Skip to main content

Evidence for a Multistep Model for Eukaryotic Polyamine Transport

  • Chapter
Polyamine Cell Signaling

Abstract

One of the most intriguing aspects of polyamine biology is the considerable diversity of their functions in the cell. The involvement of polyamines in such a multiplicity of parallel activities obviously requires mechanisms for the regulation of their concentrations in the various intracellular compartments. Much progress has been made in our understanding of polyamine homeostasis, and it is now clear that antizymes (AZ) are major players in regulating the size of cellular polyamine pools through the feedback inhibition exerted by these proteins on ornithine decarboxylase (ODC) activity and levels, and on polyamine uptake activity (1). However, our current view of how polyamines are distributed throughout the cytoplasm and nucleus after their synthesis is severely limited. The problem of polyamine microcompartmentalization is especially important in eukaryotic cells, where polyamines are expected to simultaneously act in the cytosol (e.g., in ribosomes), in close vicinity of the plasma membrane (e.g., ion channel gating), and in membrane-bound organelles (e.g., nucleus, mitochondria).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coffino, P. (2001) Regulation of cellular polyamines by antizyme. Nat. Rev. Mol. Cell. Biol. 2, 188–194.

    Article  PubMed  CAS  Google Scholar 

  2. Toninello, A., Salvi, M., and Mondovi, B. (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr. Med. Chem. 11, 2349–2374.

    PubMed  CAS  Google Scholar 

  3. Masuko, T., Kusama-Eguchi, K., Sakata, K., et al. (2003) Polyamine transport, accumulation, and release in brain. J. Neurochem. 84, 610–617.

    Article  PubMed  CAS  Google Scholar 

  4. Murai, N., Murakami, Y., and Matsufuji, S. (2003) Identification of nuclear export signals in antizyme-1. J. Biol. Chem. 278, 44,791–44,798.

    Article  PubMed  CAS  Google Scholar 

  5. Watanabe, S., Kusama-Eguchi, K., Kobayashi, H., and Igarashi, K. (1991) Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J. Biol. Chem. 266, 20,803–20,809.

    PubMed  CAS  Google Scholar 

  6. Kanamoto, R., Kameji, T., Iwashita, S., Igarashi, K., and Hayashi, S. (1993) Spermidineinduced destabilization of ornithine decarboxylase (ODC) is mediated by accumulation of antizyme in ODC-overproducing variant cells. J. Biol. Chem. 268, 9393–9399.

    PubMed  CAS  Google Scholar 

  7. Ignatenko, N. A. and Gerner, E. W. (1996) Growth arrest-and polyamine-dependent expression of spermidine/spermine N1-acetyltransferase in human tumor cells. Cell Growth Differ. 7, 481–486.

    PubMed  CAS  Google Scholar 

  8. Erwin, B. G. and Pegg, A. E. (1986) Regulation of spermidine/spermine N1-acetyltransferase in L6 cells by polyamines and related compounds. Biochem. J. 238, 581–587.

    PubMed  CAS  Google Scholar 

  9. Howard, M. T., Shirts, B. H., Zhou, J., et al. (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6, 931–941.

    Article  PubMed  CAS  Google Scholar 

  10. Mitchell, J. L., Leyser, A., Holtorff, M. S., et al. (2002) Antizyme induction by polyamine analogues as a factor of cell growth inhibition. Biochem. J. 366, 663–671.

    Article  PubMed  CAS  Google Scholar 

  11. Fogel-Petrovic, M., Vujcic, S., Brown, P. J., Haddox, M. K., and Porter, C. W. (1996) Effects of polyamines, polyamine analogs, and inhibitors of protein synthesis on spermidinespermine N1-acetyltransferase gene expression. Biochemistry 35, 14,436–14,444.

    Article  PubMed  CAS  Google Scholar 

  12. Hasne, M. P. and Ullman, B. (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J. Biol. Chem. 280, 15,188–15,194.

    CAS  Google Scholar 

  13. Seiler, N., Delcros, J. G., and Moulinoux, J. P. (1996) Polyamine transport in mammalian cells. An update. Int. J. Biochem. Cell. Biol. 28, 843–861.

    Article  PubMed  CAS  Google Scholar 

  14. Poulin, R., Kaouass, M., Soulet, D., Covassin, L., Robert, E., and Audette, M. (2002) Cellular permeability to polyamines. In: COST 917-Biogenically Active Amines in Food, vol. V (Morgan, D. L. M., Hirvi, T., Dandrifosse, G., Deloyer, P., and White, A., eds.), European Community Publications, Luxembourg City, Luxembourg, pp. 3–21.

    Google Scholar 

  15. Seiler, N. (2003) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives. Curr. Drug Targets 4, 565–585.

    Article  PubMed  CAS  Google Scholar 

  16. Lessard, M., Zhao, C., Singh, S. M., and Poulin, R. (1995) Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J. Biol. Chem. 270, 1685–1694.

    Article  PubMed  CAS  Google Scholar 

  17. Byers, T. L., Kameji, R., Rannels, D. E., and Pegg, A. E. (1987) Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines. Am. J. Physiol. 252, C663–C669.

    PubMed  CAS  Google Scholar 

  18. Ruchko, M., Gillespie, M. N., Weeks, R. S., Olson, J W., and Babal, P. (2003) Putrescine transport in hypoxic rat main PASMCs is required for p38 MAP kinase activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L179–L186.

    PubMed  CAS  Google Scholar 

  19. Nicolet, T. G., Scemama, J. L., Pradayrol, L., Seva, C., and Vaysse, N. (1990) Characterization of putrescine-and spermidine-transport systems of a rat pancreatic acinar tumoral cell line (AR4-2J). Biochem. J. 269, 629–632.

    PubMed  CAS  Google Scholar 

  20. Poulin, R., Zhao, C., Verma, S., Charest-Gaudreault, R., and Audette, M. (1998) Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: Identification of an amiloride binding site on the putrescine carrier. Biochem. J. 330, 1283–1291.

    PubMed  CAS  Google Scholar 

  21. Poulin, R., Lessard, M., and Zhao, C. (1995) Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells. J. Biol. Chem. 270, 1695–1704.

    Article  PubMed  CAS  Google Scholar 

  22. Pohjanpelto, P. (1976) Putrescine transport is greatly increased in human fibroblasts initiated to proliferate. J. Cell. Biol. 68, 512–520.

    Article  PubMed  CAS  Google Scholar 

  23. Torossian, K., Audette, M., and Poulin, R. (1996) Substrate protection against inactivation of the mammalian polyamine-transport system by 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide. Biochem. J. 319, 21–26.

    PubMed  CAS  Google Scholar 

  24. Li, Y., MacKerell, A. D., Jr., Egorin, M. J., et al. (1997) Comparative molecular field analysis-based predictive model of structure-function relationships of polyamine transport inhibitors in L1210 cells. Cancer Res. 57, 234–239.

    PubMed  CAS  Google Scholar 

  25. Cullis, P. M., Green, R. E., Merson-Davies, L., and Travis, N. (1999) Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem. Biol. 6, 717–729.

    Article  PubMed  CAS  Google Scholar 

  26. Soulet, D., Covassin, L., Kaouass, M., Charest-Gaudreault, R., Audette, M., and Poulin, R. (2002) Role of endocytosis in the internalization of spermidine-C2-BODIPY, a highly fluorescent probe of polyamine transport. Biochem. J. 367, 347–357.

    Article  PubMed  CAS  Google Scholar 

  27. Wang, C., Delcros, J. G., Biggerstaff, J., and Phanstiel, O.T. (2003) Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. J. Med. Chem. 46, 2672–2682.

    Article  PubMed  CAS  Google Scholar 

  28. Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E., and Gottesman, M. M. (2003) P-glycoprotein: From genomics to mechanism. Oncogene 22, 7468–7485.

    Article  PubMed  CAS  Google Scholar 

  29. Aziz, S. M., Yatin, M., Worthen, D. R., Lipke, D. W., and Crooks, P. A. (1998) A novel technique for visualizing the intracellular localization and distribution of transported polyamines in cultured pulmonary artery smooth muscle cells. J. Pharm. Biomed. Anal. 17, 307–320.

    Article  PubMed  CAS  Google Scholar 

  30. Newman, R. M., Mobascher, A., Mangold, U., et al. (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J. Biol. Chem. 279, 41,504–41,511.

    Article  PubMed  CAS  Google Scholar 

  31. Cohen, S. S. (1998) A Guide to the Polyamines. Oxford University Press, New York, NY.

    Google Scholar 

  32. Schipper, R. G., Penning, L. C., and Verhofstad, A. A. (2000) Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin. Cancer Biol. 10, 55–68.

    Article  PubMed  CAS  Google Scholar 

  33. Venkatachalam, K., van Rossum, D. B., Patterson, R. L., Ma, H. T., and Gill, D. L. (2002) The cellular and molecular basis of store-operated calcium entry. Nat. Cell. Biol. 4, E263–E272.

    Article  PubMed  CAS  Google Scholar 

  34. Hougaard, D. M. (1992) Polyamine cytochemistry: Localization and possible functions of polyamines. Int. Rev. Cytol. 138, 51–88.

    Article  PubMed  CAS  Google Scholar 

  35. Roch, A. M., Nicolas, M. T., and Quash, G. (1997) Ultrastructural immunolocalization of polyamines in HeLa cells subjected to fast-freezing fixation and freeze substitution. Histochem. Cell. Biol. 107, 303–312.

    Article  PubMed  CAS  Google Scholar 

  36. Fujiwara, K., Bai, G., and Kitagawa, T. (1997) Polyamine-like immunoreactivity in rat neurons. Brain Res. 767, 166–171.

    Article  PubMed  CAS  Google Scholar 

  37. Delcros, J.-G., Loeuillet, L., Chamaillard, L., et al. (1997) Flow cytometric analysis of in vivo polyamine deprivation in Lewis lung carcinoma (3LL) cells using the monoclonal antibody SPM8-2. Cytometry 27, 255–261.

    Article  PubMed  CAS  Google Scholar 

  38. Schipper, R. G., Cuijpers, V. M., De Groot, L. H., Thio, M., and Verhofstad, A. A. (2004) Intracellular localization of ornithine decarboxylase and its regulatory protein, antizyme-1. J. Histochem. Cytochem. 52, 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, C., Delcros, J. G., Biggerstaff, J., and Phanstiel, O. T. (2003) Synthesis and biological evaluation of N1-(anthracen-9-ylmethyl)triamines as molecular recognition elements for the polyamine transporter. J. Med. Chem. 46, 2663–2671.

    Article  PubMed  CAS  Google Scholar 

  40. Soulet, D., Gagnon, B., Rivest, S., Audette, M., and Poulin, R. (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 279, 49,355–49,366.

    Article  PubMed  CAS  Google Scholar 

  41. Belting, M., Mani, K., Jönsson, M., et al. (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells. A pivotal role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 278, 47,181–47,189.

    Article  PubMed  CAS  Google Scholar 

  42. Gruenheid, S., Canonne-Hergaux, F., Gauthier, S., Hackam, D. J., Grinstein, S., and Gros, P. (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J. Exp. Med. 189, 831–841.

    Article  PubMed  CAS  Google Scholar 

  43. Gasnier, B. (2000) The loading of neurotransmitters into synaptic vesicles. Biochimie 82, 327–337.

    Article  PubMed  CAS  Google Scholar 

  44. Roff, C. F., Fuchs, R., Mellman, I., and Robbins, A. R. (1986) Chinese hamster ovary cell mutants with temperature-sensitive defects in endocytosis. I. Loss of function on shifting to the nonpermissive temperature. J. Cell. Biol. 103, 2283–2297.

    Article  PubMed  CAS  Google Scholar 

  45. Ohashi, M., Miwako, I., Nakamura, K., et al. (1999) An arrested late endosome-lysosome intermediate aggregate observed in a Chinese hamster ovary cell mutant isolated by novel three-step screening. J. Cell. Sci. 112, 1125–1138.

    PubMed  CAS  Google Scholar 

  46. Ohashi, M., Miwako, I., Yamamoto, A., and Nagayama, K. (2000) Arrested maturing multivesicular endosomes observed in a Chinese hamster ovary cell mutant, LEX2, isolated by repeated flow-cytometric cell sorting. J. Cell. Sci. 113, 2187–2205.

    PubMed  CAS  Google Scholar 

  47. de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P., and Van Hoof, F. (1974) Commentary. Lysosomotropic agents. Biochem. Pharmacol. 23, 2495–2531.

    Article  PubMed  Google Scholar 

  48. Nichols, B. (2003) Caveosomes and endocytosis of lipid rafts. J. Cell. Sci. 116, 4707–4714.

    Article  PubMed  CAS  Google Scholar 

  49. Belting, M., Havsmark, B., Jönsson, M., Persson, S., and Fransson, L. A. (1996) Heparan sulphate/heparin glycosaminoglycans with strong affinity for the growth-promoter spermine have high antiproliferative activity. Glycobiology 6, 121–129.

    Article  PubMed  CAS  Google Scholar 

  50. Cohen, A. W., Hnasko, R., Schubert, W., Lisanti, M. P. (2004) Role of caveolae and caveolins in health and disease. Physiol. Rev. 84, 1341–1379.

    Article  PubMed  CAS  Google Scholar 

  51. Kerschbaum, H. H., Kozak, J. A., and Cahalan, M. D. (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys. J. 84, 2293–2305.

    PubMed  CAS  Google Scholar 

  52. Moseley, R. H., and Van Dyke, R. W. (1995) Organic cation transport by rat liver lysosomes. Am. J. Physiol. 268, G480–G486.

    PubMed  CAS  Google Scholar 

  53. Paasinen-Sohns, A., Kielosto, M., Kääriäinen, E., et al. (2000) c-Jun activation-dependent tumorigenic transformation induced paradoxically by overexpression or block of S-adenosylmethionine decarboxylase. J. Cell. Biol. 151, 801–810.

    Article  PubMed  CAS  Google Scholar 

  54. Williams, K. (1997) Interactions of polyamines with ion channels. Biochem. J. 325, 289–297.

    PubMed  CAS  Google Scholar 

  55. Liu, Y. and Edwards, R. H. (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu. Rev. Neurosci. 20, 125–156.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Poulin, R., Soulet, D., Gagnon, B., Rivest, S., Audette, M. (2006). Evidence for a Multistep Model for Eukaryotic Polyamine Transport. In: Wang, JY., Casero, R.A. (eds) Polyamine Cell Signaling. Humana Press. https://doi.org/10.1007/978-1-59745-145-1_24

Download citation

Publish with us

Policies and ethics