Skip to main content

Pharmacokinetics of Reverse Transcriptase Inhibitors

  • Chapter
Reverse Transcriptase Inhibitors in HIV/AIDS Therapy

Part of the book series: Infectious Disease ((ID))

Abstract

The nucleoside reverse transcriptase inhibitors (NRTIs) were the first class of compounds discovered to be potent inhibitors of HIV replication (1 and, to date, these drugs remain the backbone of antiretroviral therapy. NRTIs are essentially prodrugs, inactive in their parent form and requiring activation to exert their antiviral effects (2, 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitsuya H, Broder S. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides. Proc Natl Acad Sci USA 1986; 83: 1911–1915.

    Article  PubMed  CAS  Google Scholar 

  2. Arts EJ, Wainberg MA. Mechanisms of nucleoside analog antiviral activity and resistance during human immunodeficiency virus reverse transcription. Antimicrob Agents Chemother 1996; 40: 527–540.

    PubMed  CAS  Google Scholar 

  3. Squires KE. An introduction to nucleoside and nucleotide analogues. Antivir Ther 2001;6(Suppl3):1–14.

    PubMed  Google Scholar 

  4. Prasad VR, Goff SP. Structure-function studies of HIV reverse transcriptase. Ann NY Acad Sci 1990; 616: 11–21.

    Article  PubMed  CAS  Google Scholar 

  5. Chow SA, Vincent KA, Ellison V, Brown Po. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 1992; 255: 723–726.

    Article  PubMed  CAS  Google Scholar 

  6. St Clair MH, Richards CA, Spector T, et al. 3′-Azido-3′-deoxythymidine triphos-phate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob Agents Chemother 1987; 31: 1972–1977.

    PubMed  CAS  Google Scholar 

  7. Gao WY, Johns DG, Chokekuchai S, Mitsuya H. Disparate actions of hydroxy-urea in potentiation of purine and pyrimidine 2′,3′-dideoxynucleoside activities against replication of human immunodeficiency virus. Proc Natl Acad Sci USA 1995; 92: 8333–8337.

    Article  PubMed  CAS  Google Scholar 

  8. Lori F, Lisziewicz J. Mechanisms of human immunodeficiency virus type 1 inhibition by hydroxyurea. J Biol Regul Homeost Agents 1999; 13: 176–180.

    PubMed  CAS  Google Scholar 

  9. Lori F, Lisziewicz J. Hydroxyurea: mechanisms of HIV-1 inhibition. Antivir Ther 1998; 3(Suppl 4): 25–33.

    PubMed  CAS  Google Scholar 

  10. Gotte M, Wainberg MA. Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase. Drug Resist Updat 2000; 3: 30–38.

    Article  PubMed  CAS  Google Scholar 

  11. Stretcher BN, Pesce AJ, Murray JA, Hurtubise PE, Vine WH, Frame PT. Concentrations of phosphorylated zidovudine (ZDV) in patient leukocytes do not correlate with ZDV dose or plasma concentrations. Ther Drug Monit 1991; 13: 325–331.

    Article  PubMed  CAS  Google Scholar 

  12. Tornevik Y, Jacobsson B, Britton S, Eriksson S. Intracellular metabolism of 3′-azidothymidine in isolated human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 1991; 7: 751–759.

    Article  PubMed  CAS  Google Scholar 

  13. Ho HT, Hitchcock MJ. Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehy-drothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother 1989; 33: 844–849.

    PubMed  CAS  Google Scholar 

  14. Moore KH, Barrett JE, Shaw S, et al. The pharmacokinetics of lamivudine phos-phorylation in peripheral blood mononuclear cells from patients infected with HIV-1.AIDS 1999; 13: 2239–2250.

    Article  PubMed  CAS  Google Scholar 

  15. Klecker RW Jr, Collins JM, Yarchoan RC, et al. Pharmacokinetics of 2′, 3′-dideoxycytidine in patients with AIDS and related disorders. J Clin Pharmacol 1988; 28: 837–842.

    PubMed  Google Scholar 

  16. Yarchoan R, Perno CF, Thomas RV, et al. Phase I studies of 2′,3′-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet 1988; 1: 76–81.

    Article  PubMed  CAS  Google Scholar 

  17. Ahluwalia G, Cooney DA, Mitsuya H, et al. Initial studies on the cellular pharmacology of 2′,3′-dideoxyinosine, an inhibitor of HIV infectivity. Biochem Pharmacol 1987; 36: 3797–3800.

    Article  PubMed  CAS  Google Scholar 

  18. Hartman NR, Yarchoan R, Pluda JM, et al. Pharmacokinetics of 2′,3′-dideoxy-inosine in patients with severe human immunodeficiency infection. II. The effects of different oral formulations and the presence of other medications. Clin Pharmacol Ther 1991; 50: 278–285.

    Article  PubMed  CAS  Google Scholar 

  19. Daluge SM, Good SS, Faletto MB, et al. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother 1997; 41: 1082–1093.

    PubMed  CAS  Google Scholar 

  20. Kumar PN, Sweet DE, McDowell JA, et al. Safety and pharmacokinetics of aba-cavir (1592U89) following oral administration of escalating single doses in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Chemother 1999; 43: 603–608.

    PubMed  CAS  Google Scholar 

  21. Kewn S, Wang L, Hoggard P, et al. Enzymatic assay for measurement of intracel-lular DXG triphosphate concentrations in peripheral blood mononuclear cells from human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 2003; 47: 255–261.

    Article  PubMed  CAS  Google Scholar 

  22. Smith PF, Forrest A, Ballow CH, Martin DE, Proulx L. Absolute bioavailability and disposition of (-) and (+) 2′-deoxy-3′-oxa-4′-thiocytidine (doTC) following single intravenous and oral doses of racemic doTC in humans. Antimicrob Agents Chemother 2000; 44: 1609–1615.

    Article  PubMed  CAS  Google Scholar 

  23. de Muys JM, Gourdeau H, Nguyen-Ba N, et al. Anti-human immunodeficiency virus type 1 activity, intracellular metabolism, and pharmacokinetic evaluation of 2′-deoxy-3′-oxa-4′-thiocytidine. Antimicrob Agents Chemother 1999; 43: 1835–1844.

    PubMed  Google Scholar 

  24. Moore JD, Valette G, Darque A, Zhou XJ, Sommadossi JP. Simultaneous quanti-tation of the 5′-triphosphate metabolites of zidovudine, lamivudine, and stavudine in peripheral mononuclear blood cells of HIV infected patients by high-performance liquid chromatography tandem mass spectrometry. J Am Soc Mass Spectrom 2000; 11: 1134–1143.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez JF, Rodriguez JL, Santana J, Garcia H, Rosario o. Simultaneous quan-titation of intracellular zidovudine and lamivudine triphosphates in human immunodeficiency virus-infected individuals. Antimicrob Agents Chemother 2000; 44: 3097–3100.

    Article  PubMed  CAS  Google Scholar 

  26. Becher F, Schlemmer D, Pruvost A, et al. Development of a direct assay for measuring intracellular AZT triphosphate in humans peripheral blood mononuclear cells. Anal Chem 2002; 74: 4220–4227.

    Article  PubMed  CAS  Google Scholar 

  27. van Kampen JJA, Fraaij PLA, Hira V, et al. A new method for analysis of AZT-triphosphate and nucleotide-triphosphates. Biochem Biophys Res Commun 2004; 315: 151–159.

    Article  PubMed  CAS  Google Scholar 

  28. Pruvost A, Becher F, Bardouille P, et al. Direct determination of phosphorylated intracellular anabolites of stavudine (d4T) by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2001; 15: 1401–1408.

    Article  PubMed  CAS  Google Scholar 

  29. Becher F, Pruvost A, Goujard C, et al. Improved method for the simultaneous determination of d4T, 3TC and ddI intracellular phosphorylated anabolites in human peripheral-blood mononuclear cells using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrometry 2002; 16: 555–565.

    Article  CAS  Google Scholar 

  30. Robbins BL, Rodman J, McDonald C, Srinivas RV, Flynn PM, Fridland A. Enzymatic assay for measurement of zidovudine triphosphate in peripheral blood mononuclear cells. Antimicrob Agents Chemother 1994; 38: 115–121.

    PubMed  CAS  Google Scholar 

  31. Kewn S, Hoggard PG, Sales SD, et al. Development of enzymatic assays for quantification of intracellular lamivudine and carbovir triphosphate levels in peripheral blood mononuclear cells from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2002; 46: 135–143.

    Article  PubMed  CAS  Google Scholar 

  32. Barry M, Wild M, Veal G, et al. Zidovudine phosphorylation in HIV-infected patients and seronegative volunteers. AIDS 1994; 8: F1–5.

    Article  PubMed  CAS  Google Scholar 

  33. Solas C, Li YF, Xie MY, Sommadossi JP, Zhou XJ. Intracellular nucleotides of (-)-2′,3′-deoxy-3′-thiacytidine in peripheral blood mononuclear cells of a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1998; 42: 2989–2995.

    PubMed  CAS  Google Scholar 

  34. Kong XB, Zhu QY, Vidal PM, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmaco-kinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 1992; 36: 808–818.

    PubMed  CAS  Google Scholar 

  35. Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, Goody RS. The bottleneck in AZT activation. Nat Med 1997; 3: 922–924.

    Article  PubMed  CAS  Google Scholar 

  36. Balzarini J, Matthes E, Meeus P, Johns DG, De Clercq E. The antiretroviral and cytostatic activity, and metabolism of 3′-azido-2′,3′-dideoxythymidine, 3′-fluoro-2′,3′-dideoxythymidine and 2′,3′-dideoxycytidine are highly cell type-dependent. Adv Exp Med Biol 1989; 253B: 407–413.

    PubMed  CAS  Google Scholar 

  37. Barry MG, Khoo SH, Veal GJ, et al. The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS 1996; 10: 1361–1367.

    PubMed  CAS  Google Scholar 

  38. Anderson PL, Kakuda TN, Kawle S, Fletcher CV. Antiviral dynamics and sex differences of zidovudine and lamivudine triphosphate concentrations in HIV-infected individuals. AIDS 2003; 17: 2159–2168.

    Article  PubMed  CAS  Google Scholar 

  39. Fletcher CV, Kawle SP, Kakuda TN, et al. Zidovudine triphosphate and lamivudine triphosphate concentration-response relationships in HIV-infected persons. AIDS 2000; 14: 2137–2144.

    Article  PubMed  CAS  Google Scholar 

  40. Tornevik Y, Ullman B, Balzarini J, Wahren B, Eriksson S. Cytotoxicity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas anti-human immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol 1995; 49: 829–837.

    Article  PubMed  CAS  Google Scholar 

  41. August EM, Birks EM, Prusoff WH. 3′-Deoxythymidin-2′-ene permeation of human lymphocyte H9 cells by nonfacilitated diffusion. Mol Pharmacol 1991; 39: 246–249.

    PubMed  CAS  Google Scholar 

  42. Zhu Z, Ho HT, Hitchcock MJ, Sommadossi JP. Cellular pharmacology of 2′,3′-didehydro-2′,3′-dideoxythymidine (D4T) in human peripheral blood mononuclear cells. Biochem Pharmacol 1990; 39: R15–19.

    Article  PubMed  CAS  Google Scholar 

  43. Becher F, Landman R, Mboup S, et al. Monitoring of didanosine and stavudine intracellular triphosphorylated anabolite concentrations in HIV-infected patients. AIDS 2004; 18: 181–187.

    Article  PubMed  CAS  Google Scholar 

  44. Chang CN, Skalski V, Zhou JH, Cheng YC. Biochemical pharmacology of (+)-and (-2′,3′-dideoxy-3′-thiacytidine as anti-hepatitis B virus agents. J Biol Chem 1992; 267: 22,414–22,420.

    PubMed  CAS  Google Scholar 

  45. Rahn JJ, Kieller DM, Tyrrell DL, Gati WP. Modulation of the metabolism of beta-L-(-)-2′,3′-dideoxy-3′-thiacytidine by thymidine, fludarabine, and nitroben-zylthioinosine. Antimicrob Agents Chemother 1997; 41: 918–923.

    PubMed  CAS  Google Scholar 

  46. Kewn S, Veal GJ, Hoggard PG, Barry MG, Back DJ. Lamivudine (3TC) phos-phorylation and drug interactions in vitro. Biochem Pharmacol 1997; 54: 589–595.

    Article  PubMed  CAS  Google Scholar 

  47. Yuen GJ, Lou Y, Bumgarner NF, et al. Equivalent steady-state pharmacokinetics of lamivudine in plasma and lamivudine triphosphate within cells following administration of lamivudine at 300 milligrams once daily and 150 milligrams twice daily. Antimicrob Agents Chemother 2004; 48: 176–182.

    Article  PubMed  CAS  Google Scholar 

  48. Plagemann PG, Wohlhueter RM, Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta 1988; 947: 405–443.

    PubMed  CAS  Google Scholar 

  49. Ullman B, Coons T, Rockwell S, McCartan K. Genetic analysis of 2′,3′-dideoxy-cytidine incorporation into cultured human T lymphoblasts. J Biol Chem 1988; 263: 12,391–12,396.

    PubMed  CAS  Google Scholar 

  50. Cooney DA, Dalal M, Mitsuya H, et al. Initial studies on the cellular pharmacology of 2′,3-dideoxycytidine, an inhibitor of HTLV-III infectivity. Biochem Pharmacol 1986; 35: 2065–2068.

    Article  PubMed  CAS  Google Scholar 

  51. Gao WY, Agbaria R, Driscoll JS, Mitsuya H. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2′,3′-dideoxynucleoside analogs in resting and activated human cells. J Biol Chem 1994; 269: 12,633–12,638.

    PubMed  CAS  Google Scholar 

  52. Miller WH, Daluge SM, Garvey EP, et al. Phosphorylation of carbovir enan-tiomers by cellular enzymes determines the stereoselectivity of antiviral activity. JBiol Chem 1992; 267: 21,220–21,224.

    CAS  Google Scholar 

  53. Faletto MB, Miller WH, Garvey EP, St Clair MH, Daluge SM, Good SS. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89. Antimicrob Agents Chemother 1997; 41: 1099–1107.

    PubMed  CAS  Google Scholar 

  54. Harris M, Back D, Kewn S, Jutha S, Marina R, Montaner JSG. Intracellular carbovir triphosphate levels in patients taking abacavir once a day. AIDS 2002; 16: 1196–1197.

    Article  PubMed  Google Scholar 

  55. Piliero P. Pharmacokinetic properties of nucleoside/nucleotide reverse transcrip-tase inhibitors. J Acquir Immune Defic Sybndr 2004; 37 Suppl 1: S2–S12.

    Article  Google Scholar 

  56. Johnson MA, Fridland A. Phosphorylation of 2′,3′-dideoxyinosine by cytosolic 5′-nucleotidase of human lymphoid cells. Mol Pharmacol 1989; 36: 291–295.

    PubMed  CAS  Google Scholar 

  57. Nave JF, Eschbach A, Wolff-Kugel D, Halazy S, Balzarini J. Enzymatic phosphorylation and pyrophosphorylation of 2′,3′-dideoxyadenosine-5′-monophosphate, a key metabolite in the pathway for activation of the anti-HIV (human immunodeficiency virus) agent 2′,3′-dideoxyinosine. Biochem Pharmacol 1994; 48: 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  58. Rajagopalan P, Gao Z, Chu CK, Schinazi RF, McClure HM, Boudinot FD. High-performance liquid chromatographic determination of (-)-beta-D-2,6-diamino-purine dioxolane and its metabolite, dioxolane guanosine, using ultraviolet and on-line radiochemical detection. J Chromatogr B Biomed Appl 1995; 672: 119–124.

    Article  PubMed  CAS  Google Scholar 

  59. Gu Z, Wainberg MA, Nguyen-Ba N, et al. Mechanism of action and in vitro activity of 1′,3′-dioxolanylpurine nucleoside analogues against sensitive and drug-resistant human immunodeficiency virus type 1 variants. Antimicrob Agents Chemother 1999; 43: 2376–2382.

    PubMed  CAS  Google Scholar 

  60. Mewshaw JP, Myrick FT, Wakefield DA, et al. Dioxolane guanosine, the active form of the prodrug diaminopurine dioxolane, is a potent inhibitor of drug-resistant HIV-1 isolates from patients for whom standard nucleoside therapy fails. J Acquir Immune Defic Syndr 2002; 29: 11–20.

    PubMed  CAS  Google Scholar 

  61. Adams J, Sawyer J, Shiveley L. Intracellular SPD754 triphosphate pharmacokinet-ics following administration of SPD754 capsules [abstract 599]. 11th Conference on Retroviruses and opportunistic Infections; San Francisco, CA; 2004.

    Google Scholar 

  62. Molina J-M, Peytavin G, Perusat S, et al. Pharmacokinetics of emtricitabine, didanosine and efavirenz administered for the treatment of HIV-infected adults (pharmacokinetic substudy of the ANRS 091 trial). HIV Medicine 2004; 5: 99–104.

    Article  PubMed  CAS  Google Scholar 

  63. Suo Z, Johnson KA. Selective inhibition of HIV-1 reverse transcriptase by an antiviral inhibitor, (R)-9-(2-Phosphonylmethoxypropyl)adenine. J Biol Chem 1998; 273: 27,250–27,258.

    Article  PubMed  CAS  Google Scholar 

  64. Gallant JE, Deresinski S. Tenofovir disoproxil fumarate. Clin Infect Dis 2003; 37: 944–950.

    Article  PubMed  CAS  Google Scholar 

  65. Hawkins T, Veikley W, St Claire R, Guyer B, Clark N, Kearney BP. Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate, and lamivu-dine triphosphate in patients receiving triple-nucleoside regimens. A Acquir Immune Defic Syndr 2005; 39: 406–411.

    Article  CAS  Google Scholar 

  66. Aquaro S, Calio R, Balzarini J, Bellocchi MC, Garaci E, Perno CF. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res 2002; 55: 209–225.

    Article  PubMed  CAS  Google Scholar 

  67. Robbins BL, Srinivas RV, Kim C, Bischofberger N, Fridland A. Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclin nucleoside phosphonate 9-R-(2-phosphonomethoxypropyl)adenine (PMPA), bis (isopropyloxymethylcarbonyl) PMPA. Antimicrob Agents Chemother 1998; 42: 612–617.

    PubMed  CAS  Google Scholar 

  68. Gao Q, Gu Z, Parniak MA, et al. The same mutation that encodes low-level human immunodeficiency virus type 1 resistance to 2′,3′-dideoxyinosine and 2′, 3′-dideoxycytidine confers high-level resistance to the (-) enantiomer of 2′, 3′-dideoxy-3′-thiacytidine. Antimicrob Agents Chemother 1993; 37: 1390–1392.

    PubMed  CAS  Google Scholar 

  69. Stretcher BN, Pesce AJ. Intracellular monitoring of nucleoside analogues: a new frontier. Ann Clin Lab Sci 1991; 21: 340–342.

    PubMed  CAS  Google Scholar 

  70. Sommadossi JP. Pharmacological considerations in antiretroviral therapy. Antivir Ther 1998; 3:Suppl 4, 9–12.

    PubMed  CAS  Google Scholar 

  71. Peter K, Lalezari JP, Gambertoglio JG. Quantification of zidovudine and individual zidovudine phosphates in peripheral blood mononuclear cells by a combined isocratic high performance liquid chromatography radioimmunoassay method. JPharmBiomedAnal 1996; 14: 491–499.

    CAS  Google Scholar 

  72. Hoggard PG, Lloyd J, Khoo SH, et al. Zidovudine phosphorylation determined sequentially over 12 months in human immunodeficiency virus-infected patients with or without previous exposure to antiretroviral agents. Antimicrob Agents Chemother 2001; 45: 976–980.

    Article  PubMed  CAS  Google Scholar 

  73. Hoggard PG, Sales SD, Phiboonbanakit D, et al. Influence of prior exposure to zidovudine on stavudine phosphorylation in vivo and ex vivo. Antimicrob Agents Chemother 2001; 45: 577–582.

    Article  PubMed  CAS  Google Scholar 

  74. Hoggard P, Kewn S, Maherbe A, et al. for the CHARM Study Group. Time-dependent changes in HIV nucleoside analogue phosphorylation and the effect of hydroxyurea. AIDS 2002; 16: 2439–2446.

    Article  PubMed  CAS  Google Scholar 

  75. Fagny C, Vandevelde M, Svoboda M, Robberecht P. Ribonucleotide reductase and thymidine phosphorylation: two potential targets of azodicarbonamide. Biochem Pharmacol 2002; 64: 451–456.

    Article  PubMed  CAS  Google Scholar 

  76. Paton NI, Aboulhab J, Karim F. Hydroxychloroquine, hydroxycarbamide, and didanosine as economic treatment for HIV-1. Lancet 2002; 359: 1667–1668.

    Article  PubMed  CAS  Google Scholar 

  77. Bianchi V, Borella S, Calderazzo F, Ferraro P, Chieco Bianchi L, Reichard P. Inhibition of ribonucleotide reductase by 2′-substituted deoxycytidine analogs: possible application in AIDS treatment. Proc Natl Acad Sci USA 1994;91: 8403–8407.

    Article  PubMed  CAS  Google Scholar 

  78. Gao WY, Johns DG, Mitsuya H. Anti-human immunodeficiency virus type 1 activity of hydroxyurea in combination with 2′,3′-dideoxynucleosides. Mol Pharmacol 1994; 46: 767–772.

    PubMed  CAS  Google Scholar 

  79. Ahluwalia GS, Gao WY, Mitsuya H, Johns DG. 2′,3′-Didehydro-3′-deoxythymi-dine: regulation of its metabolic activation by modulators of thymidine-5′-triphos-phate biosynthesis. Mol Pharmacol 1996; 50: 160–165.

    PubMed  CAS  Google Scholar 

  80. Lori F, Lisziewicz J. Rationale for the use of hydroxyurea as an anti-human immunodeficiency virus drug. Clin Infect Dis 2000; 30(Suppl 2): S 193–197.

    CAS  Google Scholar 

  81. Deeks SG, Barditch-Crovo P, Collier A, et al. Hydroxyurea does not enhance the anti-HIV activity of low-dose tenofovir disoproxil fumarate. J Acquir Immune Defic Syndro 2001; 28: 336–339.

    CAS  Google Scholar 

  82. Giacca M, Borella S, Calderazzo F, et al. Synergistic antiviral action of ribonucleotide reductase inhibitors and 3′-azido-3′-deoxythymidine on HIV type 1 infection in vitro. AIDS Res Hum Retroviruses 1996; 12: 677–682.

    PubMed  CAS  Google Scholar 

  83. Palmer S, Cox S. Increased activation of the combination of 3′-azido-3′-deoxythymidine and 2′-deoxy-3′-thiacytidine in the presence of hydroxyurea. Antimicrob Agents Chemother 1997; 41: 460–464.

    PubMed  CAS  Google Scholar 

  84. Hellinger JA, Iwane MK, Smith JJ, et al. A randomized study of the safety and antiretroviral activity of hydroxyurea combined with didanosine in persons infected with human immunodeficiency virus type 1. American Foundation for AIDS Research Community-Based Clinical Trials Network. J Infect Dis 2000; 181: 540–547.

    Article  PubMed  CAS  Google Scholar 

  85. Rutschmann oT, Vernazza PL, Bucher HC, et al. Long-term hydroxyurea in combination with didanosine and stavudine for the treatment of HIV-1 infection. Swiss HIV Cohort Study. AIDS 2000; 14: 2145–2151.

    Article  PubMed  CAS  Google Scholar 

  86. Murphy R, Katlama C, Autran B. The effects of hydroxyurea or placebo combined with efavirenz, didanosine, and stavudine in treatment naive and experienced patients: preliminary 24 weeks from the 3d study [abstract WeorB603]. 13th International Conference on AIDS; Durban, South Africa; 2000.

    Google Scholar 

  87. Hamzeh F, Zhang H, Ussery M, et al. Changes in intracellular deoxynucleotide (dATP) in patients treated with hydroxyurea alone and in combination with dideoxyinosine [abstract 95]. 7th Conference on Retroviruses and opportunistic Infections; San Francisco, CA; 2000.

    Google Scholar 

  88. Streeter DG, Witkowski JT, Khare GP, et al. Mechanism of action of 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci USA 1973; 70: 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  89. Hartman NR, Ahluwalia GS, Cooney DA, et al. Inhibitors of IMP dehydrogenase stimulate the phosphorylation of the anti-human immunodeficiency virus nucleo-sides 2′,3′-dideoxyadenosine and 2′,3′-dideoxyinosine. Mol Pharmacol 1991; 40: 118–124.

    PubMed  CAS  Google Scholar 

  90. Baba M, Pauwels R, Balzarini J, Herdewijn P, De Clercq E, Desmyter J. Ribavirin antagonizes inhibitory effects of pyrimidine 2′,3′-dideoxynucleosides but enhances inhibitory effects of purine 2′,3′-dideoxynucleosides on replication of human immunodeficiency virus in vitro. Antimicrob Agents Chemother 1987; 31: 1613–1617.

    PubMed  CAS  Google Scholar 

  91. Ying C, De Clercq E, Neyts J. Ribavirin and mycophenolic acid potentiate the activity of guanine-and diaminopurine-based nucleoside analogues against hepatitis B virus. Antiviral Res 2000; 48: 117–124.

    Article  PubMed  CAS  Google Scholar 

  92. Sim SM, Hoggard PG, Sales SD, Phiboonbanakit D, Hart CA, Back DJ. Effect of ribavirin on zidovudine efficacy and toxicity in vitro: a concentration-dependent interaction. AIDS Res Hum Retroviruses 1998; 14: 1661–1667.

    PubMed  CAS  Google Scholar 

  93. Chung R, Andersen J, Volberding P, et al., and AIDS Clinical Trials Group A5071 Study Team. A randomized controlled trial of PEG-Interferon-alfa-2a plus ribavirin vs interferon-alfa-2a plus ribavirin for chronic hepatitis C virus infection in HIV-co-infected persons. Follow up results of ACTGA5071. [abstract 110]. 11th Conference on Retroviruses and opportunistic Infections; San Francisco, CA; 2004.

    Google Scholar 

  94. Torriani FJ, Rodriguez-Torres, Rockstroh JK, et al. Peginterferon Alfa-2a plus ribavirin for chronic hepatitis C virus infection in HIV-infected patients. N Engl J Med 2004; 351: 438–450.

    Article  PubMed  CAS  Google Scholar 

  95. Peronne C, Carrat F, Bani-Sadr F, et al., and ANRS HC02 RIBAVAC study group. Final results of ANRS HC02-RIBAVIC: A randomized controlled trial of pegy-lated-interferon-alfa-2b plus ribavirin vs interferon-alfa-2b plus ribavirin for the initial treatment of chronic hepatitis C in HIV co-infected patients. [abstract 117LB]. 11th Conference on Retroviruses and opportunistic Infections; San Francisco, CA; 2004.

    Google Scholar 

  96. Rodriguez-Torres M, Torriani FJ, Soriano V et al. Effect of ribavirin on intracel-lular and plasma pharmacokinetics of nucleoside reverse transcriptase inhibitors in patients with human immunodeficiency virus-hepatitis C virus coinfection: results of a randomized clinical study. Antimicrob Agents Chemother 2005; 49: 3997–4008.

    Article  PubMed  CAS  Google Scholar 

  97. Hennessy M, Mulcahy F, Spiers P, et al. Differential effects of combined pegy-lated interferon and ribavirin therapy on intracellular nucleotide triphosphate levels in HIV/HCV co-infected patients: a potential mechanism for enhanced toxicity [abstract 136LB]. 11th Conference on Retroviruses and opportunistic Infections; San Francisco, CA; 2004.

    Google Scholar 

  98. Lafeuillade A, Hittinger G, Chadapaud S. Increased mitochondrial toxicity with ribavirin in HIV/HCV coinfection. Lancet 2001; 357: 280–281.

    Article  PubMed  CAS  Google Scholar 

  99. Moreno A, Quereda C, Moreno L, et al. High rate of didanosine-related mitochondrial toxicity in HIV/HCV coinfected patients receiving ribavirin. Antiviral Ther 2004; 9: 133–138.

    CAS  Google Scholar 

  100. Allison AC, Kowalski WJ, Muller CD, Eugui EM. Mechanisms of action of mycophenolic acid. Ann NY Acad Sci 1993; 696: 63–87.

    Article  PubMed  CAS  Google Scholar 

  101. Heredia A, Margolis D, oldach D, Hazen R, Le N, Redfield R. Abacavir in combination with the inosine monophosphate dehydrogenase (IMPDH)-inhibitor mycophenolic acid is active against multidrug-resistant HIV-1. J Acquir Immune Defic Syndr 1999; 22: 406–407.

    PubMed  CAS  Google Scholar 

  102. Margolis D, Heredia A, Gaywee J, oldach D, Drusano G, Redfield R. Abacavir and mycophenolic acid, an inhibitor of inosine monophosphate dehydrogenase, have profound and synergistic anti-HIV activity. J Acquir Immune Defic Syndr 1999; 21: 362–370.

    Article  PubMed  CAS  Google Scholar 

  103. Chapuis AG, Paolo Rizzardi G, D’Agostino C, et al. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat Med 2000; 6: 762–768.

    Article  PubMed  CAS  Google Scholar 

  104. Hossain MM, Coull JJ, Drusano GL, Margolis DM. Dose proportional inhibition of HIV-1 replication by mycophenolic acid and synergistic inhibition in combination with abacavir, didanosine, and tenofovir. Antiviral Res 2002; 55: 41–52.

    Article  PubMed  CAS  Google Scholar 

  105. Margolis DM, Kewn S, Coull JJ, et al. The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. J Acquir Immune Defic Syndr 2002; 31: 45–49.

    PubMed  CAS  Google Scholar 

  106. Fridland A. Effect of methotrexate on deoxyribonucleotide pools and DNA synthesis in human lymphocytic cells. Cancer Res 1974; 34: 1883–1888.

    PubMed  CAS  Google Scholar 

  107. Kewn S, Hoggard PG, Sales SD, Johnson MA, Back DJ. The intracellular activation of lamivudine (3TC) and determination of 2′-deoxycytidine-5′-triphosphate (dCTP) pools in the presence and absence of various drugs in HepG2 cells. Br J Clin Pharmacol 2000; 50: 597–604.

    Article  PubMed  CAS  Google Scholar 

  108. Gandhi V, Plunkett W. Modulation of arabinosylnucleoside metabolism by arabi-nosylnucleotides in human leukemia cells. Cancer Res 1988; 48: 329–334.

    PubMed  CAS  Google Scholar 

  109. Dagnino L, Bennett LL Jr, Paterson AR. Substrate specificity, kinetics, and stoi-chiometry of sodium-dependent adenosine transport in L1210/AM mouse leukemia cells. J Biol Chem 1991; 266: 6312–6317.

    PubMed  CAS  Google Scholar 

  110. Zhen YS, Lui MS, Weber G. Effects of acivicin and dipyridamole on hepatoma 3924A cells. Cancer Res 1983; 43: 1616–1619.

    PubMed  CAS  Google Scholar 

  111. Betageri GV, Szebeni J, Hung K, et al. Effect of dipyridamole on transport and phosphorylation of thymidine and 3′-azido-3′-deoxythymidine in human mono-cyte/macrophages. Biochem Pharmacol 1990; 40: 867–870.

    Article  PubMed  CAS  Google Scholar 

  112. Szebeni J. (A new drug in a new role: dipyridamole in the treatment of HIV-1 infections?). orv Hetil 1991; 132: 1907–1912.

    PubMed  CAS  Google Scholar 

  113. Havlir DV, Tierney C, Friedland GH, et al. In vivo antagonism with zidovudine plus stavudine combination therapy. J Infect Dis 2000; 182: 321–325.

    Article  PubMed  CAS  Google Scholar 

  114. Hoggard PG, Sales SD, Kewn S, et al. Correlation between intracellular pharmacological activation of nucleoside analogues and HIV suppression in vitro. Antivir Chem Chemother 2000; 11: 353–358.

    PubMed  CAS  Google Scholar 

  115. Becher F, Pruvost AG, Schlemmer DD, et al. Significant levels of intracellular stavudine triphosphate are found in HIV-infected zidovudine-treated patients. AIDS 2003; 17: 555–561.

    Article  PubMed  CAS  Google Scholar 

  116. Melendez M, Blanco R, Rosario o, et al. Lack of evidence for the in vivo transformation of ZDV-TP to d4T-TP in HIV-infected subjects [abstract 597]. 11th Conference on Retroviruses and opportunistic Infections; San Francisco, CA; 2004.

    Google Scholar 

  117. Ray A, Myrick F, Vela JE, et al., Lack of a metabolic and antiviral drug interaction between tenofovir, abacavir and lamivudine. Antivir Ther 2005; 10: 451–457.

    PubMed  CAS  Google Scholar 

  118. Landman R, Peytavin G, Deschamps D, et al. and the ToNUS Study Group. Low genetic barrier to resistance is a possible cause of early virologic failures in once-daily regimen of abacavir, lamivudine and tenofovir: The ToNUS study. [abstract 52]. 11th Conference on Retroviruses and opportunistic Infections, San Francisco, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hoggard, P., Kewn, S., Khoo, S., Back, D. (2006). Pharmacokinetics of Reverse Transcriptase Inhibitors. In: St.Georgiev, V., Skowron, G., Ogden, R., Lange, J.M.A. (eds) Reverse Transcriptase Inhibitors in HIV/AIDS Therapy. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-085-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-085-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-649-8

  • Online ISBN: 978-1-59745-085-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics