Usual Susceptibility Patterns of Common Moulds and Systemic Fungi

  • Gerri S. Hall


The in vitro susceptibility patterns of some of the common moulds such as Aspergillus spp., Fusarium spp., and other hyaline moulds; Zygomycetes, and dematiaceous moulds such as Alternaria spp., Curvularia spp., Exophiala spp., and other black moulds are described in this chapter. For some isolates such as A. fumigatus and A. flavus results are fairly predictable, and isolates are often susceptible to all agents tested; others such as Fusarium sp. may demonstrate less predictable patterns that require that susceptibility be performed for each isolate of significance. In this chapter, we describe the most common susceptibility patterns as found in the published literature, including some geographic differences throughout various parts of the world where results have been reported.


Antifungal Agent High MICs Antifungal Susceptibility Testing Mucor Circinelloides Pseudallescheria Boydii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alastruey-Izquierdo A, Cuenca-Estrella M, Monzon A et al (2008) Antifungal susceptibility of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother 61:805–809PubMedCrossRefGoogle Scholar
  2. 2.
    Alastruey-Izquierdo A, Cuenca-Estrella M, Monzon A, Rodriguez-Tudela JL (2007) Prevalence and susceptibility of new species of Pseudallescheria and Scedosporium in a collection of clinical mould isolates. Antimicrob Agents Chemother 51:748–751PubMedCrossRefGoogle Scholar
  3. 3.
    Alastruey-Izquierdo A, Castelli MA, Cuesta I et al (2009) Activity of posaconazole and other antifungal agents against Mucorales strains identified by sequencing of internal transcribed spacers. Antimicrob Agents Chemother 53:1686–1689PubMedCrossRefGoogle Scholar
  4. 4.
    Almyroudis NG, Sutton DA, Fothergill AW et al (2007) In vitro susceptibilities of 217 isolates of zygomycetes to conventional and new antifungal agents. Antimicrob Agents Chemother 51:2587–2590PubMedCrossRefGoogle Scholar
  5. 5.
    Alvarez E, Garcia-Hermoso D, Sutton DA et al (2010) Molecular phylogeny and proposal of two new species of the emerging pathogenic fungus Saksenaea. J Clin Microbiol 48:4410–4416PubMedCrossRefGoogle Scholar
  6. 6.
    Boyce RD, Deziel PJ, Otley CC et al (2010) Phaeohyphomycosis due to Alternaria species in transplant recipients. Transpl Infect Dis 12:242–250PubMedCrossRefGoogle Scholar
  7. 7.
    Bueid A, Howard SJ, Moore CB et al (2010) Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother 65:2116–2118PubMedCrossRefGoogle Scholar
  8. 8.
    Castelli MV, Alastruey-Izquierdo A, Cuesta I et al (2008) Susceptibility testing and molecular classification of Paecilomyces spp. Antimicrob Agents Chemother 52:2926–2928PubMedCrossRefGoogle Scholar
  9. 9.
    CLSI document M38A-2 (2008a) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: approved standard, 2nd edn. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  10. 10.
    Cuenca-Estrella M, Alastruey-Izquierdo A, Alcazar-Fuoli L et al (2008) In vitro activities of 35 double combinations of antifungal agents against Scedosporium apiospermum and Scedosporium prolificans. Antimicrob Agents Chemother 52:1136–1139PubMedCrossRefGoogle Scholar
  11. 11.
    Cuenca-Estrella M, Gomez-Lopez A, Buitrago MJ et al (2006) In vitro activities of 10 combinations of antifungal agents against the multiresistant pathogen Scopulariopsis brevicaulis. Antimicrob Agents Chemother 50:2248–2250PubMedCrossRefGoogle Scholar
  12. 12.
    Cuenca-Estrella M, Gomez-Lopez A, Mellado E et al (2006) Head-to-head comparison of the activities of currently available antifungal agents against 3378 Spanish clinical isolates of yeasts and filamentous fungi. Antimicrob Agents Chemother 50:917–921PubMedCrossRefGoogle Scholar
  13. 13.
    Cuenca-Estrella M, Gomez-Lopez A, Mellado E et al (2009) Activity profile in vitro of micafungin against Spanish clinical isolates of common and emerging species of yeasts and molds. Antimicrob Agents Chemother 53:2192–2195PubMedCrossRefGoogle Scholar
  14. 14.
    Diekema DJ, Messer SA, Hollis RJ et al (2003) Activities of caspofungin, itraconazole, posaconazole, revuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol 41:3623–3626PubMedCrossRefGoogle Scholar
  15. 15.
    Espinel-Ingroff A, Boyle K, Sheehan DJ (2001) In vitro antifungal activities of voriconazole and reference agents as determined by NCCLS methods: review of the literature. Mycopathologia 150:101–115PubMedCrossRefGoogle Scholar
  16. 16.
    Espinel-Ingroff A, Johnson E, Hockey H, Troke P (2008) Activities of voriconazole, itraconazole and amphotericin B in vitro against 590 moulds from 323 patients in the voriconazole Phase III clinical studies. J Antimicrob Chemother 61:616–620PubMedCrossRefGoogle Scholar
  17. 17.
    Espinel-Ingroff A, Diekema DJ, Fothergill A et al (2010) Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 Document). J Clin Microbiol 48:3251–3257PubMedCrossRefGoogle Scholar
  18. 18.
    Fera MT, Lacamera E, DeSarro A (2009) New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev Anti Infect Ther 7:981–998PubMedCrossRefGoogle Scholar
  19. 19.
    Fothergill AW, Rinaldi MG, Sutton DA (2009) Antifungal susceptibility testing of Exophiala spp. a head-to-head comparison of amphotericin B, itraconazole, posaconazole, and voriconazole. Med Mycol 47:41–43PubMedCrossRefGoogle Scholar
  20. 20.
    Gilgado F, Serena C, Cano J et al (2006) Antifungal susceptibilities of the species of the Pseudallescheria boydii complex. Antimicrob Agents Chemother 50:4211–4213PubMedCrossRefGoogle Scholar
  21. 21.
    Gonzalez GM, Fothergill AW, Sutton DA et al (2005) In vitro activities of new and established triazoles against opportunistic filamentous and dimorphic fungi. Med Mycol 43:281–284PubMedCrossRefGoogle Scholar
  22. 22.
    Heyn K, Tredup A, Salvenmoser S et al (2005) Effect of voriconazole combined with micafungin against Candida, Aspergillus, and Scedosporium spp. and Fusarium solani. Antimicrob Agents Chemother 49:5157–5159PubMedCrossRefGoogle Scholar
  23. 23.
    Iqbal NJ, Boey A, Park BJ, Brandt ME (2008) Determination of in vitro susceptibility of ­ocular Fusarium spp. isolates from keratitis cases and comparison of Clinical and Laboratory Standards Institute M38-A2 and E test methods. Diagn Microbiol Infect Dis 62:348–350PubMedCrossRefGoogle Scholar
  24. 24.
    Lass-Florl C, Alastruey-Izquierdo A, Cuenca-Estrella M et al (2009) In vitro activities of various antifungal drugs against Aspergillus terreus: global assessment using the methodology of the European Committee on Antimicrobial Susceptibility testing. Antimicrob Agents Chemother 53:794–795PubMedCrossRefGoogle Scholar
  25. 25.
    Lewis RE, Wiederhold NP, Klepser ME (2005) In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp. Antimicrob Agents Chemother 49:945–951PubMedCrossRefGoogle Scholar
  26. 26.
    Linares MJ, Charriel G, Solis F et al (2005) Susceptibility of filamentous fungi to voriconazole tested by two microdilution methods. J Clin Microbiol 43:250–253PubMedCrossRefGoogle Scholar
  27. 27.
    Messer A, Moet GJ, Kirby JT et al (2009) Activity of contemporary antifungal agents, including the novel echinocandin, anidulafungin, tested against Candida spp., Cryptococcus spp., and Aspergillus spp.: report from the SENTRY antimicrobial surveillance program (2006 to 2007). J Clin Microbiol 47:1942–1946PubMedCrossRefGoogle Scholar
  28. 28.
    Perdomo H, Sutton DA, Garcia D et al (2011) Spectrum of clinically relevant Acremonium species in the United States. J Clin Microbiol 49:243–256PubMedCrossRefGoogle Scholar
  29. 29.
    Perkhofer S, Locher M, Cuenca-Estrella M et al (2008) Posaconazole enhances the activity of amphotericin B against hyphae of zygomycetes in vitro. Antimicrob Agents Chemother 52:2636–2638PubMedCrossRefGoogle Scholar
  30. 30.
    Pfaller MA, Boyken L, Hollis RJ et al (2009) In vitro susceptibility of clinical isolates of Aspergillus spp. to anidulafungin, caspofungin, and micafungin: a head-to-head comparison using the CLSI M38-A2 broth microdilution method. J Clin Microbiol 47:3323–3325PubMedCrossRefGoogle Scholar
  31. 31.
    Pfaller M, Boyken L, Hollis R et al (2011) Comparison of the broth microdilution methods of the European Committee on Antimicrobial Susceptibility Testing and the Clinical and Laboratory Standards Institute for testing itraconazole, posaconazole, and voriconazole against Aspergillus isolates. J Clin Microbiol 49:1110–1112PubMedCrossRefGoogle Scholar
  32. 32.
    Pfaller MA, Castanheira M, Messer SA (2011) Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY antimicrobial surveillance program (2009). Diagn Microbiol Infect Dis 69:45–50PubMedCrossRefGoogle Scholar
  33. 33.
    Pfaller MA, Messer SA, Boyken L et al (2008) In vitro survey of triazole cross-resistance among more than 700 clinical isolates of Aspergillus species. J Clin Microbiol 46:2568–2572PubMedCrossRefGoogle Scholar
  34. 34.
    Pfaller M, Boyken L, Hollis R et al (2011) Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Aspergillus species to the triazoles. J Clin Microbiol 49:586–590PubMedCrossRefGoogle Scholar
  35. 35.
    Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E et al (2008) Epidemiological cutoffs and cross-resistance to azole drugs in A. fumigatus. Antimicrob Agents Chemother 52:2468–2472PubMedCrossRefGoogle Scholar
  36. 36.
    Sun Y, Liu W, Wan Z et al (2011) Antifungal activity of antifungal drugs, as well as drug combinations against Exophiala dermatitidis. Mycopathologia 171:111–117PubMedCrossRefGoogle Scholar
  37. 37.
    Yu J, Li R, Zhang M et al (2008) In vitro interaction of terbinafine with itraconazole and amphotericin against fungi causing chromoblastomycosis in China. Med Mycol 46:745–747PubMedCrossRefGoogle Scholar
  38. 38.
    Yustes C, Guarro J (2005) In vitro synergistic interaction between amphotericin B and micafungin against Scedosporium spp. Antimicrob Agents Chemother 49:3498–3500PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Section of Clinical Microbiology, Department of Clinical PathologyCleveland ClinicClevelandUSA

Personalised recommendations