Skip to main content

Electrical and Structural Remodeling in Atrial Fibrillation

The Role of Oxidant Stress and Systemic Inflammation

  • Chapter
Atrial Fibrillation

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1674 Accesses

Abstract

Intense research efforts since 1995 have sought to characterize the pathways that contribute to the occurrence and persistence of atrial fibrillation (AF). This chapter focuses on recent studies elucidating several of the molecular mechanisms that underlie the electrical and structural remodeling processes that promote persistent AF. Here there is a particular focus on the identification of signaling pathways that might be specifi cally and individually targeted for improved pharmacologic treatment or prevention of AF, perhaps simultaneously lowering the risk of stroke associated with AF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–1968.

    CAS  PubMed  Google Scholar 

  2. 2. Yue L, Feng J, Gaspo R, Li G-R, Wang Z, Nattel S. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res.1997;81:512–525.

    CAS  PubMed  Google Scholar 

  3. 3. Gaspo R, Bosch RF, Bou-Abboud E, Nattel S. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res. 1997;81:1045–1052.

    CAS  PubMed  Google Scholar 

  4. 4. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kühlkamp V. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res. 1999;44:121–131.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Skasa M, Jungling E, Picht E, Schondube F, Luckhoff A. L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res Cardiol. 2001;96:151–159.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res. 1997;80:772–781.

    PubMed  Google Scholar 

  7. 7. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM. L-type Ca2+ currents and human atrial fibrillation. Circ Res. 1999;85:428–436.

    PubMed  Google Scholar 

  8. 8. Daoud EG, Bogun F, Goyal R, Harvey M, Man KC, Strickberger A, Morady F. Effect of atrial fibrillation on atrial refractoriness in humans. Circulation. 1996;94:1600–1606.

    CAS  PubMed  Google Scholar 

  9. 9. Fearon IM, Palmer ACV, Balmforth AJ, b, Ball SG, Mikala G, Schwartz A, Peers C. Hypoxia inhibits the recombinant α1c subunit of the human cardiac L-type Ca2+ channel. J Physiol (Lond). 1997;500:551–556.

    CAS  Google Scholar 

  10. 10. Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Varadi G, Peers C. Hypoxic and redox inhibition of the human cardiac L-type Ca2+ channel. Adv Exp Med Biol. 2000;475:209–218.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Van Wagoner DR. Redox changes may underlie the earliest electrical remodeling in human atrial fibrillation [abstract]. J Mol Cell Cardiol. 2000;32:A40.

    Google Scholar 

  12. 12. White CW, Kerber RE, Weiss HR, Marcus ML. The effects of atrial fibrillation on atrial pressure-volume and flow relationships. Circ Res. 1982;51:205–215.

    CAS  PubMed  Google Scholar 

  13. 13. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart. 2006;92(suppl 4):iv6–iv14.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol. 2005;38:475–483.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Le Grand B, Coulombe A, John GW. Late sodium current inhibition in human isolated cardiomyocytes by R 56865. J Cardiovasc Pharmacol. 1998;31:800–804.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Orth PM, Hesketh JC, Mak CK, Yang Y, Lin S, Beatch GN, Ezrin AM, Fedida D. RSD1235 blocks late I(Na) and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res. 2006;70:486–496.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Morillo CA, Klein GJ, Jones DL, Guiraudon CM. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation. 1995;91:1588–1595.

    CAS  PubMed  Google Scholar 

  18. 18. Thijssen VL, Ausma J, Liu GS, Allessie MA, van Eys GJ, Borgers M. Structural changes of atrial myocardium during chronic atrial fibrillation. Cardiovasc Pathol. 2000;9:17–28.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Mary-Rabine L, Albert A, Pham TD, Hordof A, Fenoglio JJ Jr, Malm JR, Rosen MR. The relationship of human atrial cellular electrophysiology to clinical function and ultrastructure. Circ Res. 1983;52:188–199.

    CAS  PubMed  Google Scholar 

  20. 20. Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. 2001;104:174–180.

    CAS  PubMed  Google Scholar 

  21. 21. Kim YM, Guzik TJ, Hua ZY, Hua ZM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B. A Myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res. 2005;97:629–636.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC Jr, Harrison DG, Langberg JJ. Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation. 2002;106:2854–2858.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation. 2005;112:1266–1273.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Cai H, Li Z, Dikalov S, Holland SM, Hwang J, Jo H, Dudley SC Jr, Harrison DG. NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem. 2002;277: 48311–48317.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Cargnoni A, Ceconi C, Gaia G, Agnoletti L, Ferrari R. Cellular thiols redox status: a switch for NF-kappaB activation during myocardial post-ischaemic reperfusion. J Mol Cell Cardiol. 2002;34:997–1005.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Li X, Li S, Xu Z, Lou MF, Anding P, Liu D, Roy SK, Rozanski GJ. Redox control of K+ channel remodeling in rat ventricle. J Mol Cell Cardiol. 2006;40:339–349.

    Article  PubMed  Google Scholar 

  27. 27. Bahring R, Milligan CJ, Vardanyan V, Engeland B, Young BA, Dannenberg J, Waldschutz R, Edwards JP, Wray D, Pongs O. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvbeta subunits. J Biol Chem. 2001;276:22923–22929.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Gulbis JM, Mann S, MacKinnon R. Structure of a voltage-dependent K+ channel beta subunit. Cell. 1999;97:943–952.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Rozanski GJ, Xu Z, Zhang K, Patel KP. Altered K+ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol. 1998;274:H259–H265.

    CAS  PubMed  Google Scholar 

  30. 30. Rozanski GJ, Zheng E, Xu Z. Role of glutathione in regulating potassium channels in ventricular myocytes from rats with experimental heart failure [abstract]. Pacing Clin Electrophysiol. 1999;22(4, pt 2):746.

    Google Scholar 

  31. 31. Xu Z, Patel KP, Lou MF, Rozanski GJ. Up-regulation of K(+) channels in diabetic rat ventricular myocytes by insulin and glutathione. Cardiovasc Res. 2002;53:80–88.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S, Kanderian A, Pavia S, Hamlin RL, McCarthy PM, Bauer JA, Van Wagoner DR. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89: E32–E38.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Ekelund UE, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H, Kass DA, Marban E, Hare JM. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res. 1999;85:437–445.

    CAS  PubMed  Google Scholar 

  34. 34. Ukai T, Cheng CP, Tachibana H, Igawa A, Zhang ZS, Cheng HJ, Little WC. Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing-induced heart failure. Circulation. 2001;103:750–755.

    CAS  PubMed  Google Scholar 

  35. 35. Fareh S, Benardeau A, Thibault B, Nattel S. The T-type Ca(2+) channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation. 1999;100:2191–2197.

    CAS  PubMed  Google Scholar 

  36. 36. Kauder WF, Watts JA. Antioxidant properties of dihydropyridines in isolated rat hearts. Biochem Pharmacol. 1996;51:811–819.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Mason RP, Mak IT, Trumbore MW, Mason PE. Antioxidant properties of calcium antagonists related to membrane biophysical interactions. Am J Cardiol.1999;84:16L–22L.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Mason RP, Mak IT, Walter MF, Tulenko TN, Mason PE. Antioxidant and cytoprotective activities of the calcium channel blocker mibefradil. Biochem Pharmacol. 1998;55:1843–1852.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Brundel BJ, Henning RH, Ke L, Van Gelder IC, Crijns HJ, Kampinga HH. Heat shock protein upregulation protects against pacing-induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. J Mol Cell Cardiol. 2006;41:555–562.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Brundel BJ, Shiroshita-Takeshita A, Qi X, Yeh YH, Chartier D, Van Gelder IC, Henning RH, Kampinga HH, Nattel S. Induction of heat shock response protects the heart against atrial fibrillation. Circ Res. 2006;99:1394–1402.

    Article  CAS  PubMed  Google Scholar 

  41. 41. McCollum AK, Teneyck CJ, Sauer BM, Toft DO, Erlichman C. Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res. 2006;66:10967–10975.

    Article  CAS  PubMed  Google Scholar 

  42. 42. Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J. 2006;27:512–518.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Nakashima H, Kumagai K, Urata H, Gondo N, Ideishi M, Arakawa K. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation. 2000;101:2612–2617.

    CAS  PubMed  Google Scholar 

  44. 44. Shiroshita-Takeshita A, Brundel BJ, Lavoie J, Nattel S. Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc Res. 2006;69:865–875.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Custodis F, Eberl M, Kilter H, Bohm M, Laufs U. Association of RhoGDIalpha with Rac1 GTPase mediates free radical production during myocardial hypertrophy. Cardiovasc Res. 2006;71:342–351.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;97:1916–1923.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Goette A, Arndt M, Rocken C, Spiess A, Staack T, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation. 2000;101:2678–2681.

    CAS  PubMed  Google Scholar 

  48. 48. Ishii Y, Schuessler RB, Gaynor SL, Yamada K, Fu AS, Boineau JP, Damiano RJ Jr. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation. 2005;111:2881–2888.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res. 2004;62:105–111.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Abdelhadi RH, Gurm HS, Van Wagoner DR, Chung MK. Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am J Cardiol. 2004;93:1176–1178.

    Article  PubMed  Google Scholar 

  51. 51. Amar D, Goenka A, Zhang H, Park B, Thaler HT. Leukocytosis and increased risk of atrial fibrillation after general thoracic surgery. Ann Thorac Surg. 2006;82:1057–1061.

    Article  PubMed  Google Scholar 

  52. 52. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96:1180–1184.

    CAS  PubMed  Google Scholar 

  53. 53. Chung MK, Martin DO, Wazni O, Kanderian A, Sprecher D, Carnes CA, Bauer JA, Tchou PJ, Niebauer M, Natale A, Van Wagoner DR. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104:2886–2891.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54:230–246.

    Article  CAS  PubMed  Google Scholar 

  55. 55. Aviles RJ, Martin DO, Apperson-Hanson C, Houghtaling PL, Kronmal RA, Tracy RP, Van Wagoner DR, Lauer MS, Chung MK. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006–3010.

    Article  PubMed  Google Scholar 

  56. 56. Goette A, Lendeckel U, Klein HU. Signal transduction systems and atrial fibrillation. Cardiovasc Res. 2002;54:247–258.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Goette A, Juenemann G, Peters B, Klein HU, Roessner A, Huth C, Rocken C. Determinants and consequences of atrial fibrosis in patients undergoing open heart surgery. Cardiovasc Res. 2002;54:390–396.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Le Grand B, Hatem S, Deroubaix E, Couétil J-P, Coraboeuf E. Depressed transient outward and calcium currents in dilated human atria. Cardiovasc Res. 1994;28:548–556.

    Article  PubMed  Google Scholar 

  59. 59. Lamirault G, Gaborit N, Le Meur N, Chevalier C, Lande G, Demolombe S, Escande D, Nattel S, Leger JJ, Steenman M. Gene expression profile associated with chronic atrial fibrillation and underlying valvular heart disease in man. J Mol Cell Cardiol. 2006;40:173–184.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch ehances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res. 2003;92:80e.

    Article  Google Scholar 

  61. 61. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–575.

    Article  CAS  PubMed  Google Scholar 

  62. 62. Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87–95.

    CAS  PubMed  Google Scholar 

  63. 63. Shi Y, Li D, Tardif JC, Nattel S. Enalapril effects on atrial remodeling and atrial fibrillation in experimental congestive heart failure. Cardiovasc Res. 2002;54:456–461.

    Article  CAS  PubMed  Google Scholar 

  64. 64. Cha TJ, Ehrlich JR, Zhang L, Nattel S. Atrial ionic remodeling induced by atrial tachycardia in the presence of congestive heart failure. Circulation. 2004;110:1520–1526.

    Article  PubMed  Google Scholar 

  65. 65. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium to sustained atrial fibrillation in the goat. Circulation. 1997;96:3157–3163.

    CAS  PubMed  Google Scholar 

  66. 66. Ausma J, Litjens N, Lenders MH, Duimel H, Mast F, Wouters L, Ramaekers F, Allessie M, Borgers M. Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. J Mol Cell Cardiol. 2001;33:2083–2094.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by NIH RO1 HL65412 and the Atrial Fibrillation Innovation Center, an Ohio Wright Center Initiative.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wagoner, D.R. (2008). Electrical and Structural Remodeling in Atrial Fibrillation. In: Natale, A., Jalife, J. (eds) Atrial Fibrillation. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-163-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-163-5_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-856-0

  • Online ISBN: 978-1-59745-163-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics