Skip to main content

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

This chapter describes a number of genetic mouse models of syndromic and nonsyndromic mental retardation (MR), focusing primarily on X-linked retardation models: the fragile X model, involving the fragile site mental retardation 1 gene (FMR1) the FRAXE model, involving the fragile site mental retardation 2 gene (FMR2); the Coffin-Lowry syndrome model, involving ribosomal S6 kinase 2 (RSK2); models involving GDP dissociation inhibitor (GDI)-1 mutations; the Rett syndrome model, involving the methyl-CpG-binding protein 2 (MECP2); the lacking angiotensin receptor 2 (AGTR2) model; the corpus callosum hypoplasia, mental retardation, adducted thumbs, spastic paraplegia, and hydrocephalus (CRASH) syndrome model, involving mutations of the cell adhesion molecule, L1; and models involving mutations of rho guanine nucleotide exchange factor 6 (ARHGEF6). Autosomal dominant models include neurofibromatosis type 2 (NF1) and phenylketonuria (PAH). The phenotypes of experimentally altered mouse genes mostly include relatively moderate pleiotropic changes in neuroanatomy, electrophysiology, and behavioral test scores, the latterrarely matching the severity of the human phenotype. Interpretation is hampered by a general lack of understanding the causation of mental variation, and by neglecting species-specific peculiarities of mouse neuinvaluable tools for an empirical analytical approach deciphering the complex pathways between genotype and mental phenotype, chiefly because the developmental end point is, at least for nonsyndromic human MR, always severely impaired cognition. This is not the case for mouse models generated on the basis of theoretical expectations for memory and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association, 1994.

    Google Scholar 

  2. World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Criteria for Research. Geneva: World Health Organization, 2003.

    Google Scholar 

  3. Luckasson R, Borthwick-Duffy S, eds. AAMR-Mental Retardation Definition, Classification, and Systems of Support. Washington, DC: American Association on Mental Retardation, 2002.

    Google Scholar 

  4. McLaren J, Bryson SE. Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. Am J Ment Retard 1987;92:243–254.

    PubMed  CAS  Google Scholar 

  5. Menkes JH, Migeon BR. Biochemical and genetic aspects of mental retardation. Annu Rev Med 1966;17:407–430.

    Article  PubMed  CAS  Google Scholar 

  6. Neri G, Opitz JM. Sixty years of X-linked mental retardation: a historical footnote. Am J Med Genet 2000;97:228–233.

    Article  PubMed  CAS  Google Scholar 

  7. Lejeune J, Gautier M, Turpin R. Les chromosomes somatique des enfants mongoliens. C R Hebd Seances Acad Sci 1959;248:1721–1722.

    PubMed  CAS  Google Scholar 

  8. Kremer EJ, Pritchard M, Lynch M, et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991;252:1711–1714.

    Article  PubMed  CAS  Google Scholar 

  9. Verkerk AJ, Pieretti M, Sutcliffe JS, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991;65:905–914.

    Article  PubMed  CAS  Google Scholar 

  10. Scriver CR, Eisensmith RC, Woo SLC, Kaufman S. The hyperphenylalaninemias of man and mouse. Annu Rev Genet 1994;28:141–166.

    Article  PubMed  CAS  Google Scholar 

  11. Pruitt KD, Maglott DR. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 2001;29:137–140.

    Article  PubMed  CAS  Google Scholar 

  12. Plomin R. The genetics of g in human and mouse. Nat Rev Neurosci 2001;2:136–141.

    Article  PubMed  CAS  Google Scholar 

  13. Toniolo D, D’Adamo P. X-linked non-specific mental retardation. Curr Opin Genet Dev 2000;10:280–285.

    Article  PubMed  CAS  Google Scholar 

  14. O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 2002;25:315–338.

    Article  PubMed  CAS  Google Scholar 

  15. Turner G, Webb T, Wake S, Robinson H. Prevalence of fragile X syndrome. Am J Med Genet 1996;64:196–197.

    Article  PubMed  CAS  Google Scholar 

  16. Bakker CE, de Diego Otero Y, Bontekoe C, et al. Immunocytochemical and biochemical characterization of FMRP, FXR1P, and FXR2P in the mouse. Exp Cell Res 2000;258:162–170.

    Article  PubMed  CAS  Google Scholar 

  17. Ashley CT, Sutcliffe JS, Kunst CB, et al. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG-repeat. Nat Genet 1993;4:244–251.

    Article  PubMed  CAS  Google Scholar 

  18. Hergersberg M, Matsuo K, Gassmann M, et al. Tissue-specific expression of a FMR1/beta-galac-tosidase fusion gene in transgenic mice. Hum Mol Genet 1995;4:359–366.

    Article  PubMed  CAS  Google Scholar 

  19. Bontekoe CJ, Bakker CE, Nieuwenhuizen IM, et al. Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum Mol Genet 2001;10:1693–1699.

    Article  PubMed  CAS  Google Scholar 

  20. Bakker CE, Verheij C, Willemsen R, et al. Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994;78:23–33.

    Google Scholar 

  21. Kooy RF, D’Hooge R, Reyniers E, et al. Transgenic mouse model for the fragile X syndrome. Am J Med Genet 1996;64:241–245.

    Article  PubMed  CAS  Google Scholar 

  22. Slegtenhorst-Eegdeman KE, de Rooij DG, Verhoef-Post M, et al. Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development. Endocrinology 1998;139:156–162.

    Article  PubMed  CAS  Google Scholar 

  23. Beckel-Mitchener A, Greenough WT. Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. Ment Retard Dev Disabil Res Rev 2004;10:53–59.

    Article  PubMed  Google Scholar 

  24. Weiler IJ, Spangler CC, Klintsova AY, et al. Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci USA 2004;101:17,504–17,509.

    Article  PubMed  CAS  Google Scholar 

  25. Steward O, Bakker CE, Willems PJ, Oostra BA. No evidence for disruption of normal patterns of mRNA localization in dendrites or dendritic transport of recently synthesized mRNA in FMR1 knockout mice, a model for human fragile-X mental retardation syndrome. Neuroreport 1998;9:477–481.

    Article  PubMed  CAS  Google Scholar 

  26. Ivanco TL, Greenough WT. Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus 2002;12:47–54.

    Article  PubMed  Google Scholar 

  27. Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE. Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 2002;12:39–46.

    Article  PubMed  Google Scholar 

  28. Godfraind JM, Reyniers E, De Boulle K, et al. Long-term potentiation in the hippocampus of fragile X knockout mice. Am J Med Genet 1996;64:246–251.

    Article  PubMed  CAS  Google Scholar 

  29. Paradee W, Melikian HE, Rasmussen DL, Kenneson A, Conn PJ, Warren ST. Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 1999;94:185–192.

    Article  PubMed  CAS  Google Scholar 

  30. Li J, Pelletier MR, Perez Velazquez JL, Carlen PL. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 2002;19:138–151.

    Article  PubMed  CAS  Google Scholar 

  31. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002;99:7746–7750.

    Article  PubMed  CAS  Google Scholar 

  32. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 2001;27:327–331.

    Article  PubMed  CAS  Google Scholar 

  33. Incorpora G, Sorge G, Sorge A, Pavone L. Epilepsy in fragile X syndrome. Brain Dev 2002;24:766–769.

    Article  PubMed  Google Scholar 

  34. Nielsen DM, Derber WJ, McClellan DA, Crnic LS. Alterations in the auditory startle response in Fmr1 targeted mutant mouse models of fragile X syndrome. Brain Res 2002;927:8–17.

    Article  PubMed  CAS  Google Scholar 

  35. Chen L, Toth M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 2001;103:1043–1050.

    Article  PubMed  CAS  Google Scholar 

  36. Frankland PW, Wang Y, Rosner B, et al. Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 2004;9:417–425.

    Article  PubMed  CAS  Google Scholar 

  37. Musumeci SA, Bosco P, Calabrese G, et al. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 2000;41:19–23.

    Article  PubMed  CAS  Google Scholar 

  38. Todd PK, Mack KJ. Sensory stimulation increases cortical expression of the fragile X mental retardation protein in vivo. Brain Res Mol Brain Res 2000;80:17–25.

    Article  PubMed  CAS  Google Scholar 

  39. Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R, Nelson DL. (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet 2000;9:1145–1159.

    Article  PubMed  CAS  Google Scholar 

  40. Qin M, Kang J, Smith CB. Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002;99:15,758–15,763.

    Article  PubMed  CAS  Google Scholar 

  41. Dobkin C, Rabe A, Dumas R, El Idrissi A, Haubenstock H, Brown WT. Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 2000;100:423–429.

    Article  PubMed  CAS  Google Scholar 

  42. Van Dam D, D’Hooge R, Hauben E, et al. Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav Brain Res 2000;117:127–136.

    Article  PubMed  Google Scholar 

  43. D’Hooge R, Nagels G, Franck F, et al. Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 1997;76:367–376.

    Article  PubMed  CAS  Google Scholar 

  44. Fisch GS, Hao HK, Bakker C, Oostra BA. Learning and memory in the FMR1 knockout mouse. Am J Med Genet 1999;84:277–282.

    Article  PubMed  CAS  Google Scholar 

  45. Mientjes EJ, Willemsen R, Kirkpatrick LL, et al. Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo. Hum Mol Genet 2004;13:1291–1302.

    Article  PubMed  CAS  Google Scholar 

  46. Bontekoe CJ, McIlwain KL, Nieuwenhuizen IM, et al. Knockout mouse model for Fxr2: a model for mental retardation. Hum Mol Genet 2002; 11:487–498.

    Article  PubMed  CAS  Google Scholar 

  47. Knight SJ, Flannery AV, Hirst MC, et al. Trinucleotide repeat amplification and hypermethylation of a CpG island in FRAXE mental retardation. Cell 1993;74:127–134.

    Article  PubMed  CAS  Google Scholar 

  48. Gu Y, Nelson DL. FMR2 function: insight from a mouse knockout model. Cytogenet Genome Res 2003;100:129–139.

    Article  PubMed  CAS  Google Scholar 

  49. Gecz J. The FMR2 gene, FRAXE and non-specific X-linked mental retardation: clinical and molecular aspects. Ann Hum Genet 2000;64:95–106.

    Article  PubMed  CAS  Google Scholar 

  50. Hillman MA, Gecz J. Fragile XE-associated familial mental retardation protein 2 (FMR2) acts as a potent transcription activator. J Hum Genet 2001;46:251–259.

    Article  PubMed  CAS  Google Scholar 

  51. Chakrabarti L, Bristulf J, Foss GS, Davies KE. Expression of the murine homologue of FMR2in mouse brain and during development. Hum Mol Genet 1998;7:441–448.

    Article  PubMed  CAS  Google Scholar 

  52. Gu Y, McIlwain KL, Weeber EJ, et al. Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. J Neurosci 2002;22:2753–2763.

    PubMed  CAS  Google Scholar 

  53. Hanauer A, Young ID. Coffin-Lowry syndrome: clinical and molecular features. J Med Genet 2002;39:705–713.

    Article  PubMed  CAS  Google Scholar 

  54. Jacquot S, Zeniou M, Touraine R, Hanauer A. X-linked Coffin-Lowry syndrome (CLS, MIM 303600, RPS6KA3 gene, protein product known under various names: pp90(rsk2), RSK2, ISPK, MAPKAP1). Eur J Hum Genet 2002;10:2–5.

    Article  PubMed  CAS  Google Scholar 

  55. Trivier E, De Cesare D, Jacquot S, et al. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 1996;384:567–570.

    Article  PubMed  CAS  Google Scholar 

  56. Delaunoy J, Abidi F, Zeniou M, et al. Mutations in the X-linked RSK2 gene (RPS6KA3) in patients with Coffin-Lowry syndrome. Hum Mutat 2001;17:103–116.

    Article  PubMed  CAS  Google Scholar 

  57. Zeniou M, Ding T, Trivier E, Hanauer A. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum Mol Genet 2002;11:2929–2940.

    Article  PubMed  CAS  Google Scholar 

  58. Dufresne SD, Bjorbaek C, El-Haschimi K, et al. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol Cell Biol 2001;21:81–87.

    Article  PubMed  CAS  Google Scholar 

  59. El-Haschimi K, Dufresne SD, Hirshman MF, Flier JS, Goodyear LJ, Bjorbaek C. Insulin resistance and lipodystrophy in mice lacking ribosomal S6 kinase 2. Diabetes 2003;52:1340–1346.

    Article  PubMed  CAS  Google Scholar 

  60. Jacquot S, Zeniou M, Usiello A, et al. Behavior analysis of RSK2 deficient mice: an animal model for the cognitive impairment in the Coffin-Lowry syndrome. Forum European Neuroscience. Paris, 2002 (Abstract).

    Google Scholar 

  61. Putz G, Bertolucci F, Raabe T, Zars T, Heisenberg M. The S6KII (rsk) Gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci 2004;24:9745–9751.

    Article  PubMed  CAS  Google Scholar 

  62. D’Adamo P, Menegon A, LoNigro C, et al. Mutations in GDI1 are responsible for X-linked nonspecific mental retardation. Nat Genet 1998;19:134–139.

    Article  PubMed  CAS  Google Scholar 

  63. Novick P, Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 1997;9:496–504.

    Article  PubMed  CAS  Google Scholar 

  64. Ishizaki H, Miyoshi J, Kamiya H, et al. Role of Rab GDP dissociation inhibitor alpha in regulating plasticity of hippocampal neurotransmission. Proc Natl Acad Sci USA 2000;97:11,587–11,592.

    Article  PubMed  CAS  Google Scholar 

  65. D’Adamo P, Welzl H, Papadimitriou S, et al. Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet 2002;11:2567–2580.

    Article  PubMed  CAS  Google Scholar 

  66. Umbricht D, Vyssotky D, Latanov A, et al. Midlatency auditory event-related potentials in mice: comparison to midlatency auditory ERPs in humans. Brain Res 2004; 1019:189–200.

    Article  PubMed  CAS  Google Scholar 

  67. D’Adamo P, Meskenaite V, Ziegler U, Wolfer DP, Toniolo D, Lipp H-P. Tracking the roots of human mental retardation: cognitive impairments in Gdi1 knockout mice are associated with anomalous synaptic vesicles. In: Society for Neuroscience, 33rd Annual Meeting, 2003; New Orleans, LA (Abstract).

    Google Scholar 

  68. D’Adamo P, Wolfer DP, Kopp C, Tobler I, Toniolo D, Lipp HP. Mice deficient for the synaptic vesicle protein Rab3a show impaired spatial reversal learning and increased explorative activity but none of the behavioral changes shown by mice deficient for the Rab3a regulator Gdi1. Eur J Neurosci 2004;19:1895–1905.

    Article  PubMed  Google Scholar 

  69. Shahbazian MD, Zoghbi HY. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet 2002;71:1259–1272.

    Article  PubMed  CAS  Google Scholar 

  70. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 2001;27:322–326.

    Article  PubMed  CAS  Google Scholar 

  71. Shahbazian M, Young J, Yuva-Paylor L, et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 2002;35:243–254.

    Article  PubMed  CAS  Google Scholar 

  72. Luikenhuis S, Giacometti E, Beard C, Jaenisch R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci USA 2004;101:6033–6038.

    Article  PubMed  CAS  Google Scholar 

  73. Collins AL, Levenson JM, Vilaythong AP, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet 2004;13:2679–2689.

    Article  PubMed  CAS  Google Scholar 

  74. Young J, Zoghbi H. X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of rett syndrome. Am J Hum Genet 2004;74:511–520.

    Article  PubMed  CAS  Google Scholar 

  75. Bienvenu TP, oirier K, Van Esch H, et al. Rare polymorphic variants of the AGTR2 gene in boys with non-specific mental retardation. J Med Genet 2003;40:357–359.

    Article  PubMed  CAS  Google Scholar 

  76. Vervoort VS, Beachem MA, Edwards PS, et al. AGTR2 mutations in X-linked mental retardation. Science 2002;296:2401–2403.

    PubMed  CAS  Google Scholar 

  77. Ylisaukko-oja T, Rehnstrom K, Vanhala R, Tengstrom C, Lahdetie J, Jarvela I. Identification of two AGTR2 mutations in male patients with non-syndromic mental retardation. Hum Genet 2004;114:211–213.

    Article  PubMed  Google Scholar 

  78. Erdmann J, Dahmlow S, Guse M, Hetzer R, Regitz-Zagrosek V. The assertion that a G21V mutation in AGTR2 causes mental retardation is not supported by other studies. Hum Genet 2004;114:396; author reply,pp 397.

    Article  PubMed  Google Scholar 

  79. Hein L, Dzau VJ, Barsh GS. Linkage mapping of the angiotensin AT2 receptor gene (Agtr2) to the mouse X chromosome. Genomics1995;30:369–371.

    Article  PubMed  CAS  Google Scholar 

  80. Ichiki T, Labosky PA, Shiota C, et al.Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 1995;377:748–750.

    Article  PubMed  CAS  Google Scholar 

  81. Okuyama S, Sakagawa T, Chaki S, Imagawa Y, Ichiki T, Inagami T. Anxiety-like behavior in mice lacking the angiotensin II type-2 receptor. Brain Res 1999;821:150–159.

    Article  PubMed  CAS  Google Scholar 

  82. Sakagawa T, Okuyama S, Kawashima N, et al. Pain threshold, learning and formation of brain edema in mice lacking the angiotensin II type 2 receptor. Life Sci 2000;67:2577–2585.

    Article  PubMed  CAS  Google Scholar 

  83. Fransen E, Van Camp G, Vits L, Willems PJ. L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Hum Mol Genet 1997;6:1625–1632.

    Article  PubMed  CAS  Google Scholar 

  84. BrĂ¼mmendorf T, Kenwrick S, Rathjen FG. Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr Opin Neurobiol 1998;8:87–97.

    Article  PubMed  Google Scholar 

  85. Welzl H, Stork O. Cell adhesion molecules: key players in memory consolidation? News Physiol Sci2003;18:147–150.

    PubMed  CAS  Google Scholar 

  86. Miller PD, Chung WW, Lagenaur CF, DeKosky ST. Regional distribution of neural cell adhesion molecule (N-CAM) and L1 in human and rodent hippocampus. J Comp Neurol 1993; 327:341–349.

    Article  PubMed  CAS  Google Scholar 

  87. Cohen NR, Taylor JS, Scott LB, Guillery RW, Soriano P, Furley AJ.Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 1998;8:26–33.

    Article  PubMed  CAS  Google Scholar 

  88. Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 1997;17:346–349.

    Article  PubMed  CAS  Google Scholar 

  89. Demyanenko GP, Tsai AY, Maness PF. Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999;19: 4907–4920.

    PubMed  CAS  Google Scholar 

  90. Rolf B, Kutsche M, Bartsch U. Severe hydrocephalus in L1-deficient mice. Brain Res 2001;891:247–252.

    Article  PubMed  CAS  Google Scholar 

  91. Wiencken-Barger AE, Mavity-Hudson J, Bartsch U, Schachner M, Casagrande VA. The role of L1 in axon pathfinding and fasciculation. Cereb Cortex2004;14:121–131.

    Article  PubMed  CAS  Google Scholar 

  92. Fransen E, D’Hooge R, Van Camp G, et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet 1998;7:999–1009.

    Article  PubMed  CAS  Google Scholar 

  93. Irintchev A, Koch M, Needham LK, Maness P, Schachner M. Impairment of sensorimotor gating in mice deficient in the cell adhesion molecule L1 or its close homologue, CHL1. Brain Res 2004;1029:131–134.

    Article  PubMed  CAS  Google Scholar 

  94. Thelin J, Waldenstrom A, Bartsch U, Schachner M, Schouenborg J. Heat nociception is severely reduced in a mutant mouse deficient for the L1 adhesion molecule. Brain Res 2003;965:75–82.

    Article  PubMed  CAS  Google Scholar 

  95. Bliss T, Errington M, Fransen E, et al. Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr Biol2000;10:1607–1610.

    Article  PubMed  CAS  Google Scholar 

  96. Law JW, Lee AY, Sun M, et al.Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. J Neurosci 2003;23:10,419–10,432.

    PubMed  CAS  Google Scholar 

  97. Wolfer DP, Mohajeri HM, Lipp HP, Schachner M. Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. Eur J Neurosci 1998;10:708–717.

    Article  PubMed  CAS  Google Scholar 

  98. Kutsche K, Yntema H, Brandt A, et al. Mutations in ARHGEF6, encoding a guanine nucleotide exchange factor for Rho GTPases, in patients with X-linked mental retardation. Nat Genet 2000;26:247–250.

    Article  PubMed  CAS  Google Scholar 

  99. Kutsche K, Gal A. The mouse Arhgef6 gene: cDNA sequence, expression analysis, and chromosome assignment. Cytogenet Cell Genet2001;95:196–201.

    Article  PubMed  CAS  Google Scholar 

  100. Kohn M, Steinbach P, Hameister H, Kehrer-Sawatzki H. A comparative expression analysis of four MRX genes regulating intracellular signalling via small GTPases. Eur J Hum Genet 2004;12:29–37.

    Article  PubMed  CAS  Google Scholar 

  101. Wolfer DP, Kuchenbecker K, Prut L, Neuhaeusser-Wespy F, Kutsche K, Lipp HP. Impaired behavioral control and altered processing of spatial information in mice deficient for the x-chromosomal mental retardation gene Arhgef6. 7th IBANGS meeting, 2005, Sitges, Spain (Abstract).

    Google Scholar 

  102. Huttenlocher PR. The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 2000;159(Suppl 2):S102–106.

    Article  PubMed  Google Scholar 

  103. Kahler SG, Fahey MC. Metabolic disorders and mental retardation. Am J Med Genet2003;117C:31–41.

    Article  Google Scholar 

  104. McDonald JD, Bode VC, Dove WF, Shedlovsky A.Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci USA 1990;87:1965–1967.

    Article  PubMed  CAS  Google Scholar 

  105. Shedlovsky A, McDonald JD, Symula D, Dove WF. Mouse models of human phenylketonuria. Genetics 1993;134:1205–1210.

    PubMed  CAS  Google Scholar 

  106. Zagreda L, Goodman J, Druin DP, McDonald D, Diamond A. Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. J Neurosci 1999;19:6175–6182.

    PubMed  CAS  Google Scholar 

  107. Mihalick SM, Langlois JC, Krienke JD, Dube WV. An olfactory discrimination procedure for mice. JExp AnalBehav 2000;73:305–318.

    CAS  Google Scholar 

  108. Cabib S, Pascucci T, Ventura R, Romano V, Puglisi-Allegra S. The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behav Genet2003;33:301–310.

    Article  PubMed  Google Scholar 

  109. Ding Z, Harding CO, Thony B. State-of-the-art 2003 on PKU gene therapy. Mol Genet Metab2004;81:3–8.

    Article  PubMed  CAS  Google Scholar 

  110. Mochizuki S, Mizukami H, Ogura T, et al. Long-term correction of hyperphenylalaninemia by AAV-mediated gene transfer leads to behavioral recovery in phenylketonuria mice. Gene Ther 2004;11:1081–1086.

    Article  PubMed  CAS  Google Scholar 

  111. Oh HJ, Park ES, Kang S, Jo I, Jung SC. Long-term enzymatic and phenotypic correction in the phenylketonuria mouse model by adeno-associated virus vector-mediated gene transfer. Pediatr Res2004;56:278–284.

    Article  PubMed  CAS  Google Scholar 

  112. Arun D, Gutmann DH. Recent advances in neurofibromatosis type 1. Curr Opin Neurol2004;17:101–105.

    Article  PubMed  CAS  Google Scholar 

  113. Dasgupta B, Gutmann DH. Neurofibromatosis 1: closing the GAP between mice and men. Curr Opin Genet Dev 2003;13:20–27.

    Article  PubMed  CAS  Google Scholar 

  114. Costa RM, Silva AJ. Mouse models of neurofibromatosis type I: bridging the GAP. Trends Mol Med2003;9:19–23.

    Article  PubMed  CAS  Google Scholar 

  115. Bernards A, Snijders AJ, Hannigan GE, Murthy AE, Gusella JF. Mouse neurofibromatosis type 1 cDNA sequence reveals high degree of conservation of both coding and non-coding mRNA segments. Hum Mol Genet 1993;2:645–650.

    Article  PubMed  CAS  Google Scholar 

  116. Silva AJ, Frankland PW, Marowitz Z, et al. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 1997;15:281–284.

    Article  PubMed  CAS  Google Scholar 

  117. North K. Neurofibromatosis type 1. Am J Med Genet 2000;97:119–127.

    Article  PubMed  CAS  Google Scholar 

  118. Costa RM, Yang T, Huynh DP, et al. Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat Genet 2001;27:399–405.

    Article  PubMed  CAS  Google Scholar 

  119. Costa R, Federov N, Kogan J, et al. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 2002;415:526–530.

    Article  PubMed  CAS  Google Scholar 

  120. Govek EE, Newey SE, Akerman CJ, Cross JR, Van der Veken L, Van Aelst L. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat Neurosci 2004;7:364–372.

    Article  PubMed  CAS  Google Scholar 

  121. Huston JP, Borbely AA. The thalamic rat: general behavior, operant learning with rewarding hypothalamic stimulation, and effects of amphetamine. Physiol Behav1974; 12:433–448.

    Article  PubMed  CAS  Google Scholar 

  122. Huston JP, Tomaz C, Fix I. Avoidance learning in rats devoid of the telencephalon plus thalamus. Behav Brain Res 1985;17:87–95.

    Article  PubMed  CAS  Google Scholar 

  123. Deacon RM, Croucher A, Rawlins JN. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res 2002;132:203–213.

    Article  PubMed  Google Scholar 

  124. Balschun D, Wolfer DP, Gass P, et al. Does cAMP response element-binding protein (CREB) have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 2003;23:6304–6314.

    PubMed  CAS  Google Scholar 

  125. Wolfer DP, Lipp H-P. Meta-analysis of strategy choice by 85 mutant mouse lines in a standardized place navigation task identifies behavioral flexibility as performance limiting factor. In: Society for Neuroscience, 33rd Annual Meeting, 2003; New Orleans LA (Abstract).

    Google Scholar 

  126. Mohajeri MH, Saini K, Li H, et al. Intact spatial memory in mice with seizure-induced partial loss of hippocampal pyramidal neurons. Neurobiol Dis 2003; 12:174–181.

    Article  PubMed  Google Scholar 

  127. Galsworthy MJ, Paya-Cano JL, Monleon S, Plomin R. Evidence for general cognitive ability (g) in heterogeneous stock mice and an analysis of potential confounds. Genes Brain Behav2002; 1:88–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Welzl, H., D’Adamo, P., Wolfer, D.P., Lipp, HP. (2006). Mouse Models of Hereditary Mental Retardation. In: Fisch, G.S., Flint, J. (eds) Transgenic and Knockout Models of Neuropsychiatric Disorders. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-058-4_6

Download citation

Publish with us

Policies and ethics