Skip to main content

Utility of Antifungal Susceptibility Testing and Clinical Correlations

  • Chapter
  • First Online:
Book cover Interactions of Yeasts, Moulds, and Antifungal Agents

Abstract

In this chapter, we review the available published data addressing the clinical relevance of antifungal susceptibility test results. By far the most data exist to support the clinical relevance of AFST results for Candida against fluconazole, and these data suggest that the clinical utility of this information mirrors that put forward for antibacterial susceptibility testing. Clinical relevance has also been demonstrated for selected other antifungal agents against Candida and Cryptococcus spp. By contrast, little direct support for the clinical utility of AFST for moulds is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clinical and Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, 3rd edn. M27-A3. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  2. Rodriguez-Tudela JL, Barchiesi F, Bille J et al (2003) Method for the determination of minimum inhibitory concentration by broth dilution of fermentative yeasts. Clin Microbiol Infect 9:1–8

    Article  Google Scholar 

  3. Clinical and Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards) (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved Standard 2nd edn. M38-A2. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  4. Rodriguez-Tudela JL, Donnelly JP, Arendrup MC et al (2008) EUCAST (European Committee for Antimicrobial Susceptibility Testing) technical note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect 14:982–984

    Article  Google Scholar 

  5. Clinical and Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards) (2004) Methods for antifungal disk diffusion susceptibility testing of yeasts: approved guideline, M44-A. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  6. Clinical and Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards) (2008) Method for antifungal disk diffusion susceptibility testing of filamentous fungi: proposed guideline. M51-P. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  7. Barry AL, Pfaller MA, Brown SD et al (2000) Quality control limits for broth microdilution susceptibility tests of ten antifungal agents. J Clin Microbiol 38:3457–3459

    PubMed  CAS  Google Scholar 

  8. Barry AL, Bille J, Brown S et al (2003) Quality control limits for fluconazole disk susceptibility tests on Mueller-Hinton agar with glucose and methylene blue. J Clin Microbiol 41:3410–3412

    Article  PubMed  CAS  Google Scholar 

  9. Krisher K, Brown SD, Traczewski MM (2004) Quality control parameters for broth microdilution tests of anidulafungin. J Clin Microbiol 42:490

    Article  PubMed  Google Scholar 

  10. Pfaller MA, Diekema DJ (2002) Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility. J Clin Microbiol 40:3551–3557

    Article  PubMed  CAS  Google Scholar 

  11. Pfaller MA, Messer SA, Boyken L et al (2002) In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods. Antimicrob Agents Chemother 46:3518–3521

    Article  PubMed  CAS  Google Scholar 

  12. Pfaller MA, Messer SA, Hollis RJ et al (2002) In vitro activities of ravuconazole and voriconazole compared with those of four approved systemic antifungal agents against 6,970 clinical isolates of Candida spp. Antimicrob Agents Chemother 46:1723–1727

    Article  PubMed  CAS  Google Scholar 

  13. Pfaller MA, Diekema DJ, Jones RN, The SENTRY Participants Group et al (2002) Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J Clin Microbiol 40:852–856

    Article  PubMed  CAS  Google Scholar 

  14. Pfaller MA, Messer SA, Boyken L et al (2003) Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location. J Clin Microbiol 41:2176–2179

    Article  PubMed  CAS  Google Scholar 

  15. Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431

    Article  PubMed  CAS  Google Scholar 

  16. Pfaller MA, Diekema DJ (2004) Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10(suppl 1):11–23

    Article  PubMed  CAS  Google Scholar 

  17. Pfaller MA, Messer SA, Boyken L et al (2004) Further standardization of broth microdilution methodology for in vitro susceptibility testing of caspofungin against Candida species by sue of an international collection of more than 3,000 clinical isolates. J Clin Microbiol 42:3117–3119

    Article  PubMed  CAS  Google Scholar 

  18. Pfaller MA, Hazen KC, Messer SA et al (2004) Comparison of results of fluconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS Global Antifungal Surveillance Program. J Clin Microbiol 42:3607–3612

    Article  PubMed  CAS  Google Scholar 

  19. Pfaller MA, Boyken L, Messer SA et al (2004) Evaluation of the Etest method using Mueller-Hinton agar with glucose and methylene blue for determining amphotericin B MICs for 4,936 clinical isolates of Candida species. J Clin Microbiol 42:4977–4979

    Article  PubMed  CAS  Google Scholar 

  20. Pfaller MA, Messer SA, Boyken L et al (2004) Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS Antifungal Surveillance Program conducted in 2001 and 2002. J Clin Microbiol 42:3142–3146

    Article  PubMed  CAS  Google Scholar 

  21. Pfaller MA, Messer SA, Boyken L, Hollis RJ et al (2004) In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn Microbiol Infect Dis 48:201–205

    Article  PubMed  CAS  Google Scholar 

  22. Pfaller MA, Boyken L, Hollis RJ et al (2005) In vitro susceptibilities of clinical isolates of Candida species, Cryptococcus neoformans, and Aspergillus species to itraconazole: global survey of 9,359 isolates tested by Clinical and Laboratory Standards Institute broth microdilution methods. J Clin Microbiol 43:3807–3810

    Article  PubMed  CAS  Google Scholar 

  23. Pfaller MA, Boyken L, Hollis RJ et al (2005) In vitro activities of anidulafungin against more than 2,500 clinical isolates of Candida spp., including 315 isolates resistant to fluconazole. J Clin Microbiol 43:5425–5427

    Article  PubMed  CAS  Google Scholar 

  24. Pfaller MA, Diekema DJ, Rinaldi MG, The Global Antifungal Surveillance Group et al (2005) Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. J Clin Microbiol 43:5848–5859

    Article  PubMed  CAS  Google Scholar 

  25. Pfaller MA, Boyken L, Messer SA et al (2005) Comparison of results of voriconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS Global Antifungal Surveillance Program. J Clin Microbiol 43:5208–5213

    Article  PubMed  CAS  Google Scholar 

  26. Pfaller MA, Boyken L, Hollis RJ et al (2006) In vitro susceptibilities of Candida spp. to caspofungin: four years of global surveillance. J Clin Microbiol 44:760–763

    Article  PubMed  CAS  Google Scholar 

  27. Pfaller MA, Diekema DJ, Rex JH et al (2006) Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol 44:819–826

    Article  PubMed  CAS  Google Scholar 

  28. Pfaller MA, Diekema DJ, Sheehan DJ (2006) Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin Microbiol Rev 19:435–447

    Article  PubMed  CAS  Google Scholar 

  29. Pfaller MA, Boyken L, Hollis RJ et al (2006) Global surveillance of the in vitro activity of micafungin against Candida: a comparison with caspofungin using Clinical and Laboratory Standards Institute recommended methods. J Clin Microbiol 44:3533–3538

    Article  PubMed  CAS  Google Scholar 

  30. Pfaller MA, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, Diekema DJ (2009) Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the U.S., 2001–2007. J Clin Microbiol 47:3185–3190

    Article  PubMed  CAS  Google Scholar 

  31. Pfaller MA, Diekema DJ, Ghannoum A et al (2009) Wild type MIC distribution and epidemiologic cutoff values for Aspergillus fumigatus and three triazoles as determined by the CLSI broth microdilution methods. J Clin Microbiol 47:3142–3146

    Article  PubMed  CAS  Google Scholar 

  32. Diekema DJ, Messer SA, Boyken LD, Hollis RJ, Kroeger J, Tendolkar S, Pfaller MA (2009) In vitro activity of seven systemically active antifungal agents against a large global collection of rare Candida species as determined by CLSI broth microdilution methods. J Clin Microbiol 47:3170–3177

    Article  PubMed  CAS  Google Scholar 

  33. Diekema DJ, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, Jones RN, Pfaller MA (2009) A global evaluation of voriconazole activity tested against recent clinical isolates of Candida spp. Diagn Microbiol Infect Dis 63:233–236

    Article  PubMed  CAS  Google Scholar 

  34. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L et al (2008) Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol 46:2620–2629

    Article  PubMed  CAS  Google Scholar 

  35. Pfaller MA, Messer SA, Bolmstrom A (1998) Evaluation of Etest for determining in vitro susceptibility of yeast isolates to amphotericin B. Diagn Microbiol Infect Dis 32:223–227

    Article  PubMed  CAS  Google Scholar 

  36. Espinel Ingroff A, Pfaller MA, Messer SA et al (2004) Multicenter comparison of the Sensititre YeastOne colorimetric antifungal panel with the NCCLS M27-A2 reference method for testing new antifungal agents against clinical isolates of Candida spp. J Clin Microbiol 42:718–721

    Article  PubMed  CAS  Google Scholar 

  37. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG (2007) Multicenter comparison of the VITEK 2 yeast susceptibility test with the CLSI broth microdilution reference method for testing fluconazole against Candida spp. J Clin Microbiol 45:796–802

    Article  PubMed  CAS  Google Scholar 

  38. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG (2007) Multicenter comparison of the VITEK 2 yeast susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol 45:3522–3528

    Article  PubMed  CAS  Google Scholar 

  39. Torres-Rodriguez JM, Alvarado-Ramirez E (2007) In vitro susceptibilities to yeasts using the ATB FUNGUS 2 method compared to Sensititre YeastOne and standard CLSI M27-A2 methods. J Antimicrob Chemother 60:658

    Article  PubMed  CAS  Google Scholar 

  40. Rex JH, Pfaller MA (2002) Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989

    Article  PubMed  CAS  Google Scholar 

  41. Rex JH, Pfaller MA, Galgiani JN et al (1997) Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro – in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin Infect Dis 24:235–247

    Article  PubMed  CAS  Google Scholar 

  42. Rex JH, Pfaller MA, Walsh TJ et al (2001) Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev 14:643–658

    Article  PubMed  CAS  Google Scholar 

  43. Andes D (2003) Clinical pharmacodynamics of antifungals. Infect Dis Clin N Am 17:635–649

    Article  Google Scholar 

  44. Andes D (2003) In vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob Agents Chemother 47:1179–1186

    Article  PubMed  CAS  Google Scholar 

  45. Andes D, Marchill K, Lawther J et al (2003) In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother 47:1187–1192

    Article  PubMed  CAS  Google Scholar 

  46. Voss A, de Pauw BE (1999) High-dose fluconazole therapy in patients with severe fungal infections. Eur J Clin Microbiol Infect Dis 18:165–174

    Article  PubMed  CAS  Google Scholar 

  47. Morrell M, Fraser VJ, Kollef MJ (2005) Delaying empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for mortality. Antimicrob Agents Chemother 49:3640

    Article  PubMed  CAS  Google Scholar 

  48. Garey KW, Rege M, Pai MP et al (2006) Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43:25

    Article  PubMed  CAS  Google Scholar 

  49. Collins CD, Eschenauer GA, Salo SL, Newton DW (2007) To test or not to test: a cost minimization analysis of susceptibility testing for patients with documented Candida glabrata fungemias. J Clin Microbiol 45:1884

    Article  PubMed  Google Scholar 

  50. Perkins MD, Sabuda DM, Elsayed S, Laupland KB (2007) Adequacy of empirical antifungal therapy and effect of outcome among patients with invasive Candida species infections. J Antimicrob Chemother 60:613

    Article  CAS  Google Scholar 

  51. Ostrosky-Zeichner L, Rex JH, Pfaller MA et al (2008) Rationale for reading fluconazole MICs at 24h rather than 48h when testing Candida spp. by the CLSI M27-A2 standard method. Antimicrob Agents Chemother 52:4175–4177

    Article  PubMed  CAS  Google Scholar 

  52. Pfaller MA, Boyken LB, Hollis RJ et al (2008) Validation of 24-hour fluconazole MIC readings versus the CLSI 48-hour broth microdilution reference method: results from a global Candida antifungal surveillance program. J Clin Microbiol 46:3585–3590

    Article  PubMed  CAS  Google Scholar 

  53. Pappas PG, Kauffman CA, Andes D et al (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535

    Article  PubMed  CAS  Google Scholar 

  54. Andes D, van Ogtrop M (1999) Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116–2120

    PubMed  CAS  Google Scholar 

  55. Louie A, Drusano GL, Banerjee P et al (1998) Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother 42:1105–1109

    PubMed  CAS  Google Scholar 

  56. Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D et al (2007) Correlation of the MIC and Dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. Antimicrob Agents Chemother 51:3599–3604

    Article  PubMed  CAS  Google Scholar 

  57. Cuesta I, Bielza C, Larranaga P et al (2009) Data mining validation of fluconazole breakpoints established by the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 53:2949–2954

    Article  PubMed  CAS  Google Scholar 

  58. Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D, The CLSI Subcommittee for Antifungal Susceptibility Testing (2010) Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 13:180–195

    Article  PubMed  CAS  Google Scholar 

  59. Ostrosky-Zeichner L, Oude Lashof AML, Kullberg BJ (2003) Voriconazole salvage treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis 22:651–655

    Article  PubMed  CAS  Google Scholar 

  60. Kartsonis NA, Saah A, Lipka CJ et al (2004) Second-line therapy with caspofungin for mucosal or invasive candidiasis: results from the caspofungin compassionate use study. J Antimicrob Chemother 53:878–881

    Article  PubMed  CAS  Google Scholar 

  61. Rodriguez-Tudela JL, Donnelly JP, Arendrup MC et al (2008) EUCAST technical note on voriconazole. Clin Microbiol Infect 14:985–987

    Article  Google Scholar 

  62. Pfaller MA, Andes D, Arendrup MC et al (2011) Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis 70:330–343

    Article  PubMed  CAS  Google Scholar 

  63. Park BJ, Arthington-Skaggs BA, Hajjeh RA et al (2006) Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother 50:1287–1292

    Article  PubMed  CAS  Google Scholar 

  64. Clancy CJ, Nguyen MH (1999) Correlation between in vitro susceptibility determined by Etest and response to therapy with amphotericin B: results from a multicenter prospective study of candidemia. Antimicrob Agents Chemother 43:1289–1290

    PubMed  CAS  Google Scholar 

  65. Gibbs WJ, Drew RH, Perfect JR (2005) Liposomal amphotericin B: clinical experience and perspectives. Expert Rev Anti Infect Ther 3:167–181

    Article  PubMed  CAS  Google Scholar 

  66. Krogh-Madsen M, Arendrup MC, Heslet L et al (2006) Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis 42:938–944

    Article  PubMed  CAS  Google Scholar 

  67. Law D, Moore CB, Denning DW (1997) Amphotericin B resistance testing of Candida spp.: a comparison of methods. J Antimicrob Chemother 40:109–112

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen MH, Clancy CJ, Yu VL et al (1998) So in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis 177:425–430

    Article  PubMed  CAS  Google Scholar 

  69. Nolte FS, Parkinson T, Falconer DJ et al (1997) Isolation and characterization of fluconazole- and amphotericin B-resistant Candida albicans from blood of two patients with leukemia. Antimicrob Agents Chemother 44:196–199

    Google Scholar 

  70. Sterling TR, Gasser RA, Ziegler A (1996) Emergence of resistance to amphotericin B during therapy for Candida glabrata infection in an immunocompetent host. Clin Infect Dis 23:187–188

    Article  PubMed  CAS  Google Scholar 

  71. Sterling T, Merz WG (1998) Resistance to amphotericin B: emerging clinical and microbiological patterns. Drug Resist Updat 1:161–165

    Article  PubMed  CAS  Google Scholar 

  72. Wanger A, Mills K, Nelson PW et al (1995) Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility ­testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother 39:2520–2522

    PubMed  CAS  Google Scholar 

  73. McClenny NB, Fei H, Baron EJ et al (2002) Change in colony morphology of Candida lusitaniae in association with development of amphotericin B resistance. Antimicrob Agents Chemother 46:1325–1328

    Article  PubMed  CAS  Google Scholar 

  74. O’Day M, Ray WA, Robinson RD et al (1987) Correlation of in vitro and in vivo susceptibility of Candida albicans to amphotericin B and natamycin. Investig Ophthalmol Vis Sci 29:596–603

    Google Scholar 

  75. Canton E, Peman J, Gobernado M et al (2004) Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 48:2477–2482

    Article  PubMed  CAS  Google Scholar 

  76. Spellberg BJ, Filler SG, Edwards JE Jr (2006) Current treatment strategies for disseminated candidiasis. Clin Infect Dis 42:244–251

    Article  PubMed  CAS  Google Scholar 

  77. Blignant E, Molepo J, Pujol C et al (2005) Clade-related amphotericin B resistance among South African Candida albicans isolates. Diagn Microbiol Infect Dis 53:29–31

    Article  CAS  Google Scholar 

  78. Hajjeh RA, Sofair AN, Harrison IH et al (2004) Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42:1519–1527

    Article  PubMed  Google Scholar 

  79. Kao AS, Brandt ME, Pruitt WR et al (1999) The epidemiology of candidemia n two United States cities: results of a population-based active surveillance. Clin Infect Dis 29:1164–1170

    Article  PubMed  CAS  Google Scholar 

  80. Yang YL, Li SY, Chang HH (2005) Susceptibilities to amphotericin B and fluconazole of Candida species in TSARY 2002. Diagn Microbiol Infect Dis 51:179–183

    Article  PubMed  CAS  Google Scholar 

  81. Favel A, Michel-Nguyen A, Datry A et al (2004) Susceptibility of clinical isolates of C. lusitaniae to five systemic antifungal agents. J Antimicrob Chemother 53:526–529

    Article  PubMed  CAS  Google Scholar 

  82. Hawkins JL, Baddour LM (2003) Candida lusitaniae infections in the era of fluconazole availability. Clin Infect Dis 36:e14–e18

    Article  PubMed  Google Scholar 

  83. Minari A, Hachem R, Raad I (2001) Candida lusitaniae: a cause of breakthrough fungemia in cancer patients. Clin Infect Dis 32:186–190

    Article  PubMed  CAS  Google Scholar 

  84. Peyron F, Favel A, Michel-Nguyen A et al (2001) Improved detection of amphotericin B-resistant isolates of Candida lusitaniae by Etest. J Clin Microbiol 39:339–342

    Article  PubMed  CAS  Google Scholar 

  85. Miller NS, Dick JD, Merz WG (2006) Phenotypic switching in Candida lusitaniae on copper sulfate indicator agar: association with amphotericin B resistance and filamentation. J Clin Microbiol 44:1536–1539

    Article  PubMed  CAS  Google Scholar 

  86. Yoon SA, Vazquez JA, Stefan PE et al (1999) High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob Agents Chemother 43:836–845

    PubMed  CAS  Google Scholar 

  87. Bartizal K, Odds FC (2003) Influences of methodological variables on susceptibility testing of caspofungin against Candida species and Aspergillus fumigatus. Antimicrob Agents Chemother 47:2100–2107

    Article  PubMed  CAS  Google Scholar 

  88. Odds FC, Motyl M, Andrade R et al (2004) Interlaboratory comparison of results of susceptibility testing with caspofungin against Candida and Aspergillus species. J Clin Microbiol 42:3475–3482

    Article  PubMed  CAS  Google Scholar 

  89. Park S, Kelly R, Kahn JN et al (2005) Specific substitutions in the echinocandins target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49:3264–3273

    Article  PubMed  CAS  Google Scholar 

  90. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer S, Tendolkar S, Jones RN, Turnidge J, Diekema DJ (2010) Wild-type MIC distributions and epidemiological cutoff values (ECVs) for the echinocandins and Candida spp. J Clin Microbiol 48(1):52–56

    Article  PubMed  CAS  Google Scholar 

  91. Chandrasekar PH, Sobel JD (2006) Micafungin: a new echinocandins. Clin Infect Dis 42:1171–1178

    Article  PubMed  CAS  Google Scholar 

  92. Colombo AL, Melo ASA, Rosas RFC et al (2003) Outbreak of Candida rugosa candidemia: an emerging pathogen that may be refractory to amphotericin B therapy. Diagn Microbiol Infect Dis 46:253–257

    Article  PubMed  Google Scholar 

  93. Colombo AL, Perect J, DiNubile M et al (2003) Global distribution and outcomes for Candida species causing invasive candidiasis: results from an international randomized double-blind study of caspofungin versus amphotericin B for the treatment of invasive candidiasis. Eur J Clin Microbiol Infect Dis 22:470–474

    Article  PubMed  CAS  Google Scholar 

  94. Glasmacher A, Cornely OA, Orlopps K et al (2006) Caspofungin treatment in severely ill, immunocompromised patients: a case-documentation study of 118 patients. J Antimicrob Chemother 57:127–134

    Article  PubMed  CAS  Google Scholar 

  95. Kartsonis N, Killar J, Mixson L et al (2005) Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother 49:3616–3623

    Article  PubMed  CAS  Google Scholar 

  96. Krause DS, Reinhardt J, Vazquez JA et al (2004) Phase, randomized dose-ranging study evaluating the safety and efficacy of anidulafungin in invasive candidiasis and candidemia. Antimicrob Agents Chemother 48:2021–2024

    Article  PubMed  CAS  Google Scholar 

  97. Mora-Duarte J, Betts R, Rotstein C et al (2002) Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347:2020–2029

    Article  PubMed  CAS  Google Scholar 

  98. Ostrosky-Zeichner L, Kontoyiannis D, Raffalii J et al (2005) International, open-label, noncomparative, clinical trial of micafungin alone and in combination for treatment of newly diagnosed and refractory candidemia. Eur J Clin Microbiol Infect Dis 24:654–661

    Article  PubMed  CAS  Google Scholar 

  99. Reboli AC, Rotstein C, Pappas PG et al (2007) Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 356:2472–2482

    Article  PubMed  CAS  Google Scholar 

  100. Pappas PG, Rotstein CM, Betts RF et al (2007) Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis 45:883–893

    Article  PubMed  CAS  Google Scholar 

  101. Cappelletty D, Eiselstein-McKitrick K (2007) The echinocandins. Pharmacotherapy 27(3):369

    Article  PubMed  CAS  Google Scholar 

  102. Perlin DS (2007) Resistance to echinocandins-class antifungal drugs. Drug Resist Updat 10:121

    Article  PubMed  CAS  Google Scholar 

  103. Baixench MT, Aoun N, Desnos-Ollivier M et al (2007) Acquired resistance to echinocandins in Candida albicans: case report and review. J Antimicrob Chemother 59:1076

    Article  PubMed  CAS  Google Scholar 

  104. Louie A, Deziel M, Liu W et al (2005) Pharmacodynamics of caspofungin in a murine model of systemic candidiasis: importance of persistence of caspofungin in tissues to understanding drug activity. Antimicrob Agents Chemother 49:5058–5068

    Article  PubMed  CAS  Google Scholar 

  105. Andes D, Diekema DJ, Pfaller MA et al (2008) In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:539–550

    Article  PubMed  CAS  Google Scholar 

  106. Andes D, Diekema DJ, Pfaller MA et al (2008) In vivo pharmacodynamic target investigation for micafungin against C. albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:3497–3503

    Article  PubMed  CAS  Google Scholar 

  107. Kuse ER, Chutchotisakd P, da Cunha CA et al (2007) Micafungin versus liposomal amphotericin B for candidemia and invasive candidiasis: a phase III randomized double-blind trial. Lancet 369:1519

    Article  PubMed  CAS  Google Scholar 

  108. Hernandez S, Lopez-Ribot JL, Najvor LK et al (2004) Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother 48:1382–1383

    Article  PubMed  CAS  Google Scholar 

  109. Dodgson KJ, Dodgson AR, Pujol C et al (2005) Caspofungin resistant C. glabrata. Clin Microbiol Infect 11(suppl 2):364

    Google Scholar 

  110. Moudgal V, Little T, Boikov D et al (2005) Multiechinocandin- and multiazole-resistant Candida parapsilosis isolates serially obtained during therapy for prosthetic valve endocarditis. Antimicrob Agents Chemother 49:767–769

    Article  PubMed  CAS  Google Scholar 

  111. Laverdiere M, Lalonde RG, Baril JG et al (2006) Progressive loss of echinocandins activity following prolonged use for treatment of Candida albicans oesophagitis. J Antimicrob Chemother 57:705–708

    Article  PubMed  CAS  Google Scholar 

  112. Thompson GR, Wiederhold NP, Vallor AC et al (2008) Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother 52:3783–3785

    Article  PubMed  CAS  Google Scholar 

  113. Garcia-Effron G, Kontoyiannis DP, Lewis RE, Perlin DS (2008) Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother 52:4181–4183

    Article  PubMed  CAS  Google Scholar 

  114. Garcia-Effron G, Park S, Perlin DS (2009) Correlating echinocandin MIC and kinetic inhibition of FKS1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 53:112–122

    Article  PubMed  CAS  Google Scholar 

  115. Garcia-Effron G, Lee S, Park S et al (2009) Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1, 3-beta-D glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 53:3690–3699

    Article  PubMed  CAS  Google Scholar 

  116. Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, Motyl M, Perlin D, The CLSI Subcommittee for Antifungal Testing (2011) Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 14:164–176

    Article  PubMed  CAS  Google Scholar 

  117. Denning DW, Radford SA, Oakley KL et al (1997) Correlation between in-vitro susceptibility testing to itraconazole and in-vivo outcome of Aspergillus fumigatus infection. J Antimicrob Chemother 40:401–414

    Article  PubMed  CAS  Google Scholar 

  118. Mosquera J, Warn PA, Morrissey J et al (2001) Susceptibility testing of Aspergillus flavus: inoculum dependence with itraconazole and lack of correlation between susceptibility to amphotericin B in vitro and outcome in vivo. Antimicrob Agents Chemother 45:1456–1462

    Article  PubMed  CAS  Google Scholar 

  119. Johnson EM, Oakley KL, Radford SA et al (2000) Lack of correlation of in vitro amphotericin B susceptibility testing with outcome in a murine model of Aspergillus infection. J Antimicrob Chemother 45:85–93

    Article  PubMed  CAS  Google Scholar 

  120. Lass-Florl C, Kofler G, Kropshofer G et al (1998) In-vitro testing of susceptibility to amphotericin B is a reliable predictor of clinical outcome in invasive aspergillosis. J Antimicrob Chemother 42:497–502

    Article  PubMed  CAS  Google Scholar 

  121. Steinbach WJ, Benjamin DK, Kontoyiannis DP et al (2004) Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin Infect Dis 39:192–198

    Article  PubMed  Google Scholar 

  122. Steinbach WJ, Perfect JR, Schell WA et al (2004) In vitro analyses, animal models, and 60 clinical cases of invasive Aspergillus terreus infection. Antimicrob Agents Chemother 48:3217–3225

    Article  PubMed  CAS  Google Scholar 

  123. Lionakis MS, Lewis RE, Chamilos G et al (2005) Aspergillus susceptibility testing in patients with cancer and invasive aspergillosis: difficulties in establishing correlation between in vitro susceptibility data and the outcome of initial amphotericin B therapy. Pharmacotherapy 25:1174–1180

    Article  PubMed  CAS  Google Scholar 

  124. Howard SJ, Cerar D, Anderson MJ et al (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 15:1068–1076

    Article  PubMed  CAS  Google Scholar 

  125. Denning DW, Vankateswarlu K, Oakley KL et al (1997) Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 41:1364–1368

    PubMed  CAS  Google Scholar 

  126. Verweij PE, Mellado E, Melchers WJG (2007) Multiple-triazole-resistant aspergillosis. N Engl J Med 356:1481

    Article  PubMed  CAS  Google Scholar 

  127. Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E et al (2008) Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 52:2468

    Article  PubMed  CAS  Google Scholar 

  128. Diekema DJ, Messer SA, Hollis RJ et al (2003) Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol 41:3623–3626

    Article  PubMed  CAS  Google Scholar 

  129. Greenberg RN, Mullane K, van Burik JA et al (2006) Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother 50:126–133

    Article  PubMed  CAS  Google Scholar 

  130. van Burik JAH, Hare RS, Solomon HF et al (2006) Posaconazole is effective as salvage therapy in zygomycosis: a retrospective summary of 91 cases. Clin Infect Dis 42:e61–e65

    Article  PubMed  Google Scholar 

  131. Jessup CJ, Pfaller MA, Messer SA et al (1998) Fluconazole susceptibility testing of Cryptococcus neoformans: comparison of two broth microdilution methods and clinical correlates among isolates from Ugandan AIDS patients. J Clin Microbiol 36:2874–2876

    PubMed  CAS  Google Scholar 

  132. Witt MD, Lewis RJ, Larsen RA et al (1996) Identification of patients with acute AIDS-associated cryptococcal meningitis who can be effectively treated with fluconazole: the role of antifungal susceptibility testing. Clin Infect Dis 22:322–328

    Article  PubMed  CAS  Google Scholar 

  133. Aller AL, Martin-Mazuelos E, Lozano F et al (2000) Correlation of fluconazole MICs with clinical outcome in cryptococcal infection. Antimicrob Agents Chemother 44:1544–1548

    Article  PubMed  CAS  Google Scholar 

  134. Dannaoui E, Abdul M, Michel-Nguyen A et al (2006) Results obtained with various antifungal susceptibility testing methods do not predict early clinical outcome in patients with cryptococcosis. Antimicrob Agents Chemother 50:2464–2470

    Article  PubMed  CAS  Google Scholar 

  135. Wheat LJ, Connolly P, Smedema M et al (2001) Emergence of resistance to fluconazole as a cause of failure during treatment of histoplasmosis in patients with acquired immunodeficiency syndrome. Clin Infect Dis 33:1910–1913

    Article  PubMed  CAS  Google Scholar 

  136. Walsh T, Annaissie EJ, Denning DW et al (2008) Treatment of Aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360

    Article  PubMed  CAS  Google Scholar 

  137. Chapman SW, Dismukes WE, Proia LA et al (2008) Clinical practice guidelines for the management of Blastomycosis: 2008 update by the Infectious Diseases Society of America. Clin Infect Dis 46:1801–1812

    Article  PubMed  CAS  Google Scholar 

  138. Galgiani JN, Ampel NM, Blair JE et al (2005) Coccidioidomycosis. Clin Infect Dis 41:1217–1223

    Article  PubMed  Google Scholar 

  139. Saag MS, Graybill RJ, Larsen RA et al (2000) Practice guidelines for the management of cryptococcal disease. Clin Infect Dis 30:710–718

    Article  PubMed  CAS  Google Scholar 

  140. Wheat LJ, Friefeld AG, Kleiman MB et al (2007) Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45:807–825

    Article  PubMed  Google Scholar 

  141. Kauffman C, Bustamante B, Chapman SW, Pappas PG (2007) Clinical practice guidelines for the management of patients with sporotrichosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 45:1255–1265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Diekema M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Diekema, D.J., Pfaller, M.A. (2012). Utility of Antifungal Susceptibility Testing and Clinical Correlations. In: Hall, G. (eds) Interactions of Yeasts, Moulds, and Antifungal Agents. Humana Press. https://doi.org/10.1007/978-1-59745-134-5_8

Download citation

Publish with us

Policies and ethics