scholar
  9. 9.
    O. M. Alfano, M. I. Cabrera, and A. E. Cassano, Photocatalytic reactions involving hydroxyl radical attack, J. Catal. 172(2), 370–379 (1997).CrossRefGoogle Scholar
  10. 10.
    D. Blake, H. Link, and K. Eber, Solar photocatalytic detoxification of water. Adv. Sol. Energ. 7, 167–210 (1995).Google Scholar
  11. 11.
    D. Y. Goswami, Engineering of solar photocatalytic detoxification and disinfection processes. Adv. Sol. Energy 10, 165–209 (1995).Google Scholar
  12. 12.
    D. Y. Goswami, A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. J. Sol. Energ. Eng. 119, 101–107 (1997).Google Scholar
  13. 13.
    M. Romero, J. Blanco, and B. Sanchez, Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Sol. Energy 66, 169–182 (1999).CrossRefGoogle Scholar
  14. 14.
    M. Hamerski, J. Grzechulska, and A. W. Morawski, Photocatalytic purification of soil contaminated with oil using modified Tio2 powders. Sol. Energy 66, 395–399 (1999).CrossRefGoogle Scholar
  15. 15.
    N. Z. Muradov, A. T. Raissi, and D. Muzzey, Selective photocatalytic destruction of airborne VOCs. Sol. Energy. 56, 445–453 (1996).CrossRefGoogle Scholar
  16. 16.
    E. Alberto and M. Orlando, Reaction engineering of suspended solid heterogeneous photocatalytic reactors. J. Catal. Today. 58, 167–197 (2000).CrossRefGoogle Scholar
  17. 17.
    J. Bussi, et al., Photocatalyric removal of Hg from solid wastes of Chlor-Alkali plant. J. Environ. Eng. August, 733–738 (2002).Google Scholar
  18. 18.
    D. Y. Goswami, D. M. Trivedi, and S. S. Block, Photocatalytic disinfection of indoor air. J. Sol. Energ. Eng. 119, 92–96 (1997).Google Scholar
  19. 19.
    S. Kaneco, H. Kurimoto, and Y. Shimizu, Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2 Energy 24, 21–30 (1999).CrossRefGoogle Scholar
  20. 20.
    L. Lei, et al., Catalytic wet air oxidation of dyeing and printing wastewater. Water Sci. Technol. 35(4), 311–319 (1997).CrossRefGoogle Scholar
  21. 21.
    N. N. Lichtin, M. Avudaithai, and E. Berman, TiO2-photocatalyzed oxidative degradation of binary mixtures of vaporized organic compounds. Sol. Energy 56, 377–385 (1996).CrossRefGoogle Scholar
  22. 22.
    J. Lin and J. C. Yu, An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air. J. Photoch. Photobio. A: Chem. 116, 63–67 (1998).CrossRefGoogle Scholar
  23. 23.
    Q. Wu, P. L. Yue, and X. Liu, Continuous catalytic wet air oxidation of phenol in a trickle bed reactor. Proceedings of the Third Asia-Pacific Conference on Sustainable Energy and Environmental Technologies, 3-6 December, 2000, Hongkong, 2000, pp. 45–50.Google Scholar
  24. 24.
    Degussa Company, Physicochemical data of AEROSIL, Aluminium Oxide C and Titanium Dioxide P25, in AEROSIL, Aluminium Oxide C and Titanium Dioxide P25 for catalysts, Technical Bulletin Pigments, p. 18 (1991).Google Scholar
  25. 25.
    B. Samuneva, V. Kozhukharov, and C. Trapalis, Sol-gel processing of titanium-containing thin coatings. J. Mater. Sci. 28, 2353–2360 (1993).CrossRefGoogle Scholar
  26. 26.
    U. O. Krasovec, et al., The gasochromic properties of sol-gel WO3 films with sputtered Pt catalyst. Sol. Energy 68(6), 541–551 (2000).CrossRefGoogle Scholar
  27. 27.
    S. Sun, Z. Kang, and Z. Wei, Treatment of woolen-dyeing wastewater by TiO 2 film-solar photocatalytic oxidation process. Environmental protection of Chemical Industry, 20(1), 2000.Google Scholar
  28. 28.
    A. Fujishima, Photocatalytic and self-cleaning fuctions ofTiO 2 coatings. Proceedings of the Third Asia-Pacific Conference on Sustainable Energy and Environmental Technologies, December 3–6, 2000, Hongkong, 2000, pp. 1–5.Google Scholar
  29. 29.
    K. Sunada et al., Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol. 32, 726–728 (1998).CrossRefGoogle Scholar
  30. 30.
    J. He et al., Effect of crystallization phases of titania film on photocatalytic degradation of aniline. Chinese J. Appl. Chem. 16(5), 56–60 (1999).Google Scholar
  31. 31.
    P. Zhang, G. Yu, and Z. Jiang, Review of semiconductor photocatalyst and its modification. Adv. Environ. Sci. 5(3), 2–10 (1997).Google Scholar
  32. 32.
    M. Bekbolet, M. Lindner, and D. Weichgrebe, Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst. Sol. Energy. 56, 455–469 (1996).CrossRefGoogle Scholar
  33. 33.
    J. Yu et al., Study on photocatalytic degradation of organophosphorous insecticide using porous TiO2 nanometer thin films by sunlight. Acta Energae Solaris Sin. 21(2), 165–170 (2000).Google Scholar
  34. 34.
    L. Shivalingappa, J. Sheng, and T. Fukami, Photocatalytic effect in platinum doped titanium dioxide films. Vacuum 48, 413–416 (1997).CrossRefGoogle Scholar
  35. 35.
    U. Gesenhues, Al-doped TiO2 pigments: influence of doping on the photocatalytic degradation of alkyd resins. J. Photochem. Photobiol. A: Chem. 139, 243–251 (2001).CrossRefGoogle Scholar
  36. 36.
    H. Wei, D. Xu, and J. Xu, Photo oxidation of humic acid in aqueous solution catalized by TiO2 Film. ACTA Scientiae Circumstantiae. 18(2), 162–166 (1998).Google Scholar
  37. 37.
    W. Xi and S.-u. Geissen, Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration, Water Res. 35(5), 1256–1262 (2001).CrossRefGoogle Scholar
  38. 38.
    L. Shi, et al., Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles. Mater. Chem. Phy. 62, 62–67 (2000).CrossRefGoogle Scholar
  39. 39.
    F. Zhang and Q. Li, Study of visible spectral sensitization of nanocrystalline TiO2 photo-catalyst. Chinese J. Catal. 20(3), 329–332 (1999).Google Scholar
  40. 40.
    A. E. Cassano, et al., Photoreactor analysis and design: fundamentals and applications. Ind. Eng. Chem. Res. 34, 2155–2201 (1995).CrossRefGoogle Scholar
  41. 41.
    L. Jakob, et al., TiO 2 photocatalytic treatment of water. Reactor design and optimization experiments. In Photocatalytic Purification and Treatment of Water and Air, D. F. Ollis and H. Al-Ekabi, eds., Elsevier Science Publishers BV: Amsterdam, The Netherland, 1993, pp. 511–532.Google Scholar
  42. 42.
    O. Legrini, E. Oliveros, and A. M. Braun, Photochemical processes for water treatment, Chem. Res. 93, 671–698 (1993).CrossRefGoogle Scholar
  43. 43.
    P. L. Yue, Modelling, scale-up and design of multiphasic photoreactors. In: Photocatalytic Purification and Treatment of Water and Air. Amsterdam, The Netherland: Elsevier Science Publishers BV, 1993.Google Scholar
  44. 44.
    A. Sclafani, A. Brucato, and L. Rizzuti, Mass transfer limitations in a packed bed photoreactor used for phenol removal. In: Photocatalytic Purification and Treatment of Water and Air. Amsterdam, The Netherland: Elsevier Science Publishers BV, 1993.Google Scholar
  45. 45.
    J. G. Sczechowski, C. A. Koval, and R. D. Noble, A Taylor votex reactor for heterogeneous photocatasis. Chem. Eng. Sci. 50, 3163–3173 (1995).CrossRefGoogle Scholar
  46. 46.
    A. Haarstrick, O. M. Kut, and E. Heinzle, TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ. Sci. Technol. 30, 817–824 (1996).CrossRefGoogle Scholar
  47. 47.
    D. F. Ollis, E. Pelizzetti, and N. Serpone. Heterogeneous photocatalysis in the environment: application to water purification. In: Photocatalysis: Fundamentals and Applications. New York, Wiley, 1989.Google Scholar
  48. 48.
    N. J. Peill and M. R. Hoffmann, Development and optimization of a TiO2-coated fibre-optic reactor: photocatalytic degradation of 4-chlorophenol, Environ. Sci. Technol. 29, 2974–2981 (1995).CrossRefGoogle Scholar
  49. 49.
    N. J. Peill and M. R. Hoffmann, Chemical and physical characterization of a TiO2-coated fiber optic cable reactor. Environ. Sci. Technol. 30, 2806–2812 (1996).CrossRefGoogle Scholar
  50. 50.
    N. J. Peill and M. R. Hoffmann, Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation. J. Sol. Energ. Eng. 119, 229–236 (1997).Google Scholar
  51. 51.
    N. J. Peill and M. R. Hoffmann, Mathematical model of photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis. Environ. Sci. Technol. 32, 398–404 (1998).CrossRefGoogle Scholar
  52. 52.
    O. Zik, J. Karni, and A. Kribus, The trof (tower reflector with optical fibres): a new degree of freedom for Solar energy systems. Sol. Energy 67(1-3), 13–22 (1999).CrossRefGoogle Scholar
  53. 53.
    H. C. Yatmaz, C. R. Howarth, and C. Wallis, Photocatalysis of organic effluents in falling film reacor. In: Photocatalytic Purification and Treatment of Water and Air. Amsterdam, The Netherland: Elsevier Science Publishers BV, 1993.Google Scholar
  54. 54.
    D. Bockelmann et al., Solar detoxification of polluted water: comparing the efficiencies of a parabolic through reactor and a novel thin-fixed-bed reactor. In: Photocatalytic Purification and Treatment of Water and Air. Amsterdam, The Netherland: Elsevier Science Publishers BV, 1993.Google Scholar
  55. 55.
    Y. Zhang and J. C. Crittenden, Fixed-bed photocatalysts for solar decontamination of water. Environ. Sci. Technol. 28(3), 435–442 (1994).CrossRefGoogle Scholar
  56. 56.
    A. K. Ray and A. A. C. M. Beenackers, Novel swirl-flow reactor for kinetic studies if semiconductor photocatalysis. AIChE J. 43, 2571–2578 (1997).CrossRefGoogle Scholar
  57. 57.
    J. I. Ajona and A. Vidal, The use of CPC collectors for detoxification of contaminated water: design, construction and preliminary results. Sol. Energy 68, 109–122 (2000).CrossRefGoogle Scholar
  58. 58.
    M. S. Mehos and C. S. Turchi, Field testing solar photocatalytic detoxification of TEC contaminated groundwater. Environ. Prog. 12(3), 194 (1993).CrossRefGoogle Scholar
  59. 59.
    M. R. Prairie, J. E. Pacheco, and L. R. Evans, Solar detoxification of waste containing chlorinated solvents and heavy metals via TiO 2 photocatalysis. Sol. Energy. 1992 (Proceeding of the ASME international Solar Energy conference). 1, 1–8 (1992).Google Scholar
  60. 60.
    J. Blanco, et al., Compound parabolic concentrator technology development to commercial solar detoxification application. Sol. Energy 67(4-6), 317–330 (1999).CrossRefGoogle Scholar
  61. 61.
    P. Wyness, et al., Performance of nonconcentrating solar photocatalytic oxidation reactors, Part II: shallow pond configuration. J. Sol. Energ. Eng. 116(1), 8–13 (1994).Google Scholar
  62. 62.
    J. F. Klausner, A. R. Martin, and D. Y. Goswami, On the accurate determination of reaction rate constants in batch-type solar photocatalytic oxidation facilities, J. Sol. Energ. Eng. 116(1), 19–24 (1994).CrossRefGoogle Scholar
  63. 63.
    W. M. Van, R. H. G. Dillert, and D. W. Bahnemann, A novel nonconcentrating reactor for solar water detoxification. J. Sol. Energ. Eng. 119, 114–119 (1997).Google Scholar
  64. 64.
    M. March, A. Martin, and C. Satiel, Performance modeling of nonconcentrating solar detoxification systems. Sol. Energy 54(3), 143–151 (1995).CrossRefGoogle Scholar
  65. 65.
    R. F. P. Nogueira and W. F. Jardim, TiO2-fixed-bed reactor for water decontamination using solar light, Sol. Energy 56, 471–477 (1996).CrossRefGoogle Scholar
  66. 66.
    R Wyness, J. F. Klausner, and D. Y. Goswami, Performance of nonconcentrating solar photocatalytic oxidation reactors, Part I: flat-plate configuration. J. Sol. Energ. Eng. 116, 2–7 (1994).Google Scholar
  67. 67.
    O. M. Alfano, R. L. Romero, and A. E. Casano, A cylindrical photoreactor irradiated from the bottom-I. Radiation flux density generated by a tubular source and a parabolic reflector. Chem. Eng. Sci. 40(11), 2119–2127 (1985).CrossRefGoogle Scholar
  68. 68.
    O. M Alfano, R. L. Romero, and A. E. Cassano, A cylindrical photoreactor irradiated from the bottom-II. Models for the local volumetric rate of energy absorption with polychromatic radiation and their evaluation. Chem. Eng. Sci. 41(5), 1155–1161 (1986).CrossRefGoogle Scholar
  69. 69.
    O. M. Alfano, et al., A cylindrical photoreactor irradiated from the bottom-III. Measurement of absolute values of the local volumetric rate of energy absorption. Experiments with polychromatic radiation. Chem. Eng. Sci. 41(5), 1163–1169 (1986).CrossRefGoogle Scholar
  70. 70.
    J. C. Crittenden, et al., Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts, Water Environ. Res. 68(3), 270–277 (1996).CrossRefGoogle Scholar
  71. 71.
    D. Y. Goswami. et al., Solar photocatalytic treatment of groundwater at Tyndall AFB: Field test results. Solar 1993, Proceedings of the American Solar Energy Society Annual Conference 1993, pp. 235–239 (1993).Google Scholar
  72. 72.
    D. D. Dionysiou. et al., Rotating disk photocatalytic reactor: development, characterization, and evaluation for the destruction of organic pollutants in water. Water Res. 34(11), 2927–2940 (2000).CrossRefGoogle Scholar
  73. 73.
    D. D. Dionysiou et al., Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water. Appl. Catal. B: Environ. 26(3), 153–171 (2000).CrossRefGoogle Scholar
  74. 74.
    D. D. Dionysiou et al., Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl. Catal. B: Environ. 24(3—4), 139–155 (2000).CrossRefGoogle Scholar
  75. 75.
    D. D. Dionysiou et al., Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damkohler number. Appl. Catal. B: Environ. 38(1), 1–16 (2002).CrossRefGoogle Scholar
  76. 76.
    J. T. Spadaro, L. Isabelle, and V. Ranganathan, Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ. Sci. Technol. 28(7), 1389–1393 (1994).CrossRefGoogle Scholar
  77. 77.
    J. T. Shama, C. Peppiatt, and M. Biguzz, A novel thin film photoreactor. J. Chem. Technol. Biotechnol. 65, 56–64 (1996).CrossRefGoogle Scholar
  78. 78.
    P. W. Atkins, Physical Chemistry. 5th ed., Oxford University Press, Melbourne, 1995.Google Scholar
  79. 79.
    G. F. C. Rogers and Y. R. Mayhew, Thermodynamic and transport properties of fluids. 5th ed., Blackwell, Cambridge, pp. 1–28 (1996).Google Scholar
  80. 80.
    M. J. Dietrich and A. J. Patarcity, wet air oxidation of hazardous organics in wastewater, Environ. prog. 4(3), 1985.Google Scholar
  81. 81.
    M. Modell, Supercritical fluid technology in hazardous waste treatment. In Conference proceedings of oil waste management alternatives symposium. Oakland, CA, April 28–29, 1988.Google Scholar
  82. 82.
    D. R. Lide, CRC Handbook of Chemistry and Physics. 72nd ed., CRC Press, Boston, pp. 12–18 (1991-1992).Google Scholar
  83. 83.
    A. J. M. Lagadec, et al., Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon-and pesticide-contaminated soil. Environ. Sci. Technol. 34(8), 1542–1548 ( 2000).CrossRefGoogle Scholar
  84. 84.
    Critical Processes Ltd., Introduction to Superheated Water. Roecliffe (2004).Google Scholar
  85. 85.
    K. Hartonen, et al., Pressurised hot water extraction (PHWE) of n-alkanes and polyaro-matic hydrocarbons (PAHs): comparison for PAHs with supercritical fluid extraction. J. Microcolumn. 12, 412–418 ( 2000).CrossRefGoogle Scholar
  86. 86.
    S. B. Hawthorne, Y. Yang, and D. J. Miller, Extraction of organic pollutants from environmental solids with sub-and supercritical water. Analyt. Chem. 66, 2912–2920 (1994).CrossRefGoogle Scholar
  87. 87.
    S. Hashimoto et al., Remediation of soil contaminated with dioxins by subcritical water extraction, Chemosphere 54(1), 89–96 (2004).CrossRefGoogle Scholar
  88. 88.
    R. Weber, S. Yoshida, and K. Miwa, PCB destruction in subcritical and supercritical water—evaluation of PCDF formation and initial steps of degredation mechanisms, Environ. Sci. Technol. 36(8), 1839–1844 (2002).CrossRefGoogle Scholar
  89. 89.
    J. W. Tester, et al., Supercritical water oxidation technology: process development and fundamental research. In: ACS symposium on emerging technologies for hazardous waste management. Atlanta, USA, 1991.Google Scholar
  90. 90.
    J. R. Portela, E. Nebot, and E. M. D. L. Ossa, Kinetic comparison between subcritical and supercritial water oxidation of phenol, Chem. Eng. J. 81(1-3), 287–299 (2001).CrossRefGoogle Scholar
  91. 91.
    E. F. Gloyna and L. Li, Supercritical water oxidation: an engineering update, Waste Manage. 13(5-7), 379–394 (1993).CrossRefGoogle Scholar
  92. 92.
    H. E. Barner, et al., Supercritical water oxidation: an emerging technology. J. Hazard. Mater. 31(1), 1–17 (1992).CrossRefGoogle Scholar
  93. 93.
    A. P. Jackman and R. L. Powell, Hazardous Waste Treatment Technologies: Bilogical treatment, Wet Air Oxidation, Chemical Fixation, Chemical Oxidation. Noyes publications, Park Ridge, New Jersey, USA, 1991.Google Scholar
  94. 94.
    S. Rice and R. Steeper, Oxidation rates of common organic compounds in supercritical water, J. Hazard. Mater. 59, 261–278 (1998).CrossRefGoogle Scholar
  95. 95.
    H. E. Barner et al., Supercritical water oxidation: an emerging technology, J. Hazard. Mater. 31(1), 1–17 (1992).CrossRefGoogle Scholar
  96. 96.
    W. E. Berry, The Corrosion Behaviour of Fe-Cr-Ni Alloys in High-Temperature Water. High Temperature, High Pressure Electrochemistry in Aqueous Solutions, 1976, pp. 48–66.Google Scholar
  97. 97.
    T. M. S. Carlos, R. d. P. d. Manguinhos, and C. B. Maugans, Wet Air Oxidation of Refinery Spent Caustic: A Refinery Case Study. in NPRA Conference, San Antonio, Texas, September 12, 2000.Google Scholar
  98. 98.
    W. Zhu et al., Application of catalytic wet air oxidation for the treatment of H-acidmanufacturing process wastewater. Water Res. 36, 1947–1954 (2002).CrossRefGoogle Scholar
  99. 99.
    L. Zou, Y. Li, and E. Hu, Photocatalytic decolorisation of Lanasol Blue CE dye solution using a flat plate reactor. J. Environ. Eng. 131, 102–107 (2005).CrossRefGoogle Scholar
  100. 100.
    J. Abeln et al., Supercritical Water Oxidation (SCWO): A process for the treatment of industrial waste effluents, Forschungszentrum Karlsruhe, Institut für Technische Chemie, http://www.turbosynthesis.com/summitresearch/bord-paperkorr.pdf. (2006).
  101. 101.
    L. K. Wang, T. T. Hung, H. H. Lo and C. Yapijakis (eds.). Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker Inc., NY. p. 774–1046 (2004).Google Scholar
  102. 102.
    L. K. Wang, Y. T. Hung, H. H. Lo and C. Yapijakis (eds.). Waste Treatment in the Food Processing Industry. CRC Press, NY. p. 156–160 (2006).Google Scholar

Copyright information

© The Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Linda Y. Zou
    • 1
  • Yuncang Li
    • 2
  • Yung-Tse Hung
    • 3
  1. 1.Institute of Sustainability and InnovationWerribe Campus, Victoria UniversityMelbourneAustralia
  2. 2.School of Engineering and TechnologyDeakin UniversityGeelongAustralia
  3. 3.Department of Civil and Environmental EngineeringCleveland State UniversityCleveland

Personalised recommendations