Advertisement

Anti-Inflammatory Plants

Chapter

Abstract

Inflammation is a dynamic process that is elicited in response to mechanical injuries, burns, microbial infections, and other noxious stimuli that may threaten the well-being of the host. This process involves changes in blood flow, increased vascular permeability, destruction of tissues via the activation and migration of leucocytes with synthesis of reactive oxygen derivatives (oxidative burst), and the synthesis of local inflammatory mediators, such as prostaglandins (PGs), leukotrienes, and platelet-activating factors induced by phospholipase A2, cyclooxygenases (COXs), and lipoxygenases. Arachidonic acid is a key biological intermediate that is converted in to a large number of eicosanoids with potent biological activities. The two major pathways of arachidonic acid metabolism are the COX pathway, which results in the formation of both PGs and thromboxanes, and the 5-lipoxygenase pathway, which is responsible for the formation of leukotrienes and 5S-hydroxy-6E, 8Z, 11Z, 14Z-eicosatetraenoic acid (5-HETE). Classic examples of herbs traditionally used to treat inflammation in Western medicine are Matricaria chamomilla L. and Arnica montana L. (Asteraceae), Salix alba (Salicaceae), and Glycyrrhiza glabra (Fabaceae).

Keywords

Medicinal Plant Ursolic Acid Betulinic Acid Sesquiterpene Lactone Curcuma Longa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernard P, Scior T, Didier B, Hibert M, Berthon JY. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A(2) inhibitors. Phytochemistry 2001;58:865–874.PubMedCrossRefGoogle Scholar
  2. 2.
    Vishwanath BS, Fawzy AA, Franson R, et al. Edema-inducing activity of phospholi-pase A2 purified from human synovial fluid and inhibition by aristolochic acid. Inflammation 1988;12:549–561.PubMedCrossRefGoogle Scholar
  3. 3.
    Wu TS, Leu YL, Chan YY. Aristofolin-A, a denitro-aristolochic acid glycoside and other constituents from aristolochia kaempferi. Phytochemistry 1998;49:2509–2510.CrossRefGoogle Scholar
  4. 4.
    Wu TS, Leu YL, Chan YY. Constituents from the stem and root of Aristolochia kaempferi. Biol Pharm Bull 2000;23:1216–1219.PubMedGoogle Scholar
  5. 5.
    Pezzuto JM, Swanson SM, Mar W, Che CT, Cordell GA, Fong HH Evaluation of the mutagenic and cytostatic potential of aristolochic acid (3,4-methylenedioxy-8-methoxy-10-nitrophenanthrene-1-carboxylic acid) and several of its derivatives. Mutat Res 1988;206:447–454.PubMedCrossRefGoogle Scholar
  6. 6.
    Levi M, Guchelaar HJ, Woerdenbag HJ, Zhu YP. Acute hepatitis in a patient using a Chinese herbal tea—a case report. Pharm World Sci 1998;20:43–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Hong CH, Sun KH, Jin O, Sun SK, Kyung AN, Sang KL. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol 2002;83:153–159.PubMedCrossRefGoogle Scholar
  8. 8.
    Mikaye A, Yamamoto H, Takebayashi Y, Imai H, Honda K. The novel natural product YM-26567-1: a competitive inhibitor of group II phospholipase A2. J Pharmacol Exp Ther 1992;263:1302–1307.Google Scholar
  9. 9.
    Chang HW, Baek SH, Chung KW, Son KH, Kim HP, Kang SS. Inactivation of phospholipase A2 by naturally occurring biflavonoid, ochnaflavone. Biochem Biophys Res Commun 1994;205:843–849.PubMedCrossRefGoogle Scholar
  10. 10.
    Akihisa T, Ken Y, Hirotoshi O, Yoshimasa K. Triterpene alcohols from the flowers of Compositae and their anti-inflammatory effects. Phytochemistry 1996;43:1255–1260.PubMedCrossRefGoogle Scholar
  11. 11.
    Januário AH, Simone LS, Silvana M, et al. Neo-clerodane diterpenoid, a new metallo-protease snake venom inhibitor from Baccharis trimera (Asteraceae): anti-proteolytic and anti-hemorrhagic properties. Chem Biol Interact 2002;150:243–251.CrossRefGoogle Scholar
  12. 12.
    Sala AM, Carmen R, Giner M, Máñez SR. Anti-phospholipase A2 and anti-inflammatory activity of Santolina chamaecyparissus. Life Sci 2000;66:35–40.Google Scholar
  13. 13.
    Sasaki S, Aoyagi S, Hsu HY. The isolation of taraxerol, taraxeryl acetate, and taraxerone from Crossostephium chinense Makino (Compositae). Chem Pharm Bull (Tokyo) 1965;J13:87–88.Google Scholar
  14. 14.
    Li RW, David Lin G, Myers SP, Leach DN. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol 2003;85:61–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Inagaki I, Sakushima A, Sueo N, Sansei H. Flavones and flavone glucosides from the leaves of Trachelospermum asiaticum. Phytochemistry 1973;12:1498.CrossRefGoogle Scholar
  16. 16.
    Nakatani K, Norimichi N, Tsutomu A, Hideyuki Y, Yasushi O. Inhibition of cyclooxygenase and prostaglandin E2 synthesis by γ-mangostin, a xanthone derivative in mangosteen, in C6 rat glioma cells. Biochem Pharmacol 2002;63:73–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavin C, Delannoy M, Malnoe A, et al. Inhibition of the expression and activity of cyclooxygenase-2 by chicory extract. Biochem Biophys Res Commun 2005;327:742–749.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu L, Zhongliang CH. Sesquiterpenoid alcohols from Chrysanthemum morifolium. Phytochemistry 1997;44:1287–1290.CrossRefGoogle Scholar
  19. 19.
    Sumner H, Umit S, Knight DW, Hoult JRS. Chrysanthemum parthenium (L.); Bernh. Inhibition of 5-lipoxygenase and cyclooxygenase in leukocytes by feverfew: Involvement of sesquiterpene lactones and other components. Biochem Pharmacol 1992;43:2313–2320.PubMedCrossRefGoogle Scholar
  20. 20.
    Chacur M, Gutierrez JM, Milligan ED, et al. Snake venom components enhance pain upon subcutaneous injection: an initial examination of spinal cord mediators. Pain 2004:111:65–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Jäger AK, Hutchings A, van Staden J. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. J Ethnopharmacol 1996;52:95–100.PubMedCrossRefGoogle Scholar
  22. 22.
    Kimura Y, Hiromichi O, Shigeru A. Effects of stilbenes on arachidonate metabolism in leukocytes. Biochim Biophysica Acta 1985;834:275–278.Google Scholar
  23. 23.
    Pang L, de las Heras B, Hoult JR. A novel diterpenoid labdane from Sideritis javalam-brensis inhibits eicosanoid generation from stimulated macrophages but enhances arachidonate release. Biochem Pharmacol 1996;51:863–868.PubMedCrossRefGoogle Scholar
  24. 24.
    Singh S, Majumdar DK, Rehan HMS. Evaluation of anti-inflammatory potential of fixed oil of Ocimum sanctum (Holy basil) and its possible mechanism of action. J Ethnopharmacol 1996;54:19–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Pongprayoon U, Baeckstrom P, Jacobsson U, Lindstrom M, Bohlin L. Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pescaprae. Planta Med 1991;57:515–518.PubMedCrossRefGoogle Scholar
  26. 26.
    Dewhirst FE. Structure/activity relationship for inhibition of prostaglandin cyclooxygenase by phenolic compounds. Prostaglandins 1980;20:209–222.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuhn H, Wiesner R, Alder L, Schewe T. Occurrence of free and esterified lipoxygenase products in leaves of Glechoma hederacea L. and other Labiatae. Eur J Biochem 1989;186:155–162.PubMedCrossRefGoogle Scholar
  28. 28.
    Henry DY, Gueritte-Voegelein F, Insel PA, Ferry N, Bouguet J, Potier P, Hanoune J. Isolation and characterization of 9-hydroxy-10-trans,12-cis-octadecadienoic acid, a novel regulator of platelet adenylate cyclase fromGlechoma hederaceaL. Labiatae. Eur J Biochem 1987;170:389–394.PubMedCrossRefGoogle Scholar
  29. 29.
    Yashodharan K, Cox PJ, Jaspars M, Lutfun N, Satyajit DS. Isolation, structure elucidation and biological activity of hederacine A and B, two unique alkaloids from Glechoma hederaceae. Tetrahedron 2003;59:6403–6407.CrossRefGoogle Scholar
  30. 30.
    Yang LK, Khoo-Beattie C, Goh KL, et al. Ardisiaquinones from Ardisia teysmanniana. Phytochemistry 2001;58:1235–1238.PubMedCrossRefGoogle Scholar
  31. 31.
    Fukuishi N, Takada T, Fukuyama Y, Akagi M. Antiallergic effect of ardisiaquinone A, a potent 5-lipoxygenase inhibitor. Phytomedicine 2001;8:460–464.PubMedCrossRefGoogle Scholar
  32. 32.
    Dana A, Ilse Z, Dingermann T, Müller WE, Steinhilber D, Werz O. Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 2002;64:1767–1775.CrossRefGoogle Scholar
  33. 33.
    An TY, Ming DS, Hu LH, Liu SJ, Chen ZL. Polyprenylated phloroglucinol derivatives from Hypericum erectum. Phytochemistry 2002;59:395–398.PubMedCrossRefGoogle Scholar
  34. 34.
    Tornhamre S, Schmidt TJ, Näsman-Glaser B, Ericsson I, Ake L. Inhibitory effects of helenalin and related compounds on 5-lipoxygenase and leukotriene C4 synthase in human blood cells. Biochem Pharmacol 2001;62:903–911.PubMedCrossRefGoogle Scholar
  35. 35.
    Stavri M, Ford CH, Bucar F, et al. Bioactive constituents of Artemisia monosperma. Phytochemistry 2005;66:233–239.PubMedCrossRefGoogle Scholar
  36. 36.
    Prieto JM, Giner RM, Recio MC, Manez S, Rios JL. Dual inhibition of cyclooxygenase-1 and 5-lipoxygenase by aerial part of Bupleurum fruticescens methanol extract. Fitoterapia 2004;75:179–186.PubMedCrossRefGoogle Scholar
  37. 37.
    Konarev AV, Anisimova IN, Gavrilova VA, et al. Serine proteinase inhibitors in the Compositae: distribution, polymorphism and properties. Phytochemistry 2002;59:279–291.PubMedCrossRefGoogle Scholar
  38. 38.
    Barua RN, Ram PS, Gopalakrishna T, Werner H, Serengolam VG. New melampolides and darutigenol from Sigesbeckia orientalis. Phytochemistry 1980;19:323–325.CrossRefGoogle Scholar
  39. 39.
    Zdero CF, Bohlmann RMK, Robinson H. Sesquiterpene lactones and other constituents from Siegesbeckia orientalis and Guizotia scabra. Phytochemistry 1991;30:1579–1584.CrossRefGoogle Scholar
  40. 40.
    Kang BK, Lee EH, Kim HM. Inhibitory effects of Korean folk medicine “Hi-Chum” on histamine release from mast cells in vivo and in vitro. J Ethnopharmacol 1997;57:73–79.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim HM, Lee JH, Won JH, Park et al. Inhibitory effect on immunoglobulin E production in vivo and in vitro by Siegesbeckia glabrescens. Phytother Res 2001;15:572–576.PubMedCrossRefGoogle Scholar
  42. 42.
    He SH, Xie H, Zhang XJ, Wang XJ. Inhibition of histamine release from human mast cells by natural chymase inhibitors. Acta Pharmacol Sin. 2004;25:822–826.PubMedGoogle Scholar
  43. 43.
    Dong XY, Chen M, Jin W, Huang DX, Shen SM, Li HT. Studies on antifertility constituents of Siegesbeckia glabrescens Mak. Yao Xue Xue Bao 1989;24:833–836.Google Scholar
  44. 44.
    Ahmed M, Rahman MT. Alimuzzaman M, Shilpi JA. Analgesic sesquiterpene dilactone from Mikania cordata. Fitoterapia 2001;72:919–921.PubMedCrossRefGoogle Scholar
  45. 45.
    Herz W, Subramaniam PS, Santhanam PS, Aota K, Hall AL. Structure elucidation of sesquiterpene dilactones from Mikania scandens (L.) Willd. J Org Chem 1970;35:1453–1464.PubMedCrossRefGoogle Scholar
  46. 46.
    Gutiérrez AB, Oberti JC, Sosa VE, Herz W Melampolides from Mikania cordifolia. Phytochemistry 1987;26:2315–2320.CrossRefGoogle Scholar
  47. 47.
    Krenn L, Beyer G, Pertz HH, et al. In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittelforschung 2004;54:402–405.PubMedGoogle Scholar
  48. 48.
    Melzig MF, Pertz HH, Krenn L. Anti-inflammatory and spasmolytic activity of extracts from Droserae herba. Phytomedicine 2001;8:225–229.PubMedCrossRefGoogle Scholar
  49. 49.
    Lastra AL, Ramírez TO, Salazar L, Martínez M, Trujillo-Ferrara J. The ambrosanolide cumanin inhibits macrophage nitric oxide synthesis: some structural considerations. J Ethnopharmacol 2004;95:221–227.PubMedCrossRefGoogle Scholar
  50. 50.
    Aldieri E, Atragene D, Bergandi L, et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 2003;552(2–3):141–144.PubMedCrossRefGoogle Scholar
  51. 51.
    Ryu SY, Oak MH, Yoon SK, et al. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris Planta Med 2000;66:358–360.PubMedCrossRefGoogle Scholar
  52. 52.
    Hernandez V, del Carmen Recio M, Manez S, Prieto JM, Giner RM, Rios JL. A mechanistic approach to the in vivo anti-inflammatory activity of sesquiterpenoid compounds isolated from Inula viscosa. Planta Med 2001:67;726–731.PubMedGoogle Scholar
  53. 53.
    Je KH, Han AR, Lee HT, Mar W, Seo EK. The inhibitory principle of lipopolysaccharide-induced nitric oxide production from Inula britannica var. chinensis. Arch Pharm Res 2005;27:83–85.CrossRefGoogle Scholar
  54. 54.
    Han M, Wen JK, Zheng B, Zhang DQ. Acetylbritannilatone suppresses NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression. Life Sci 2004;75:675–684.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee HT, Yang SW, Kim KH, Seo EK, Mar W Pseudoguaianolides isolated from Inula britannica var. chinenis as inhibitory constituents against inducible nitric oxide synthase. Arch Pharm Res 2002;25:151–153.PubMedGoogle Scholar
  56. 56.
    Kim EJ, Hye KJ, Yong KK, et al. Suppression by a sesquiterpene lactone from Carpesium divaricatum of inducible nitric oxide synthase by inhibiting nuclear factor-κB activation. Biochem Pharmacol 2001;61:903–910.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim DK, Baek NI, Choi SU, Lee CO, Lee KR, Zee OP. Four new cytotoxic germacranolides from Carpesium divaricatum. J Nat Prod. 1997;60:1199–1202.PubMedCrossRefGoogle Scholar
  58. 58.
    Matsuda H, Tadashi K, Iwao T, Hiroki U, Toshio M, Masayuki Y. Inhibitory effects of sesquiterpenes from bay leaf on nitric oxide production in lipopolysaccharide-activated macrophages: structure requirement and role of heat shock protein induction. Life Sci 2000;66:2151–2157.PubMedCrossRefGoogle Scholar
  59. 59.
    Joshi BS, Kamat VN, Govindachari TR. Sesquiterpenes of Neolitsea zeylanicamerr. I: isolation of some constituents. Tetrahedron 1967;23:261–265.CrossRefGoogle Scholar
  60. 60.
    Joshi BS, Kamat VN, Govindachari TR. Sesquiterpenes of Neolitsea zeylanicamerr. II: structure of neolinderane. Tetrahedron 1967;23:267–271.CrossRefGoogle Scholar
  61. 61.
    Joshi BS, Kamat VN, Govindachari TR. Sesquiterpenes of Neolitsea zeylanicaMerr. III: structure of zeylanine, zeylanicine and zeylanidine. Tetrahedron 1967;23:273–277.CrossRefGoogle Scholar
  62. 62.
    Chen KS, Hsieh PW, Hwang TL, Chang FR, Wu YC. Anti-inflammatory furanoger-macrane sesquiterpenes from Neolitsea parvigemma. Nat Prod Res 2005;19:283–286.PubMedCrossRefGoogle Scholar
  63. 63.
    Choi EM, Hwang JK. Effects of methanolic extract and fractions from Litsea cubeba bark on the production of inflammatory mediators in RAW264.7 cells. Fitoterapia 2004;75:141–148.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen WY, Ko FN, Wu YC, Lu ST, Teng CM. Vasorelaxing effect in rat thoracic aorta caused by laurotetanine isolated from Litsea cubeba Persoon. J Pharm Pharmacol 1994;46:380–382.PubMedGoogle Scholar
  65. 65.
    Soares MB, Bellintani MC, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R. Inhibition of macrophage activation and lipopolysaccaride-induced death by seco-steroids purified from Physalis angulata L. Eur J Pharmacol 2003;459:107–112.PubMedCrossRefGoogle Scholar
  66. 66.
    Ficarra R, Ficarra P, Tommasini S, et al. Leaf extracts of some Cordia species: analgesic and anti-inflammatory activities as well as their chromatographic analysis. Farmaco 1995;50:245–256.PubMedGoogle Scholar
  67. 67.
    Selvanayagam ZE, Gnanavendhan SG, Balakrishna K, et al. Ehretianone, a novel quinonoid xanthene from Ehretia buxifolia with anti-snake venom activity. J Nat Prod 1996;59:664–667.PubMedCrossRefGoogle Scholar
  68. 68.
    Gokhale AB, Damre AS, Saraf MN. Investigations into the immunomodulatory activity of Argyreia speciosa. J Ethnopharmacol 2003;84:109–114.PubMedCrossRefGoogle Scholar
  69. 69.
    Dharmasiri MG, Jayakody JR, Galhena G, Liyanage SS, Ratnasooriya W. Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J Ethnopharmacol 2003;87:199–206.PubMedCrossRefGoogle Scholar
  70. 70.
    Alam MI, Gomes A. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol 2003;86:75–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Ozaki Y, Sekita S, Soedigdo S, Harada M. Antiinflammatory effect of Graptophyllum pictum (L.) Griff. Chem Pharm Bull (Tokyo) 1989;37:2799–2802.PubMedGoogle Scholar
  72. 72.
    Laupattarakasem P, Houghton PJ, Hoult JR, Itharat. An evaluation of the activity related to inflammation of four plants used in Thailand to treat arthritis. J Ethnopharmacol 2003;85:207–215.PubMedCrossRefGoogle Scholar
  73. 73.
    De S, Ravishankar B, Bhavsar GC. Investigation of the anti-inflammatory effects of Paederia foetida. J Ethnopharmacol 1994;43:31–38.PubMedCrossRefGoogle Scholar
  74. 74.
    Olajide OA, Okpako DT, Makinde JM. Anti-inflammatory properties of Bridelia ferruginea stem bark. Inhibition of lipopolysaccaride-induced septic shock and vascular permeability. J Ethnopharmacol 1999;88:221–224.CrossRefGoogle Scholar
  75. 75.
    Geetha T, Varalakshmi P. Anticomplement activity of triterpenes from Crataeva nurvala stem bark in adjuvant arthritis in rats. Gen Pharmacol 1999;32:495–497.PubMedCrossRefGoogle Scholar
  76. 76.
    Matsuda H, Dai Y, Ido Y, et al. Studies on Kochiae fructus. V. Antipruritic effects of oleanolic acid glycosides and the structure-requirement. Biol Pharm Bull 1998;21:1231–1233.PubMedGoogle Scholar
  77. 77.
    Zschocke S, van Staden J. Cryptocarya-species substitute plants for Ocotea bullata? A pharmacological investigation in terms of cyclooxygenase-1 and-2 inhibition. J Ethnopharmacol 2000;71:473–478.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Personalised recommendations