Skip to main content

Oncoproteomics for Personalized Management of Cancer

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Summary

This chapter describes the role of proteomics in developing personalized management of cancer, which is defined as choice of the best treatment for an individual. Numerous proteomic technologies are available, and selected ones relevant to development of personalized therapy are described. Cancer biomarkers discovered by proteomics can be used for diagnosis as well as drug targets, thus facilitating the integration of diagnostics and therapeutics. Proteomics fulfills many of the requirements for personalized therapy of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain KK. Personalized Medicine: Scientific and Commercial Aspects. Basel, Jain PharmaBiotech Publications, 2007:1–582.

    Google Scholar 

  2. Jain KK. Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics 2004;5:239–42.

    Article  PubMed  CAS  Google Scholar 

  3. Jain KK. Proteomics: Technologies, Markets and Companies. Basel, Jain PharmaBiotech Publications, 2007:1–564.

    Google Scholar 

  4. Nettikadan S, Radke K, Johnson J, et al. Detection and quantification of protein biomarkers from fewer than ten cells. Mol Cell Proteomics 2006;5:895–901.

    Article  PubMed  CAS  Google Scholar 

  5. Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer 2003;3:267–275.

    Article  PubMed  CAS  Google Scholar 

  6. Wiesner A. Detection of tumor markers with ProteinChip® technology. Curr Pharm Biotechnol 2004;5:45–67.

    Article  PubMed  CAS  Google Scholar 

  7. Miyata T, Jige M, Nakaminami T, Uragami T. Tumor marker-responsive behavior of gels prepared by biomolecular imprinting. Proc Natl Acad Sci USA 2006;103:1190–3.

    Article  PubMed  CAS  Google Scholar 

  8. Samoylova TI, Morrison NE, Globa LP, Cox NR. Peptide phage display: opportunities for development of personalized anti-cancer strategies. Anticancer Agents Med Chem 2006;6:9–17.

    Article  PubMed  CAS  Google Scholar 

  9. Suber RL, Flanders VL, Campa MJ, Patz EF Jr. Accentuation of differentially expressed proteins using phage technology. Anal Biochem 2004;333:351–7.

    Article  PubMed  CAS  Google Scholar 

  10. Da Cruz S, Parone PA, Martinou JC. Building the mitochondrial proteome. Expert Rev Proteomics 2005;2:541–51.

    Article  PubMed  Google Scholar 

  11. Fong S, Debs RJ, Desprez P-Y, et al. Id genes and proteins as promising targets in cancer therapy. Trends Mol Med 2004;10:387–392.

    Article  PubMed  CAS  Google Scholar 

  12. Chaurand P, Sanders ME, Jensen RA, Caprioli RM. Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 2004;165:1057–68.

    PubMed  CAS  Google Scholar 

  13. Brown RE. Morphoproteomics: exposing protein circuitries in tumors to identify potential therapeutic targets in cancer patients. Expert Rev Proteomics 2005;2:337–48.

    Article  PubMed  CAS  Google Scholar 

  14. Jain KK. Nanobiotechnology: Applications, Markets and Companies. Basel, Jain PharmaBiotech Publications, 2007:1–674.

    Google Scholar 

  15. Venne K, Bonneil E, Eng K, Thibault P. Enhanced sensitivity in proteomics analyses using nanoLC–MS and high-field asymmetry waveform ion mobility mass spectrometry. Anal Chem 2005;77:2176–86.

    Article  PubMed  CAS  Google Scholar 

  16. Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 2005;102:8315–20.

    Article  PubMed  CAS  Google Scholar 

  17. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–39.

    Article  PubMed  CAS  Google Scholar 

  18. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–500.

    Article  PubMed  CAS  Google Scholar 

  19. Hirsch FR, Witta S. Biomarkers for prediction of sensitivity to EGFR inhibitors in non-small cell lung cancer. Curr Opin Oncol 2005;17:118–22.

    Article  PubMed  CAS  Google Scholar 

  20. Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353:123–32.

    Article  PubMed  CAS  Google Scholar 

  21. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer ? molecular and clinical predictors of outcome. N Engl J Med 2005; 353:133–44.

    Article  PubMed  CAS  Google Scholar 

  22. Yuen HF, Chua CW, Chan YP, et al. Id proteins expression in prostate cancer: high-level expression of Id-4 in primary prostate cancer is associated with development of metastases. Mod Pathol 2006;19:931–41.

    Article  PubMed  CAS  Google Scholar 

  23. Varambally S, Yu J, Laxman B, et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005;8:393–406.

    Article  PubMed  CAS  Google Scholar 

  24. Iwadate Y, Sakaida T, Saegusa T, et al. Proteome-based identification of molecular markers predicting chemosensitivity to each category of anticancer agents in human gliomas. Int J Oncol 2005;26:993–8.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Jain, K. (2008). Oncoproteomics for Personalized Management of Cancer. In: Daoud, S.S. (eds) Cancer Proteomics. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-169-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-169-7_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-858-4

  • Online ISBN: 978-1-59745-169-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics