Skip to main content

The Choroid Plexus

A Novel Graft Source for Neural Transplantation

  • Chapter
Cell Therapy, Stem Cells, and Brain Repair

Abstract

The choroid plexus (CP) produces cerebrospinal fluid (CSF) and forms a portion of the physical structure of the CSF-blood barrier. More recently, the CP been implicated in other basic aspects of neural functioning, such as surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive cocktail of polypeptides for neuronal function and survival, and participating in repair processes following trauma. The CP also has a role in maintaining the extracellular milieu of the brain by actively modulating the chemical exchange between the CSF and brain parenchyma and by secreting numerous growth factors into the CSF. Preclinical and clinical studies in aging and neurodegeneration demonstrate anatomical and physiological changes in the CP, suggesting effects not only in normal development and pathological conditions, but also in potential endogenous repair processes following trauma. CP dysfunction in central nervous system (CNS) diseases, and the endogenous secretion of growth factors, indicates that transplantable CP might enable delivery of growth factors to the brain while avoiding the conventional molecular and genetic alterations associated with modifying cells to secrete selected products. Thus, this enables the possibility of replacing or transplanting CP as a means of treating acute and chronic brain diseases. This chapter focuses on the various functions of the CP, how these functions are altered in aging and neurodegeneration, and recent demonstrations of the therapeutic potential of transplanted CP for neural trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chodobski, A. and Szmydynger-Chodobska. (2001) Choroid plexus, Target for polypeptides and site of their synthesis. Microsc. Res. Techniq. 52, 65–82.

    Article  CAS  Google Scholar 

  2. Stopa, E. G., Berzin, T. M., Kim, S., et al. (2001) Human choroid plexus growth factors, what are the implications for CSF dynamics in Alzheimer’s disease. Exp. Neurol. 167, 40–47.

    Article  PubMed  CAS  Google Scholar 

  3. Serot, J. M., Bene, M. C., and Faure, G. C. (2003) Choroid plexus, ageing of the brain, and Alzheimer’s disease. Front. Biosci. 8, 515–521.

    Article  Google Scholar 

  4. Preston, J. E. (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc. Res. Tech. 52, 31–37.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrand-Drake, M. (2001) Cell death in the choroid plexus following transient forebrain global ischemia in the rat. Microsc. Res. Techniq. 52, 130–136.

    Article  CAS  Google Scholar 

  6. Engelhardt, B., Wolburg-Buchholz, K., and Wolburg, H. (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc. Res. Techniq. 52, 112–129.

    Article  CAS  Google Scholar 

  7. Korzhevskii D. E. 2002 Structural organization of choroid plexus primor-dium in human telencephalon. Morfologiia 121 63–67

    PubMed  CAS  Google Scholar 

  8. Dziegielewska, K. M., Ek, J., Habgood, M. D., and Saunders, N. R. (2001) Development of the choroid plexus. Microsc. Res. Techniq. 52, 5–20.

    Article  CAS  Google Scholar 

  9. Dohrmann, G. J. (1970) The choroid plexus, a historical review. Brain Res. 18, 197–218.

    Article  PubMed  CAS  Google Scholar 

  10. Cornford, E. M., Varesi, J. B., Hyman, S., et al. (1997) Mitochondrial content of choroid plexus epithelium. Exp. Brain Res. 116, 399–405.

    Article  PubMed  CAS  Google Scholar 

  11. Faraci, F. M., Mayhan, W. G., and Heistad, D. D. (1989) Effect of serotonin on blood flow to the choroid plexus. Brain Res. 478, 121–126.

    Article  PubMed  CAS  Google Scholar 

  12. Nilsson, C., Ekman, R., Lindvall-Axelsson, M., and Owman, C. (1990) Distribution of peptidergic nerves in the choroid plexus, focusing on coexistence of neuropeptide Y, vasoactive intestinal polypeptide and peptide histidine isoleu-cine. Regul. Pept. 27, 11–26.

    Article  PubMed  CAS  Google Scholar 

  13. Speake, T., Whitwell, C., Kajita, H., et al. (2001) Mechanisms of CSF-secre-tion by the choroid plexus. Microsc. Res. Tech. 52, 49–59.

    Article  PubMed  CAS  Google Scholar 

  14. Nilsson, C., Stahlberg, F., Gideon, P., et al. (1994) The nocturnal increase in human cerebrospinal fluid production is inhibited by a beta 1-receptor antagonist. Am. J. Physiol. 267, 1445–1448.

    Google Scholar 

  15. Rall, D. P. (1964)The structure and function of the cerebrospinal fluid. In Cellular Functions of Membrane Transport (Hoffman, J., ed.), Prentice-Hall, NJ, pp. 269–282.

    Google Scholar 

  16. Segal, M. B. (2000) The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol. Neurobiol. 20, 183–196.

    Article  PubMed  CAS  Google Scholar 

  17. Felgenhauer K. 1986 The blood-brain barrier redefined. J. Neurol. 233 193–194

    Article  PubMed  CAS  Google Scholar 

  18. Spector, R. (1977) Vitamin homeostasis in the central nervous system. N. Engl. J. Med. 296, 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  19. Weisner, B. and Roethig, H. J. (1983) The concentration of prealbumin in cerebrospinal fluid (CSF), indicator of CSF circulation disorders. Eur. Neurol. 22, 96–105.

    PubMed  CAS  Google Scholar 

  20. Bruni, J. E. (1996) Cerebral ventricular system and cerebrospinal fluid. In The Encyclopedia of Human Biology, 2nd ed. (Dulbecco, R., ed.), Academic Press, San Diego, CA.

    Google Scholar 

  21. Black, P. L. and Ojemann, R. G. (1990) Hydrocephalus in adults. In Neurological Surgery, 3rd edition, vol. 2 (Youmans, J. R., ed.), WB Saunders Co., Philadelphia, PA.

    Google Scholar 

  22. Vorbrodt, A. W. and Dobrogowska, D. H. (2003) Molecular anatomy of intercellular junctions in brain endothelia and epithelial barriers, electron micro-scopist’s view. Brain Res. Rev. 42, 221–242.

    Article  PubMed  CAS  Google Scholar 

  23. Graff, C. L. and Pollack, G. M. (2004) Drug transport at the blood-brain barrier and the choroid plexus. Curr. Drug Metab. 5, 95–108.

    Article  PubMed  CAS  Google Scholar 

  24. Serot, J. M., Bélné, M. C., Foliguet, B., and Faure, G. C. (2001) Choroid plexus and ageing, a morphometric and ultrastructural study. Eur. J. Neurosci. 14, 794–798.

    Article  PubMed  CAS  Google Scholar 

  25. Sturrock, R. R. (1988) An ultrastructural study of the choroid plexus of aged mice. Anat. Anz. 165, 379–385.

    PubMed  CAS  Google Scholar 

  26. Serot, J. M., Béné, M. C., Foliguet, B., and Faure, G. C. (2000) Morphological alterations of the choroid plexus in late-onset alzheimer’s disease. Acta Neuropathol. 99, 105–108.

    Article  PubMed  CAS  Google Scholar 

  27. Wen, G. Y., Wisniewski, H. M., and Kascsak, R. J. (1999) Biondi ring tangles in the choroid plexus of Alzheimer’s disease and normal aging brains, a quantitative study. Brain Res. 832, 40–46.

    Article  PubMed  CAS  Google Scholar 

  28. Shuangshoti, S. and Netsky, M. G. (1970) Human choroid plexus, morphologic and histochemical alterations with age. Am. J. Anat. 128, 73–96.

    Article  PubMed  CAS  Google Scholar 

  29. Ferrante, F. and Amenta, F. (1987) Enzyme histochemistry of the choroid plexus in old rats. Mech. Ageing Dev. 41, 65–72.

    Article  PubMed  CAS  Google Scholar 

  30. Cottrell, D. A., Blakely, E. L., Johnson, M. A., et al. (2001) Cytochrome oxi-dase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol. Aging 22, 265–272.

    Article  PubMed  CAS  Google Scholar 

  31. Kvitnitskaia-Ryzhova, T. I. and Shkapenko, A. L. (1992) A comparative ultracy tochemical and biochemical study of the ATPases of the choroid plexus in aging. Tsitologiia 34, 81–87.

    PubMed  Google Scholar 

  32. Preston, J. E. (1991) Age-related reduction in rat choroid plexus chloride efflux and CSF secretion rate. Soc. Neurosci. 25, P697–698.

    Google Scholar 

  33. May, C., Kaye, J. A., Atack, J. R., et al. (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40, 500–503.

    PubMed  CAS  Google Scholar 

  34. Miklossy, J., Kraftsik, R., Pillevuit, O., et al. (1998) Curly fiber and tangle-like inclusions in the ependyma and choroid plexus—a pathogenetic relationship with the cortical Alzheimer-type changes? J. Neuropathol. Exp. Neurol. 57, 1202–1212.

    Article  PubMed  CAS  Google Scholar 

  35. Jellinger K. 1976 Neuropathological aspects of dementias resulting from abrmal blood and cerebrospinal fluid dynamics. Acta Neurol. Belg. 76 83–102

    PubMed  CAS  Google Scholar 

  36. Serot J. M. Bene M. C. and Faure G. C. 1994 Comparative immuhis-tochemical characteristics of human choroid plexus in vascular and Alzheimer’s dementia. Hum. Pathol. 25 1185–1190

    Article  PubMed  CAS  Google Scholar 

  37. Serot, J. M., Christmann, D., Dubost, T., and Couturier, M. (1997) Cerebrospinal fluid transthyretin, aging and late onset Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 63, 506–508.

    PubMed  CAS  Google Scholar 

  38. Tohgi H. Abe T. Nakanishi M. et al. 1994 Concentrations of a-tocopherol and its quine derivative in cerebrospinal fluid from patients with vascular dementia of the Binswanger type and Alzheimer type dementia. Neurosci. Lett. 174 73–76

    Article  PubMed  CAS  Google Scholar 

  39. Schippling, S., Kontush, A., Arlt, S., et al. (2000) Increased lipoprotein oxidation in Alzheimer’s disease. Free Rad. Biol. Med. 28, 351–360.

    Article  PubMed  CAS  Google Scholar 

  40. Ikeda, T., Furukawa, Y., Mashimoto, S., et al. (1990) Vitamin B12 levels in serum and cerebrospinal fluid of people with Alzheimer’s disease. Acta Psychiatr. Scand. 82, 327–329.

    Article  PubMed  CAS  Google Scholar 

  41. Serot, J. M., Christmann, D., Dubost, T., et al. (2001) CSF-folate levels are decreased in late-onset AD patients. J. Neural Transm. 108, 93–99.

    Article  PubMed  CAS  Google Scholar 

  42. Selley, M. L., Close, D. R., and Stern, S. E. (2002) The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging 232, 383–388.

    Article  Google Scholar 

  43. Palm D. Knuckey N. Guglielmo M. et al. 1995 Choroid plexus electrolytes and ultrastructure following transient forebrain ischemia. Am. J. Physiol. 269 73–79

    Google Scholar 

  44. Gillardon, F., Lenz, C., Kuschinsky, W., and Zimmermann, M. (1996) Evidence for apoptotic cell death in the choroid plexus following focal cerebral ischemia. Neurosci. Lett. 29, 113–116.

    Article  Google Scholar 

  45. Ferrand-Drake M. and Wieloch T. 1999 The time-course of DNA fragmentation in the choroid plexus and the CA1 region following transient global ischemia in the rat brain. The effect of intra-ischemic hypothermia. Neuro-science 93 537–549

    CAS  Google Scholar 

  46. Palm, D. E., Knuckey, N. W., Primiano, M. J., et al. (1995) Cystatin C, a protease inhibitor, in degenerating rat hippocampal neurons following transient forebrain ischemia. Brain Res. 691, 1–8.

    Article  PubMed  CAS  Google Scholar 

  47. Scheepens A. Sirimanne E. S. Breier B. H. et al. 2001 Growth hormone as a neuronal rescue factor during recovery from CNS injury. Neuroscience 104 677–687

    Article  PubMed  CAS  Google Scholar 

  48. Knuckey, N. W., Finch, P., Palm, D. E., et al. (1996) Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Mol. Brain Res. 40, 1–14.

    PubMed  CAS  Google Scholar 

  49. Klempt N. D. Sirimanne E. Gunn A. J. et al. 1992 Hypoxia-ischemia induces transforming growth factor β1 mRNA in the infant rat brain. Mol. Brain Res. 13 93–101

    Article  PubMed  CAS  Google Scholar 

  50. Prehn, J. H. M., Bindokas, V. P., Marcuccilli, C. J., et al. (1994) Regulation of neuronal Bcl2 protein expression and calcium homeostasis by transforming growth factor type β confers wide-ranging protection on rat hippocampal neurons. Proc. Natl. Acad. Sci. USA 91, 12599–12603.

    Article  PubMed  CAS  Google Scholar 

  51. Henrich-Noack, P., Prehn, J. H. M., and Krieglstein, J. (1994) Neuroprotective effects of TGF-β1. J. Neural Transm. Suppl. 43, 33–45.

    PubMed  CAS  Google Scholar 

  52. Henrich-Noack, P., Prehn, J. H. M., and Krieglstein, J. (1996) TGF-β1 protects hippocampal neurons against degeneration caused by transient global ischemia. Dose-response relationship and potential neuroprotective mechanisms. Stroke 27, 1609–1614.

    PubMed  CAS  Google Scholar 

  53. Agnati, L. F., Zoli, M., Stromberg, I., and Fuxe, K. (1995) Intercellular communication in the brain, wiring versus volume transmission. Neuroscience 69, 711–726.

    Article  PubMed  CAS  Google Scholar 

  54. Ferguson I. A. Schweitzer J. B. Bartlett P. F. and Johnson E. M. Jr. 1991 Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors. J. Comp. Neurol. 313 680–692

    Article  PubMed  CAS  Google Scholar 

  55. Mufson E. J. Kroin J. S. Sendera T. J. and Sobreviela T. 1999 Distribution and retrograde transport of trophic factors in the central nervous system functional implications for the treatment of neurodegenerative diseases. Prog. Neurobiol. 57 451–484

    Article  PubMed  CAS  Google Scholar 

  56. Flanagan, T. R., Emerich, D. F., and Winn, S. R., eds. (1994) Providing Therapeutic Access to the Brain, New Approaches, Methods in Neuroscience, vol. 21, Academic Press, San Diego, CA.

    Google Scholar 

  57. Lasic, D. and Templeton, N. S., eds. (2000) Gene Therapy, Therapeutic Mechanisms and Strategies. Marcel Dekker, New York.

    Google Scholar 

  58. Borlongan, C. V., Elliott, R. B., Skinner, S. J. M., et al. Intraparenchymal grafts of rat choroid plexus protect against cerebral ischemia in adult rats. Neuro-Report, in press.

    Google Scholar 

  59. American Heart Association. (2002) Stroke Statistics.

    Google Scholar 

  60. Hoffer, B. and Olson, L. (1997) Treatment strategies for neurodegenerative diseases based on trophic factors and cell transplantation techniques. J. Neural Transm. Suppl. 49, 1–10.

    PubMed  CAS  Google Scholar 

  61. Wang Y. Chang C. F. Morales M. et al. 2002 Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann. NY Acad. Sci. 962 423–437

    Article  PubMed  CAS  Google Scholar 

  62. Lin, S. Z., Hoffer, B. J., Kaplan, P., and Wang, Y. (1999) Osteogenic protein-1 protects against cerebral infarction induced by MCA ligation in adult rats. Stroke 1, 126–133.

    Google Scholar 

  63. Johnston R. E. Dillon-Carter O. Freed W. J. and Borlongan C. V. 2001 Trophic factor secreting kidney cell lines in vitro characterization and functional effects following transplantation in ischemic rats. Brain Res. 900 268–276

    Article  PubMed  CAS  Google Scholar 

  64. Borlongan, C. V., Yamamoto, M., Takei, N., et al. (2000) Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB 14, 1307–1317.

    Article  CAS  Google Scholar 

  65. Cairnes, K. and Finklestein, S. P. (2003) Growth factors and stem cells as treatments for stroke recovery. Phys. Med. Rehabil. Clin. N. Am. Suppl, 135–142.

    Google Scholar 

  66. Ide, C., Kitada, M., Chakrabortty, S., et al. (2001) Grafting of choroid plexus ependymal cells promotes the growth of regenerating axons in the dorsal funiculus of rat spinal cord, a preliminary report. Exp. Neurol. 167, 242–251.

    Article  PubMed  CAS  Google Scholar 

  67. Kitada, M., Chakrabortty, S., Matsumoto, N., et al. (2001) Differentiation of choroid plexus ependymal cells into astrocytes after grafting into the pre-lesioned spinal cord in mice. Glia 36, 364–374.

    Article  PubMed  CAS  Google Scholar 

  68. Li Y. Chen J. and Chopp M. 2002 Cell proliferation and differentiation from ependymal subependymal and choroid plexus cells in response to stroke in rats. J. Neurol Sci. 193 137–46

    Article  PubMed  Google Scholar 

  69. Eglitis M. A. and Mezey E. 1997 Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94 4080–4085

    Article  PubMed  CAS  Google Scholar 

  70. Zhang, Z. G., Zhang, L., Jiang, Q., and Chopp, M. (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ. Res. 90, 284–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Borlongan, C.V., Skinner, S.J.M., Vasconcellos, A., Elliott, R.B., Emerich, D.F. (2006). The Choroid Plexus. In: Sanberg, C.D., Sanberg, P.R. (eds) Cell Therapy, Stem Cells, and Brain Repair. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-147-5_10

Download citation

Publish with us

Policies and ethics