Skip to main content

Campylobacter

From Glycome to Pathogenesis

  • Chapter

Abstract

Genome sequencing of Campylobacter jejuni NCTC11168 identified an abundance of carbohydrate biosynthetic clusters comprising a large proportion of the genome. Many of these pathways were already under investigation including the lipooligosaccharide, flagellar O-linked protein glycosylation, and general N-linked protein glycosylation systems. Genome sequencing also identified a novel cluster of genes, which was subsequently shown to be involved in capsular polysaccharide biosynthesis. In order to fully understand the C. jejuni glycome, sophisticated analytical techniques were employed for functional characterization. We will describe these four important carbohydrate pathways highlighting the methods used to characterize these systems, the biological relevance the sugars play in campylobacter survival and pathogenesis, and the potential exploitation of the glycome for novel therapeutics against this common food-borne pathogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King, E. O. (1957) Human infections with Vibrio fetus and a closely related vibrio. J. Infect. Dis. 101, 119–128.

    PubMed  CAS  Google Scholar 

  2. Jacobs, B. C., Rothbarth, P. H., van der Meche, F. G., et al. (1998) The spectrum of antecedent infections in Guillain-Barré syndrome: a case-control study. Neurology 51, 1110–1115.

    PubMed  CAS  Google Scholar 

  3. Walz, S. E., Baqar, S., Beecham, H. J., et al. (2001) Pre-exposure anti-Campylobacter jejuni immunoglobulin a levels associated with reduced risk of Campylobacter diarrhea in adults traveling to Thailand. Am. J. Trop. Med. Hyg. 65, 652–656.

    PubMed  CAS  Google Scholar 

  4. Park, S. F. (2002) The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int. J. Food Microbiol. 74, 177–188.

    Article  PubMed  CAS  Google Scholar 

  5. Jenkin, G. A. and Tee, W. (1998) Campylobacter upsaliensis-associated diarrhea in human immunodeficiency virus-infected patients. Clin. Infect. Dis. 27, 816–821.

    PubMed  CAS  Google Scholar 

  6. Labarca, J. A., Sturgeon, J., Borenstein, L., et al. (2002) Campylobacter upsaliensis: Another pathogen for consideration in the United States. Clin. Infect. Dis. 34, E59–E60.

    Article  PubMed  Google Scholar 

  7. Szymanski, C. M., King, M., Haardt, M., and Armstrong, G. D. (1995) Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 63, 4295–4300.

    PubMed  CAS  Google Scholar 

  8. Sharma, S., Sachdeva, P., and Virdi, J. S. (2003) Emerging water-borne pathogens. Appl. Microbiol. Biotechnol. 61, 424–428.

    PubMed  CAS  Google Scholar 

  9. Hrudey, S. E., Payment, P., Huck, P. M., Gillham, R. W., and Hrudey, E. J. (2003) A fatal waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in the developed world. Water Sci. Technol. 47, 7–14.

    PubMed  CAS  Google Scholar 

  10. Hendrixson, D. R. and DiRita, V. J. (2003) Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol. 50, 687–702.

    Article  PubMed  CAS  Google Scholar 

  11. Wosten, M. M., Wagenaar, J. A., and van Putten, J. P. (2004) The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279, 16,214–16,222.

    Article  PubMed  CAS  Google Scholar 

  12. Jagannathan, A., Constantinidou, C., and Penn, C. W. (2001) Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183, 2937–2942.

    Article  PubMed  CAS  Google Scholar 

  13. Carrillo, C. D., Taboada, E., Nash, J. H., et al. (2004) Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279, 20,327–20,338.

    Article  PubMed  CAS  Google Scholar 

  14. Song, Y. C., Jin, S., Louie, H., et al. (2004) FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53, 541–553.

    Article  PubMed  CAS  Google Scholar 

  15. Konkel, M. E., Klena, J. D., Rivera-Amill, V., et al. (2004) Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186, 3296–3303.

    Article  PubMed  CAS  Google Scholar 

  16. Lee, R. B., Hassane, D. C., Cottle, D. L., and Pickett, C. L. (2003) Interactions of Campylobacter jejuni cytolethal distending toxin subunits CdtA and CdtC with HeLa cells. Infect. Immun. 71, 4883–4890.

    Article  PubMed  CAS  Google Scholar 

  17. Fox, J. G., Rogers, A. B., Whary, M. T., et al. (2004) Gastroenteritis in NF-kappaB-deficient mice is produced with wild-type Camplyobacter jejuni but not with C.jejuni lacking cytolethal distending toxin despite persistent colonization with both strains. Infect. Immun. 72, 1116–1125.

    Article  PubMed  CAS  Google Scholar 

  18. Bacon, D. J., Alm, R. A., Burr, D. H., et al. (2000) Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect. Immun. 68, 4384–4390.

    Article  PubMed  CAS  Google Scholar 

  19. Bacon, D. J., Alm, R. A., Hu, L., et al. (2002) DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect. Immun. 70, 6242–6250.

    Article  PubMed  CAS  Google Scholar 

  20. van Vliet, A. H., Ketley, J. M., Park, S. F., and Penn, C. W. (2002) The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol. Rev. 26, 173–186.

    PubMed  Google Scholar 

  21. Palyada, K., Threadgill, D., and Stintzi, A. (2004) Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol. 186, 4714–4729.

    Article  PubMed  CAS  Google Scholar 

  22. Parkhill, J., Wren, B. W., Mungall, K., et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.

    Article  PubMed  CAS  Google Scholar 

  23. Moran, A. P., Penner, J. L., and Aspinall, G. O. (2000) Campylobacter lipopolysaccharides, in Campylobacter (Nachamkin, I. and Blaser, M. J., eds.). American Society for Microbiology, Washington, D.C.,. 241–257.

    Google Scholar 

  24. Dorrell, N., Mangan, J. A., Laing, K. G., et al. (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11, 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  25. Leonard, E. E., Takata, T., Blaser, M. J., Falkow, S., Tompkins, L. S., and Gaynor, E. C. (2003) Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187, 691–694.

    Article  PubMed  CAS  Google Scholar 

  26. Pearson, B. M., Pin, C., Wright, J., I’Anson, K., Humphrey, T., and Wells, J. M. (2003) Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554, 224–230.

    Article  PubMed  CAS  Google Scholar 

  27. Taboada, E. N., Acedillo, R. R., Carrillo, C. D., et al. (2004) Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J. Clin. Microbiol. 42, 4566–4576.

    Article  PubMed  CAS  Google Scholar 

  28. Brisson, J. R., Sue, S. C., Wu, W. G., McManus, G., Nghia, P. T., and Uhrin, D. (2002) NMR of carbohydrates: 1D homonuclear selective methods, in NMR Spectroscopy of Glycoconjugates (Jimenez-Barbero, J. and Peters, T., eds.). Wiley-VCH, Weinhem, Germany,. 59–93.

    Chapter  Google Scholar 

  29. Duus, J. O., Gotfredsen, C. H., and Bock, K. (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem. Rev. 100, 4589–4614.

    Article  PubMed  CAS  Google Scholar 

  30. Kogan, G. and Uhrin, D. (2000) Current NMR methods in the structural elucidation of polysaccharides, in New Advances in Analytical Chemistry (Atta-ur-Rahman, ed.). Harwood Academic, Amsterdam,. 73–134.

    Google Scholar 

  31. Uhrin, D. and Brisson, J. R. (2000) Structure determination of microbial polysaccharides by high resolution NMR spectroscopy, in NMR in Microbiology: Theory and Applications (Barbotin, J.N. and Portais, J. C., eds.). Horizon Scientific Press, Wymondham, UK,. 165–210.

    Google Scholar 

  32. van Halbeek, H. (1994) 1H nuclear magnetic resonance spectroscopy of carbohydrate chains of glycoproteins. Methods Enzymol. 230, 132–168.

    Article  PubMed  Google Scholar 

  33. Agrawal, P. K. (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31, 3307–3330.

    Article  PubMed  CAS  Google Scholar 

  34. Thibault, P., Logan, S. M., Kelly, J. F., et al. (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34,862–34,870.

    Article  PubMed  CAS  Google Scholar 

  35. Young, N. M., Brisson, J. R., Kelly, J., et al. (2002) Structure of the N-linked glycan present on multiple glycoproteins in the gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42,530–42,539.

    Article  PubMed  CAS  Google Scholar 

  36. Brisson, J. R., Crawford, E., Khieu, N. H., Perry, M. B., and Richards, J. C. (2002) The core oligosaccharide component from Mannheimia (Pasteurella) haemolytica serotype A1 lipopolysaccharide contains L-glycero-D-manno-and D-glycero-D-manno-heptoses. Analysis of the structure and conformation by high resolution NMR spectroscopy. Can. J. Chem. 80, 949–963.

    Article  CAS  Google Scholar 

  37. Knirel, Y. A., Shashkov, A. S., Tsvetkov, Y. E., Jansson, P. E., and Zahringer, U. (2003) 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: chemistry and biochemistry. Adv. Carbohydr. Chem. Biochem. 58, 371–417.

    Article  PubMed  CAS  Google Scholar 

  38. Oldfield, E., Bowers, J. L., and Forbes, J. (1987) High-resolution proton and carbon-13 NMR of membranes: why sonicate? Biochemistry 26, 6919–6923.

    Article  PubMed  CAS  Google Scholar 

  39. Penner, J. L. and Hennessy, J. N. (1980) Passive hemagglutination technique for serotyping Campylobacter fetus subsp. jejuni on the basis of soluble heat-stable antigens. J. Clin. Microbiol. 12, 732–737.

    PubMed  CAS  Google Scholar 

  40. Karlyshev, A. V., Linton, D., Gregson, N. A., Lastovica, A. J., and Wren, B. W. (2000) Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol. 35, 529–541.

    Article  PubMed  CAS  Google Scholar 

  41. Bacon, D. J., Szymanski, C. M., Burr, D. H., Silver, R. P., Alm, R. A., and Guerry, P. (2001) A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol. Microbiol. 40, 769–777.

    Article  PubMed  CAS  Google Scholar 

  42. Fry, B. N., Feng, S., Chen, Y. Y., Newell, D. G., Coloe, P. J., and Korolik, V. (2000) The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect. Immun. 68, 2594–2601.

    Article  PubMed  CAS  Google Scholar 

  43. Oldfield, N. J., Moran, A. P., Millar, L. A., Prendergast, M. M., and Ketley, J. M. (2002) Characterization of the Campylobacter jejuni heptosyltransferase II gene, waaF, provides genetic evidence that extracellular polysaccharide is lipid A core independent. J. Bacteriol. 184, 2100–2107.

    Article  PubMed  CAS  Google Scholar 

  44. Yuki, N., Taki, T., Inagaki, F., et al. (1993) A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178, 1771–1775.

    Article  PubMed  CAS  Google Scholar 

  45. Salloway, S., Mermel, L. A., Seamans, M., et al. (1996) Miller-Fisher syndrome associated with Campylobacter jejuni bearing lipopolysaccharide molecules that mimic human ganglioside GD3. Infect. Immun. 64, 2945–2949.

    PubMed  CAS  Google Scholar 

  46. Jacobs, B. C., Endtz, H., van der Meche, F. G., Hazenberg, M. P., Achtereekte, H. A., and van Doorn, P. A. (1995) Serum anti-GQ1b IgG antibodies recognize surface epitopes on Campylobacter jejuni from patients with Miller Fisher syndrome. Ann. Neurol. 37, 260–264.

    Article  PubMed  CAS  Google Scholar 

  47. Ang, C. W., Laman, J. D., Willison, H. J., et al. (2002) Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barré and Miller Fisher patients. Infect. Immun. 70, 1202–1208.

    Article  PubMed  CAS  Google Scholar 

  48. Yuki, N., Susuki, K., Koga, M., et al. (2004) Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barré syndrome. Proc. Natl. Acad. Sci. USA 101, 11,404–11,409.

    Article  PubMed  CAS  Google Scholar 

  49. Bowes, T., Wagner, E. R., Boffey, J., et al. (2002) Tolerance to self gangliosides is the major factor restricting the antibody response to lipopolysaccharide core oligosaccharides in Campylobacter jejuni strains associated with Guillain-Barré syndrome. Infect. Immun. 70, 5008–5018.

    Article  PubMed  CAS  Google Scholar 

  50. Gilbert, M., Karwaski, M. F., Bernatchez, S., et al. (2002) The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni.Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem. 277, 327–337.

    Article  PubMed  CAS  Google Scholar 

  51. Gilbert, M., Godschalk, P. C. R., Parker, C. T., Endtz, H., and Wakarchuk, W. W. (2004) Genetic basis for the variation in the lipooligosaccharide outer core of Campylobacter jejuni and possible association of glycosyltransferase genes with post-infectious neurophathies, in Campylobacter jejuni: New Perspectives in Molecular and Cellular Biology (Ketley, J. and Konkel, M. E., eds.). Horizon Scientific Press, Norfolk, UK, pp. 219–248.

    Google Scholar 

  52. Chiu, C. P., Watts, A. G., Lairson, L. L., et al. (2004) Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat. Struct. Mol. Biol. 11, 163–170.

    Article  PubMed  CAS  Google Scholar 

  53. Guerry, P., Ewing, C. P., Hickey, T. E., Prendergast, M. M., and Moran, A. P. (2000) Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect. Immun. 68, 6656–6662.

    Article  PubMed  CAS  Google Scholar 

  54. Guerry, P., Szymanski, C. M., Prendergast, M. M., et al. (2002) Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect. Immun. 70, 787–793.

    Article  PubMed  CAS  Google Scholar 

  55. Bernatchez, S., Szymanski, C. M., Ishiyama, N., et al. (2005) A single bifunctional UDPGlcNAc/ Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J. Biol. Chem. 280, 4792–4802.

    Article  PubMed  CAS  Google Scholar 

  56. Linton, D., Gilbert, M., Hitchen, P. G., et al. (2000) Phase variation of a beta-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol. Microbiol. 37, 501–514.

    Article  PubMed  CAS  Google Scholar 

  57. St. Michael, F., Szymanski, C. M., Li, J., et al. (2002) The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem. 269, 5119–5136.

    Article  PubMed  CAS  Google Scholar 

  58. Kelly, J., Masoud, H., Perry, M. B., Richards, J. C., and Thibault, P. (1996) Separation and characterization of O-deacylated lipooligosaccharides and glycans derived from Moraxella catarrhalis using capillary electrophoresis-electrospray mass spectrometry and tandem mass spectrometry. Anal. Biochem. 233, 15–30.

    Article  PubMed  CAS  Google Scholar 

  59. Li, J., Thibault, P., Martin, A., Richards, J. C., Wakarchuk, W. W., and van der Wilp, W. (1998) Development of an on-line preconcentration method for the analysis of pathogenic lipopolysaccharides using capillary electrophoresis-electrospray mass spectrometry. J. Chromatogr. A 817, 325–336.

    Article  PubMed  CAS  Google Scholar 

  60. Szymanski, C. M., Michael, F. S., Jarrell, H. C., et al. (2003) Detection of conserved Nlinked glycans and phase-variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem. 278, 24,509–24,520.

    Article  PubMed  CAS  Google Scholar 

  61. Moran, A. P., Zahringer, U., Seydel, U., Scholz, D., Stutz, P., and Rietschel, E. T. (1991) Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide.Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur. J. Biochem. 198, 459–469.

    Article  PubMed  CAS  Google Scholar 

  62. Gilbert, M., Godschalk, P. C., Karwaski, M. F., et al. (2004) Evidence for acquisition of the lipooligosaccharide biosynthesis locus in Campylobacter jejuni GB11, a strain isolated from a patient with Guillain-Barré syndrome, by horizontal exchange. Infect. Immun. 72, 1162–1165.

    Article  PubMed  CAS  Google Scholar 

  63. Karlyshev, A. V., Champion, O. L., Churcher, C., et al. Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of genetic diversity and the ability to form complex heptoses. Mol. Microbiol. 55, 90–103.

    Google Scholar 

  64. Jones, M. A., Marston, K. L., Woodall, C. A., et al. (2004) Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect. Immun. 72, 3769–3776.

    Article  PubMed  CAS  Google Scholar 

  65. Mills, S. D., Kurjanczyk, L. A., Shames, B., Hennessy, J. N., and Penner, J. L. (1991) Antigenic shifts in serotype determinants of Campylobacter coli are accompanied by changes in the chromosomal DNA restriction endonuclease digestion pattern. J. Med. Microbiol. 35, 168–173.

    Article  PubMed  CAS  Google Scholar 

  66. Mills, S. D., Kuzniar, B., Shames, B., Kurjanczyk, L. A., and Penner, J. L. (1992) Variation of the O antigen of Campylobacter jejuni in vivo. J. Med. Microbiol. 36, 215–219.

    PubMed  CAS  Google Scholar 

  67. Szymanski, C. M., Logan, S. M., Linton, D., and Wren, B. W. (2003) Campylobacter: a tale of two protein glycosylation systems. Trends Microbiol. 11, 233–238.

    PubMed  CAS  Google Scholar 

  68. Szymanski, C. M., Goon, S., Allan, B., and Guerry, P. (2005) Campylobacter protein glycosylation, in Campylobacter: New Perspectives in Molecular and Cellular Biology (Ketley, J.and Konkel, M. eds.). Horizon Scientific and Caister Academic Press, Norfolk, UK,. 259–273.

    Google Scholar 

  69. Szymanski, C. M. and Wren, B. W. (2005) Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3, 225–237.

    Article  PubMed  CAS  Google Scholar 

  70. Logan, S. M., Kelly, J. F., Thibault, P., Ewing, C. P., and Guerry, P. (2002) Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 46, 587–597.

    Article  PubMed  CAS  Google Scholar 

  71. Castric, P., Cassels, F. J., and Carlson, R. W. (2001) Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276, 26,479–26,485.

    Article  PubMed  CAS  Google Scholar 

  72. Schirm, M., Soo, E. C., Aubry, A. J., Austin, J., Thibault, P., and Logan, S. M. (2003) Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48, 1579–1592.

    Article  PubMed  CAS  Google Scholar 

  73. Goon, S., Kelly, J., Logan, S. M., Ewing, C. P., and Guerry, P. (2003) Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50, 659–671.

    Article  PubMed  CAS  Google Scholar 

  74. DiGiandomenico, A., Matewish, M. J., Bisaillon, A., Stehle, J. R., Lam, J. S., and Castric, P. (2002) Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol. Microbiol. 46, 519–530.

    Article  PubMed  CAS  Google Scholar 

  75. Szymanski, C. M., Yao, R., Ewing, C. P., Trust, T. J., and Guerry, P. (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030.

    Article  PubMed  CAS  Google Scholar 

  76. Szymanski, C. M., Burr, D. H., and Guerry, P. (2002) Campylobacter protein glycosylation affects host cell interactions. Infect. Immun. 70, 2242–2244.

    Article  PubMed  CAS  Google Scholar 

  77. Hendrixson, D. R. and DiRita, V. J. (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484.

    Article  PubMed  CAS  Google Scholar 

  78. Karlyshev, A. V., Everest, P., Linton, D., Cawthraw, S., Newell, D. G., and Wren, B. W. (2004) The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150, 1957–1964.

    Article  PubMed  CAS  Google Scholar 

  79. Larsen, J. C., Szymanski, C., and Guerry, P. (2004) N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J. Bacteriol. 186, 6508–6514.

    Article  PubMed  CAS  Google Scholar 

  80. Wacker, M., Linton, D., Hitchen, P. G., et al. (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E.coli. Science 298, 1790–1793.

    Article  PubMed  CAS  Google Scholar 

  81. Linton, D., Allan, E., Karlyshev, A. V., Cronshaw, A. D., and Wren, B. W. (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol. 43, 497–508.

    Article  PubMed  CAS  Google Scholar 

  82. Aspinall, G. O., Fujimoto, S., McDonald, A. G., Pang, H., Kurjanczyk, L. A., and Penner, J. L. (1994) Lipopolysaccharides from Campylobacter jejuni associated with Guillain-Barré, syndrome patients mimic human gangliosides in structure. Infect. Immun. 62, 2122–2125.

    PubMed  CAS  Google Scholar 

  83. Guerry, P., Alm, R., Szymanski, C. M., and Trust, T. J. (2000) Structure, function, and antigenicity of Campylobacter flagella, in Campylobacter (Nachamkin, I. and Blaser, M. J., eds.). American Society for Microbiology, Washington, DC,. 405–421.

    Google Scholar 

  84. Brooks, B. W., Robertson, R. H., Lutze-Wallace, C. L., and Pfahler, W. (2001) Identification, characterization, and variation in expression of two serologically distinct O-antigen epitopes in lipopolysaccharides of Campylobacter fetus serotype A strains. Infect. Immun. 69, 7596–7602.

    Article  PubMed  CAS  Google Scholar 

  85. Antoine, T., Priem, B., Heyraud, A., et al. (2003) Large-scale in vivo synthesis of the carbohydrate moieties of gangliosides GM1 and GM2 by metabolically engineered Escherichia coli. Chembiochem. 4, 406–412.

    Article  PubMed  CAS  Google Scholar 

  86. Soo, E. C., Aubry, A. J., Logan, S. M., et al. (2004) Selective detection and identification of sugar nucleotides by CE-electrospray-MS and its application to bacterial metabolomics. Anal. Chem. 76, 619–626.

    Article  PubMed  CAS  Google Scholar 

  87. Valvano, M. A., Messner, P., and Kosma, P. (2002) Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148, 1979–1989.

    PubMed  CAS  Google Scholar 

  88. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kelly, J., Brisson, JR., Young, N.M., Jarrell, H.C., Szymanski, C.M. (2006). Campylobacter. In: Chan, V.L., Sherman, P.M., Bourke, B. (eds) Bacterial Genomes and Infectious Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-152-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-152-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-496-8

  • Online ISBN: 978-1-59745-152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics