Skip to main content

NMDA Receptors

  • Chapter
The Glutamate Receptors

Part of the book series: The Receptors ((REC))

Summary

One of the major classes of ionotropic glutamate receptors is made up of the N-methyl-D-aspartate (NMDA) receptors, which require two agonists, glycine and glutamate, for activation and can pass calcium ions that may mediate synaptic and neuronal plasticity. They are formed from complexes made by various combinations of the subunits NR1 (with eight isoforms), NR2A-D, and NR3A-B and are found in most neurons of the brain and in various other cells. During development, generally NMDA receptors with NR2B, NR2D, and NR3A are abundant and decrease during maturation, whereas those with NR2A and NR2C increase. The function of NMDA receptors has been explored with a wide range of in vitro and in vivo studies, employing both recombinant gene constructs and native receptors. NMDA receptor subunits contain various motifs that control retention in the endoplasmic reticulum and trafficking through Golgi and other organelles to reach the cell membrane. Association of NMDA receptors with PDZ domain–containing proteins such as PSD-95 and SAP102 may be particularly important to trafficking and/or stabilization and function on the cell membrane. NMDA receptors on the cell membrane are sequestered mainly to the postsynaptic membrane of synapses, but some populations remain in extrasynaptic domains, especially those receptors that contain NR2B or NR2D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17:31–108.

    PubMed  CAS  Google Scholar 

  2. Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987;325:529–531.

    PubMed  CAS  Google Scholar 

  3. Schneggenburger R, Zhou Z, Konnerth A, et al. Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 1993;11:133–143.

    PubMed  CAS  Google Scholar 

  4. Skeberdis VA, Chevaleyre V, Lau CG, et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 2006;9:501–510.

    PubMed  CAS  Google Scholar 

  5. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001;11:327–335.

    PubMed  CAS  Google Scholar 

  6. Wenthold RJ, Prybylowski K, Standley S, et al. Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 2003;43:335–358.

    PubMed  CAS  Google Scholar 

  7. Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005;438:1167–1171.

    PubMed  CAS  Google Scholar 

  8. Skerry TM, Genever PG. Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 2001;22:174–181.

    PubMed  CAS  Google Scholar 

  9. Hollmann M. Structure of iontropic glutamate receptors. In: Jonas P, Monyer H, eds. Ionotropic Glutamate Receptors in CNS. New York: Springer, 1999:3–98.

    Google Scholar 

  10. Campusano JM, Andres ME, Magendzo K, et al. Novel alternative splicing predicts a truncated isoform of the NMDA receptor subunit 1 (NR1) in embryonic rat brain. Neurochem Res 2005;30:567–576.

    PubMed  CAS  Google Scholar 

  11. Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002;415:793–798.

    PubMed  CAS  Google Scholar 

  12. Rafiki A, Bernard A, Medina I, et al. Characterization in cultured cerebellar granule cells and in the developing rat brain of mRNA variants for the NMDA receptor 2C subunit. J Neurochem 2000;74:1798–1808.

    PubMed  CAS  Google Scholar 

  13. Eriksson M, Nilsson A, Froelich-Fabre S, et al. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A. Neurosci Lett 2002;321:177–181.

    PubMed  CAS  Google Scholar 

  14. Laurie DJ, Seeburg PH. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 1994;14:3180–3194.

    PubMed  CAS  Google Scholar 

  15. Prybylowski K, Rumbaugh G, Wolfe BB, et al. Increased exon 5 expression alters extrasynaptic NMDA receptors in cerebellar neurons. J Neurochem 2000;75:1140–1146.

    PubMed  CAS  Google Scholar 

  16. Prybylowski K, Wenthold RJ. N-Methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 2004;279:9673–9676.

    PubMed  CAS  Google Scholar 

  17. Furukawa H, Singh SK, Mancusso R, et al. Subunit arrangement and function in NMDA receptors. Nature 2005;438:185–192.

    PubMed  CAS  Google Scholar 

  18. Yao Y, Mayer ML. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci 2006;26:4559–4566.

    PubMed  CAS  Google Scholar 

  19. Meddows E, Le Bourdelles B, Grimwood S, et al. Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. J Biol Chem 2001;276:18795–18803.

    PubMed  CAS  Google Scholar 

  20. Schorge S, Colquhoun D. Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 2003;23:1151–1158.

    PubMed  CAS  Google Scholar 

  21. Chen PE, Wyllie DJ. Pharmacological insights obtained from structure–function studies of ionotropic glutamate receptors. Br J Pharmacol 2006;147:839–853.

    PubMed  CAS  Google Scholar 

  22. Perez-Otano I, Ehlers MD. Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 2004;13:175–189.

    PubMed  CAS  Google Scholar 

  23. Clarke RJ, Johnson JW. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J Neurosci 2006;26:5825–5834.

    PubMed  CAS  Google Scholar 

  24. Perez-Otano I, Schulteis CT, Contractor A, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 2001;21:1228–1237.

    PubMed  CAS  Google Scholar 

  25. Rumbaugh G, Prybylowski K, Wang JF, et al. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 2000;83:1300–1306.

    PubMed  CAS  Google Scholar 

  26. Traynelis SF, Burgess MF, Zheng F, et al. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 1998;18:6163–6175.

    PubMed  CAS  Google Scholar 

  27. Rachline J, Perin-Dureau F, Le Goff A, et al. The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J Neurosci 2005;25:308–317.

    PubMed  CAS  Google Scholar 

  28. Hatton CJ, Paoletti P. Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 2005;46:261–274.

    PubMed  CAS  Google Scholar 

  29. Standley S, Baudry M. The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking. Cell Mol Life Sci 2000;57:1508–1516.

    PubMed  CAS  Google Scholar 

  30. Huh KH, Wenthold RJ. Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J Biol Chem 1999;274:151–157.

    PubMed  CAS  Google Scholar 

  31. Choi YB, Tenneti L, Le DA, et al. Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 2000;3:15–21.

    PubMed  CAS  Google Scholar 

  32. Dong YN, Waxman EA, Lynch DR. Interactions of postsynaptic density-95 and the NMDA receptor 2 subunit control calpain-mediated cleavage of the NMDA receptor. J Neurosci 2004;24:11035 –11045.

    PubMed  CAS  Google Scholar 

  33. Dong YN, Wu HY, Hsu FC, et al. Developmental and cell-selective variations in N-methyl-D-aspartate receptor degradation by calpain. J Neurochem 2006;99:206–217.

    PubMed  CAS  Google Scholar 

  34. Green T, Rogers CA, Contractor A, et al. NMDA receptors formed by NR1 in Xenopus laevis oocytes do not contain the endogenous subunit XenU1. Mol Pharmacol 2002;61:326–333.

    PubMed  CAS  Google Scholar 

  35. Schmidt C, Werner M, Hollmann M. Revisiting the postulated “unitary glutamate receptor”: electrophysiological and pharmacological analysis in two heterologous expression systems fails to detect evidence for its existence. Mol Pharmacol 2006;69:119–129.

    PubMed  CAS  Google Scholar 

  36. Hu B, Zheng F. Molecular determinants of glycine-independent desensitization of NR1/NR2A receptors. J Pharmacol Exp Ther 2005;313:563–569.

    PubMed  CAS  Google Scholar 

  37. Monyer H, Jonas P, Rosier J. Molecular determinants controlling functional properties of AMPARs and NMDARs in the mammalian CNS. In: Jonas P, Monyer H, eds. Ionotropic Glutamate Receptors in the CNS. New York: Springer, 1999:309–339.

    Google Scholar 

  38. Kendrick SJ, Dichter MA, Wilcox KS. Characterization of desensitization in recombinant N-methyl-D-aspartate receptors: comparison with native receptors in cultured hippocampal neurons. Brain Res Mol Brain Res 1998;57:10–20.

    PubMed  CAS  Google Scholar 

  39. Thomas CG, Krupp JJ, Bagley EE, et al. Probing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method. Mol Pharmacol 2006;69:1296–1303.

    PubMed  CAS  Google Scholar 

  40. Jackson MF, Konarski JZ, Weerapura M, et al. Protein kinase C enhances glycine-insensitive desensitization of NMDA receptors independently of previously identified protein kinase C sites. J Neurochem 2006;96:1509–1518.

    PubMed  CAS  Google Scholar 

  41. Vissel B, Krupp JJ, Heinemann SF, et al. Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol. Pharmacol. 2002;61:595–605.

    PubMed  CAS  Google Scholar 

  42. Sessoms-Sikes S, Honse Y, Lovinger DM, et al. CaMKIIalpha enhances the desensitization of NR2B-containing NMDA receptors by an autophosphorylation-dependent mechanism. Mol Cell Neurosci 2005;29:139–147.

    PubMed  CAS  Google Scholar 

  43. Cathala L, Misra C, Cull-Candy S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci 2000;20:5899–5905.

    PubMed  CAS  Google Scholar 

  44. Fu Z, Logan SM, Vicini S. Deletion of the NR2A subunit prevents developmental changes of NMDA-mEPSCs in cultured mouse cerebellar granule neurones. J Physiol 2005;563:867–881.

    PubMed  CAS  Google Scholar 

  45. Lu C, Fu Z, Karavanov I, et al. NMDA receptor subtypes at autaptic synapses of cerebellar granule neurons. J Neurophysiol 2006;96:2282–2294.

    PubMed  CAS  Google Scholar 

  46. Binshtok AM, Fleidervish IA, Sprengel R, et al. NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2C subunit. J Neurosci 2006;26:708–715.

    PubMed  CAS  Google Scholar 

  47. Kohr G. NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 2006;326:439–446.

    PubMed  Google Scholar 

  48. Kumar SS, Huguenard JR. Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J Neurosci 2003;23:10074–10083.

    PubMed  CAS  Google Scholar 

  49. Marie H, Morishita W, Yu X, et al. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 2005;45:741–752.

    PubMed  CAS  Google Scholar 

  50. Fan Y, Zou B, Ruan Y, et al. In vivo demonstration of a late depolarizing postsynaptic potential in CA1 pyramidal neurons. J Neurophysiol 2005;93:1326–1335.

    PubMed  Google Scholar 

  51. Sullivan MR, Nimmerjahn A, Sarkisov DV, et al. In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol 2005;94:1636–1644.

    PubMed  CAS  Google Scholar 

  52. Ruthazer ES, Akerman CJ, Cline HT. Control of axon branch dynamics by correlated activity in vivo. Science 2003;301:66–70.

    PubMed  CAS  Google Scholar 

  53. Colonnese MT, Zhao JP, Constantine-Paton M. NMDA receptor currents suppress synapse formation on sprouting axons in vivo. J Neurosci 2005;25:1291–1303.

    PubMed  CAS  Google Scholar 

  54. Kinney JW, Davis CN, Tabarean I, et al. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 2006;26:1604–1615.

    PubMed  CAS  Google Scholar 

  55. Brickley SG, Misra C, Mok MH, et al. NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 2003;23:4958–4966.

    PubMed  CAS  Google Scholar 

  56. Jones S, Gibb AJ. Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J Physiol 2005;569:209–221.

    PubMed  CAS  Google Scholar 

  57. Wong HK, Liu XB, Matos MF, et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol 2002;450: 303–317.

    PubMed  CAS  Google Scholar 

  58. Mueller HT, Meador-Woodruff JH. Distribution of the NMDA receptor NR3A subunit in the adult pig-tail macaque brain. J Chem Neuroanat 2005;29:157–172.

    PubMed  CAS  Google Scholar 

  59. Matsuda K, Fletcher M, Kamiya Y, et al. Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci 2003;23:10064–10073.

    PubMed  CAS  Google Scholar 

  60. Bendel O, Meijer B, Hurd Y, et al. G. Cloning and expression of the human NMDA receptor subunit NR3B in the adult human hippocampus. Neurosci Lett 2005;377:31–36.

    PubMed  CAS  Google Scholar 

  61. Awobuluyi M, Yang J, Ye Y, et al. Subunit-specific roles of gycine-binding domains in activation of NR1/NR3 “NMDA” receptors. Mol Pharmacol Fast Forward October 17, 2006.

    Google Scholar 

  62. Oshima S, Fukaya M, Masabumi N, et al. Early onset of NMDA receptor GluR epsilon 1 (NR2A) expression and its abundant postsynaptic localization in developing motoneurons of the mouse hypoglossal nucleus. Neurosci Res 2002;43:239–250.

    PubMed  CAS  Google Scholar 

  63. Petralia RS, Sans N, Wang YX, et al. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 2005;29:436–452.

    PubMed  CAS  Google Scholar 

  64. Sans N, Petralia RS, Wang YX, et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J Neurosci 2000;20:1260–1271.

    PubMed  CAS  Google Scholar 

  65. Petralia RS, Esteban JA, Wang YX, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat Neurosci 1999;2:31–36.

    PubMed  CAS  Google Scholar 

  66. Isaac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for the expression of LTP. Neuron 1995;15:427–434.

    PubMed  CAS  Google Scholar 

  67. Tyzio R, Represa A, Jorquera I, et al. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 1999;19:10372–10382.

    PubMed  CAS  Google Scholar 

  68. Pavlov I, Riekki R, Taira T. Synergistic action of GABA-A and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus. Eur J Neurosci 2004;20:3019–3026.

    PubMed  Google Scholar 

  69. Hawkins LM, Prybylowski K, Chang K, et al. Export from the endoplasmic reticulum of assembled N-methyl-D-aspartic acid receptors is controlled by a motif in the C terminus of the NR2 subunit. J Biol Chem 2004;279:28903–28910.

    PubMed  CAS  Google Scholar 

  70. Standley S, Roche KW, McCallum J, et al. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000;28:887–898.

    PubMed  CAS  Google Scholar 

  71. Scott DB, Blanpied TA, Swanson GT, et al. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 2001;21:3063–3072.

    PubMed  CAS  Google Scholar 

  72. Xia H, Hornby ZD, Malenka RC. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology 2001;41:714–723.

    PubMed  CAS  Google Scholar 

  73. Holmes KD, Mattar PA, Marsh DR, et al. The N-methyl-D-aspartate receptor splice variant NR1–4 C-terminal domain. Deletion analysis and role in subcellular distribution. J Biol Chem 2002;277:1457–1468.

    PubMed  CAS  Google Scholar 

  74. Scott DB, Blanpied TA, Ehlers MD. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology 2003;45:755–767.

    PubMed  CAS  Google Scholar 

  75. Mu Y, Otsuka T, Horton AC, et al. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 2003;40:581–594.

    PubMed  CAS  Google Scholar 

  76. Fukaya M, Kato A, Lovett C, et al. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice. Proc Natl Acad Sci USA 2003;100:4855–4860.

    PubMed  CAS  Google Scholar 

  77. McIlhinney RA, Le Bourdelles B, Molnar E, et al. Assembly intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 1998;37:1355–1367.

    PubMed  CAS  Google Scholar 

  78. Washbourne P, Bennett JE, McAllister AK. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nat Neurosci 2002;5:751–759.

    PubMed  CAS  Google Scholar 

  79. Washbourne P, Liu XB, Jones EG, et al. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J Neurosci 2004;24:8253–8264.

    PubMed  CAS  Google Scholar 

  80. Petralia RS, Dunbar LA, Wang YX, et al. Morphological correlates of glutamate receptor trafficking to synapses. Soc Neurosci Abs 2004;843.2.

    Google Scholar 

  81. Petralia RS, Dunbar LA, Wang YX, et al. Specific endosomal associations during the trafficking of synaptic glutamate receptors. Soc Neurosci Abs 2005;949.1.

    Google Scholar 

  82. Lee SH, Valtschanoff JG, Kharazia VN, et al. Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology 2001;41:680 –692.

    PubMed  CAS  Google Scholar 

  83. Lavezzari G, McCallum J, Dewey CM, et al. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 2004;24:6383–6391.

    PubMed  CAS  Google Scholar 

  84. Rodriguez-Boulan E, Kreitzer G, Musch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005;6:233–247.

    PubMed  CAS  Google Scholar 

  85. Sans N, Prybylowski K, Petralia RS, et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 2003;5:520–530.

    PubMed  CAS  Google Scholar 

  86. Sans N, Wang PY, Du Q, et al. mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 2005;7:1179–1190.

    PubMed  Google Scholar 

  87. Yuen EY, Jiang Q, Feng J, et al. Microtubule regulation of N-methyl-D-aspartate receptor channels in neurons. J Biol Chem 2005;280:29420–29427.

    PubMed  CAS  Google Scholar 

  88. Setou M, Nakagawa T, Seog DH, et al. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 2000;288:1796–1802.

    PubMed  CAS  Google Scholar 

  89. Guillaud L, Setou M, Hirokawa N. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J Neurosci 2003;23:131–140.

    PubMed  CAS  Google Scholar 

  90. Mok H, Shin H, Kim S, et al. Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associatedprotein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci 2002;22:5253–5258.

    PubMed  CAS  Google Scholar 

  91. Wu XS, Tsan GL, Hammer JA. Melanophilin and myosin Va track the microtubule plus end on EB1. J Cell Biol 2005;171:201–207.

    PubMed  CAS  Google Scholar 

  92. Petralia RS, Wang YX, Sans N, et al. Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. Eur J Neurosci 2001;13:1722–1732.

    PubMed  CAS  Google Scholar 

  93. Lei S, Czerwinska E, Czerwinski W, et al. Regulation of NMDA receptor activity by F-actin and myosin light chain kinase. J Neurosci 2001;21:8464–8472.

    PubMed  CAS  Google Scholar 

  94. Amparan D, Avram D, Thomas CG, et al. Direct interaction of myosin regulatory light chain with the NMDA receptor. J Neurochem 2005;92:349–361.

    PubMed  CAS  Google Scholar 

  95. Aridor M, Guzik AK, Bielli A, et al. Endoplasmic reticulum export site formation and function in dendrites. J Neurosci 2004;24:3770–3776.

    PubMed  CAS  Google Scholar 

  96. Horton AC, Ehlers MD. Secretory trafficking in neuronal dendrites. Nat Cell Biol 2004;6:585–591.

    PubMed  CAS  Google Scholar 

  97. Steward O, Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci 2001;24:299–325.

    PubMed  CAS  Google Scholar 

  98. Gazzaley AH, Benson DL, Huntley GW, et al. Differential subcellular regulation of NMDAR1 protein and mRNA in dendrites of dentate gyrus granule cells after perforant path transection. J Neurosci 1997;17:2006–2017.

    PubMed  CAS  Google Scholar 

  99. Kneussel M. Postsynaptic scaffold proteins at non-synaptic sites. The role of postsynaptic scaffold proteins in motor-protein-receptor complexes. EMBO Rep 2005;6:22–27.

    Google Scholar 

  100. Petralia RS, Wang YX, Wenthold RJ. Internalization at glutamatergic synapses during development. Eur J Neurosci 2003;18:3207–3217.

    PubMed  Google Scholar 

  101. Tomita S, Chen L, Kawasaki Y, et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J Cell Biol 2003;161:805–816.

    PubMed  CAS  Google Scholar 

  102. Spacek J, Harris KM. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 1997;17:190–203.

    PubMed  CAS  Google Scholar 

  103. deSouza S, Ziff EB. AMPA receptors do the electric slide. Sci STKE 2002;2002, PE45.

    Google Scholar 

  104. Hering H, Lin CC, Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 2003;23:3262–3271.

    PubMed  CAS  Google Scholar 

  105. Kanzaki M, Pessin JE. Insulin signaling: GLUT4 vesicles exit via the exocyst. Curr Biol 2003;13:R574–R576.

    PubMed  CAS  Google Scholar 

  106. Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 2001;4:917–926.

    PubMed  CAS  Google Scholar 

  107. Rao A, Kim E, Sheng M, et al. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 1998;18:1217–1229.

    PubMed  CAS  Google Scholar 

  108. Tovar KR, Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron 2002;34:255–264.

    PubMed  CAS  Google Scholar 

  109. Groc L, Heine M, Cognet L, et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat Neurosci 2004;7:695–696.

    PubMed  CAS  Google Scholar 

  110. Triller A, Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 2005;28:133–139.

    PubMed  CAS  Google Scholar 

  111. Tovar KR, Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 1999;19:4180–4188.

    PubMed  CAS  Google Scholar 

  112. Townsend M, Yoshii A, Mishina M, et al. Developmental loss of miniatureN-methyl-D-aspartate receptor currents in NR2A knockout mice. Proc Natl Acad Sci USA 2003;100:1340–1345.

    PubMed  CAS  Google Scholar 

  113. Perez-Otano I, Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 2005;28:229–238.

    PubMed  CAS  Google Scholar 

  114. Barria A, Malinow R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 2002;35:345–353.

    PubMed  CAS  Google Scholar 

  115. Rumbaugh G, Vicini S. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J Neurosci 1999;19:10603–10610.

    PubMed  CAS  Google Scholar 

  116. Thomas CG, Miller AJ, Westbrook GL. Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 2006;95:1727–1734.

    PubMed  CAS  Google Scholar 

  117. Liu L, Wong TP, Pozza MF, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004;304:1021–1024.

    PubMed  CAS  Google Scholar 

  118. Woo NH, Teng HK, Siao CJ, et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 2005;8:1069–1077.

    PubMed  CAS  Google Scholar 

  119. Berberich S, Punnakkal P, Jensen V, et al. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 2005;25:6907–6910.

    PubMed  CAS  Google Scholar 

  120. Weitlauf C, Honse Y, Auberson YP, et al. Activation of NR2A-containing NMDA receptors is not obligatory for NMDA receptor-dependent long-term potentiation. J Neurosci 2005;25:8386–8390.

    PubMed  CAS  Google Scholar 

  121. Isaacson JS, Murphy GJ. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron 2001;31:1027–1034.

    PubMed  CAS  Google Scholar 

  122. Vanhoutte P, Bading H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 2003;13:366–371.

    PubMed  CAS  Google Scholar 

  123. Nong Y, Huang YQ, Salter MW. NMDA receptors are movin’ in. Curr Opin Neurobiol 2004;14:353–361.

    PubMed  CAS  Google Scholar 

  124. Vissel B, Krupp JJ, Heinemann SF, et al. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 2001;4:587–596.

    PubMed  CAS  Google Scholar 

  125. Nong Y, Huang YQ, Ju W, et al. Glycine binding primes NMDA receptor internalization. Nature 2003;422:302–307.

    PubMed  CAS  Google Scholar 

  126. Li B, Chen N, Luo T, et al. Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat Neurosci 2002;5:833–834.

    PubMed  CAS  Google Scholar 

  127. Snyder EM, Philpot BD, Huber KM, et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 2001;4:1079–1085.

    PubMed  CAS  Google Scholar 

  128. Roche KW, Standley S, McCallum J, et al. Molecular determinants of NMDA receptor internalization. Nat Neurosci 2001;4:794–802.

    PubMed  CAS  Google Scholar 

  129. Lavezzari G, McCallum J, Lee R, et al. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 2003;45:729–737.

    PubMed  CAS  Google Scholar 

  130. Prybylowski K, Chang K, Sans N, et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 2005;47:845–857.

    PubMed  CAS  Google Scholar 

  131. Chung HJ, Huang YH, Lau LF, et al. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 2004;24:10248–10259.

    PubMed  CAS  Google Scholar 

  132. Dunah AW, Sirianni AC, Fienberg AA, et al. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 2004;65:121–129.

    PubMed  CAS  Google Scholar 

  133. Tezuka T, Umemori H, Akiyama T, et al. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci USA 1999;96:435–440.

    PubMed  CAS  Google Scholar 

  134. Scott DB, Michailidis I, Mu Y, et al. Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals. J Neurosci 2004;24:7096–7109.

    PubMed  CAS  Google Scholar 

  135. Cottrell JR, Borok E, Horvath TL, et al. CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 2004;44:677–690.

    PubMed  CAS  Google Scholar 

  136. Yi Z, Petralia RS, Sans N, et al. NMDA receptors interact with GIPC. Soc Neurosci Abs 2005;487.10.

    Google Scholar 

  137. Yi Z, Petralia RS, Fu Z, et al. The role of the PDZ protein GIPC in regulating NMDA receptor trafficking. J Neurosci; in press.

    Google Scholar 

  138. Perez-Otano I, Lujan R, Tavalin SJ, et al. Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci 2006;9:611–621.

    PubMed  CAS  Google Scholar 

  139. Blanpied TA, Scott DB, Ehlers MD. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 2002;36:435–449.

    PubMed  CAS  Google Scholar 

  140. Racz B, Blanpied TA, Ehlers MD, et al. Lateral organization of endocytic machinery in dendritic spines. Nat Neurosci 2004;7:917–918.

    PubMed  CAS  Google Scholar 

  141. Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta 2005;1746:349–363.

    PubMed  CAS  Google Scholar 

  142. Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005;6:112–126.

    PubMed  CAS  Google Scholar 

  143. Sigismund S, Woelk T, Puri C, et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 2005;102:2760–2765.

    PubMed  CAS  Google Scholar 

  144. Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 2003;6:231–242.

    PubMed  CAS  Google Scholar 

  145. Kato A, Rouach N, Nicoll RA, et al. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc Natl Acad Sci USA 2005;102:5600–5605.

    PubMed  CAS  Google Scholar 

  146. Ye Y, Shibata Y, Yun C, et al. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004;429:841–847.

    PubMed  CAS  Google Scholar 

  147. Wu HY, Yuen EY, Lu YF, et al. Regulation of N-methyl-D-aspartate receptors by calpain in cortical neurons. J Biol Chem 2005;280:21588–21593.

    PubMed  CAS  Google Scholar 

  148. Suzuki T. Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density. Neurosci Res 2002;44:1–9.

    PubMed  Google Scholar 

  149. Swanwick CC, Chang K, Wenthold RJ. Interaction of N-methyl-D-aspartate (NMDA) receptors with flotillin-1, a lipid raft-associated protein. Soc Neurosci Abs 2006;31.4.

    Google Scholar 

  150. Lim IA, Merrill MA, Chen Y, et al. Disruption of the NMDA receptor-PSD-95 interaction in hippocampal neurons with no obvious physiological short-term effect. Neuropharmacology 2003;45:738–754.

    PubMed  CAS  Google Scholar 

  151. Funke L, Dakoji S, Bredt DS. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 2005;74:219–245.

    PubMed  CAS  Google Scholar 

  152. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci 2004;5:771–781.

    PubMed  CAS  Google Scholar 

  153. Nishimura W, Yao I, Iida J, et al. Interaction of synaptic scaffolding molecule and beta-catenin. J Neurosci 2002;22:757–765.

    PubMed  CAS  Google Scholar 

  154. Kurschner C, Mermelstein PG, Holden WT, et al. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 1998;11:161–172.

    PubMed  CAS  Google Scholar 

  155. Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 1998;396:433–439.

    PubMed  CAS  Google Scholar 

  156. Stein V, House DR, Bredt DS, et al. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J Neurosci 2003;23:5503–5506.

    Google Scholar 

  157. Schnell E, Sizemore M, Karimzadegan S, et al. Direct interactions betweenPSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci USA 2002;99:13902–13907.

    PubMed  CAS  Google Scholar 

  158. Losi G, Prybylowski K, Fu Z, et al. PSD-95 regulates NMDA receptors in developing cerebellar granule neurons of the rat. J Physiol 2003;548:21–29.

    PubMed  CAS  Google Scholar 

  159. McGee AW, Topinka JR, Hashimoto K, et al. PSD-93 knock-out mice reveal that neuronal MAGUKs are not required for development or function of parallel fiber synapses in cerebellum. J Neurosci 2001;21:3085–3091.

    PubMed  CAS  Google Scholar 

  160. Sonoda T, Mochizuki C, Yamashita T, et al. Binding of glutamate receptor δ2 to its scaffold protein, Delphilin, is regulated by PKA. Biochem Biophys Res Commun 2006;in press.

    Google Scholar 

  161. Tao YX, Rumbaugh G, Wang GD, et al. Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 2003;23:6703–6712.

    PubMed  CAS  Google Scholar 

  162. Cao J, Viholainen JI, Dart C, et al. The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol 2005;168:117–126.

    PubMed  CAS  Google Scholar 

  163. Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002;3:175–190.

    PubMed  CAS  Google Scholar 

  164. Merrill MA, Chen Y, Strack S, Hell JW. Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol Sci 2005;26:645–653.

    PubMed  CAS  Google Scholar 

  165. Hirao K, Hata Y, Ide N, et al. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem 1998;273:21105–21110.

    PubMed  CAS  Google Scholar 

  166. Kim SJ, Kim YS, Yuan JP, et al. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 2003;426:285–291.

    PubMed  CAS  Google Scholar 

  167. Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999;23:583–592.

    PubMed  CAS  Google Scholar 

  168. Uemura T, Mori H, Mishina M. Direct interaction of GluRdelta2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol Cell Neurosci 2004;26:330–341.

    PubMed  CAS  Google Scholar 

  169. Chen L, Chetkovich DM, Petralia RS, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000;408:936–943.

    PubMed  CAS  Google Scholar 

  170. Rouach N, Byrd K, Petralia RS, et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 2005;8:1525–1533.

    PubMed  CAS  Google Scholar 

  171. Ehlers MD. Molecular morphogens for dendritic spines. Trends Neurosci 2002;25:64–67.

    PubMed  CAS  Google Scholar 

  172. Pak DT, Yang S, Rudolph-Correia S, et al. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 2001;31:289–303.

    PubMed  CAS  Google Scholar 

  173. Allison DW, Chervin AS, Gelfand VI, et al. Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 2000;20:4545–4554.

    PubMed  CAS  Google Scholar 

  174. Van de Ven TJ, VanDongen HM, VanDongen AM. The nonkinase phorbol ester receptor alpha 1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density. J Neurosci 2005;25:9488–9496.

    PubMed  Google Scholar 

  175. Furuyashiki T, Fujisawa K, Fujita A, et al. Citron, a Rho-target, interacts with PSD-95/SAP-90 at glutamatergic synapses in the thalamus. J Neurosci 1999;19:109–118.

    PubMed  CAS  Google Scholar 

  176. Zhang W, Vazquez L, Apperson M, et al. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J Neurosci 1999;19:96–108.

    PubMed  CAS  Google Scholar 

  177. Chen HJ, Rojas-Soto M, Oguni A, et al. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 1998;20:895–904.

    PubMed  CAS  Google Scholar 

  178. Kim JH, Liao D, Lau LF, et al. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 1998;20:683–691.

    PubMed  CAS  Google Scholar 

  179. Ohtsuka T, Hata Y, Ide N, et al. nRap GEP: a novel neural GDP/GTP exchange protein for rap1 small G protein that interacts with synaptic scaffolding molecule (S-SCAM). Biochem Biophys Res Commun 1999;265:38–44.

    PubMed  CAS  Google Scholar 

  180. Yao I, Hata Y, Ide N, et al. MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J Biol Chem 1999;274:11889–11896.

    PubMed  CAS  Google Scholar 

  181. Krapivinsky G, Medina I, Krapivinsky L, et al. SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 2004;43:563–574.

    PubMed  CAS  Google Scholar 

  182. Kim MJ, Dunah AW, Wang YT, et al. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 2005;46:745–760.

    PubMed  CAS  Google Scholar 

  183. Ivanov A, Pellegrino C, Rama S, et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 2006;572:789–798.

    PubMed  CAS  Google Scholar 

  184. Murai KK, Pasquale EB. Eph receptors, ephrins, and synaptic function. Neuroscientist 2004;10:304–314.

    PubMed  CAS  Google Scholar 

  185. Dalva MB, Takasu MA, Lin MZ, et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 2000;103:945–956.

    PubMed  CAS  Google Scholar 

  186. Misra C, Ziff EB. EphB2 gets a GRIP on the dendritic arbor. Nat Neurosci 2005;8:848–850.

    PubMed  CAS  Google Scholar 

  187. Tolias KF, Bikoff JB, Burette A, et al. The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 2005;45:525–538.

    PubMed  CAS  Google Scholar 

  188. Wang CY, Chang K, Petralia RS, et al. A novel family of adhesion-like molecules that interacts with the NMDA receptor. J Neurosci 2006;26:2174–2183.

    PubMed  CAS  Google Scholar 

  189. Ko J, Kim S, Chung HS, et al. SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron 2006;50:233–245.

    PubMed  CAS  Google Scholar 

  190. Seabold GK, Wang CY, Petralia RS, et al. A family of adhesion-like molecules associated with the NMDA receptor complex. Soc Neurosci Abs 2005;487.11.

    Google Scholar 

  191. Seabold GK, Wang CY, Chang K, et al. The Salm family of adhesion-like molecules forms heteromeric and homomeric complexes. Soc Neurosci Abs 2006;31.5.

    Google Scholar 

  192. Levinson JN, El-Husseini A. Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 2005;48:171–174.

    PubMed  CAS  Google Scholar 

  193. Dean C, Dresbach T. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 2006;29:21–29.

    PubMed  CAS  Google Scholar 

  194. Husi H, Ward MA, Choudhary JS, et al. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000;3:661–669.

    PubMed  CAS  Google Scholar 

  195. Tanaka H, Shan W, Phillips GR, et al. Molecular modification of N-cadherin in response to synaptic activity. Neuron 2000;25:93–107.

    PubMed  CAS  Google Scholar 

  196. Petralia RS, Wang YX, Wenthold RJ. NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli. Eur J Neurosci 2002;15:583–587.

    PubMed  Google Scholar 

  197. Bukalo O, Fentrop N, Lee AY, et al. Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 2004;24:1565–1577.

    PubMed  CAS  Google Scholar 

  198. Demyanenko GP, Schachner M, Anton E, et al. Close homolog of L1 modulates area-specific neuronal positioning and dendrite orientation in the cerebral cortex. Neuron 2004;44:423–437.

    PubMed  CAS  Google Scholar 

  199. Fux CM, Krug M, Dityatev A, et al. NCAM180 and glutamate receptor subtypes in potentiated spine synapses: an immunogold electron microscopic study. Mol Cell Neurosci 2003;24:939–950.

    PubMed  CAS  Google Scholar 

  200. Davey F, Hill M, Falk J, et al. Synapse associated protein 102 is a novel binding partner to the cytoplasmic terminus of neurone-glial related cell adhesion molecule. J Neurochem 2005;94:1243–1253.

    PubMed  CAS  Google Scholar 

  201. Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 2003;91:267–270.

    PubMed  CAS  Google Scholar 

  202. Elmariah SB, Crumling MA, Parsons TD, et al. Postsynaptic TrkB-mediated signaling modulates excitatory and inhibitory neurotransmitter receptor clustering at hippocampal synapses. J Neurosci 2004;24:2380–2393.

    PubMed  CAS  Google Scholar 

  203. Grosshans DR, Clayton DA, Coultrap SJ, et al. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 2002;5:27–33.

    PubMed  CAS  Google Scholar 

  204. Erisir A, Harris JL. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 2003;23:5208–5218.

    PubMed  CAS  Google Scholar 

  205. Liu XB, Murray KD, Jones EG. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 2004;24:8885–8895.

    PubMed  CAS  Google Scholar 

  206. Quinlan EM, Olstein DH, Bear MF. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proc Natl Acad Sci USA 1999;96:12876–12880.

    PubMed  CAS  Google Scholar 

  207. Quinlan EM, Lebel D, Brosh I, et al. A molecular mechanism for stabilization of learning-induced synaptic modifications. Neuron 2004;41:185–192.

    PubMed  CAS  Google Scholar 

  208. Yoshii A, Sheng MH, Constantine-Paton M. Eye opening induces a rapid dendritic localization of PSD-95 in central visual neurons. Proc Natl Acad Sci USA 2003;100:1334–1339.

    PubMed  CAS  Google Scholar 

  209. Ozaki M, Sasner M, Yano R, et al. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 1997;390:691–694.

    PubMed  CAS  Google Scholar 

  210. Garcia RA, Vasudevan K, Buonanno A. The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci USA 2000;97:3596–3601.

    PubMed  CAS  Google Scholar 

  211. Hahn CG, Wang HY, Cho DS, et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006;12:824–828.

    PubMed  CAS  Google Scholar 

  212. Li Z, Sheng M. Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 2003;4:833–841.

    PubMed  CAS  Google Scholar 

  213. Ziv NE, Garner CC. Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 2004;5:385–399.

    PubMed  CAS  Google Scholar 

  214. Sytnyk V, Leshchyns’ka I, Delling M, et al. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol 2002;159:649–661.

    PubMed  CAS  Google Scholar 

  215. Polo-Parada L, Bose CM, Plattner F, et al. Distinct roles of different neural cell adhesion molecule (NCAM) isoforms in synaptic maturation revealed by analysis of NCAM 180 kDa isoform-deficient mice. J Neurosci 2004;24:1852–1864.

    PubMed  CAS  Google Scholar 

  216. Friedman HV, Bresler T, Garner CC, et al. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 2000;27:57–69.

    PubMed  CAS  Google Scholar 

  217. Bresler T, Shapira M, Boeckers T, et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 2004;24:1507–1520.

    PubMed  CAS  Google Scholar 

  218. van Zundert B, Yoshii A, Constantine-Paton M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci 2004;27:428–437.

    PubMed  Google Scholar 

  219. Sans N, Racca C, Petralia RS, et al. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J Neurosci 2001;21:7506–7516.

    PubMed  CAS  Google Scholar 

  220. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 2005;48:289–301.

    PubMed  CAS  Google Scholar 

  221. Grimwood S, Wafford KA, Macaulay A, et al. N-Methyl-D-aspartate receptor subtype-selectivity of homoquinolinate: an electrophysiological and radioligand binding study using both native and recombinant receptors. J Neurochem 2002;82:794–800.

    PubMed  CAS  Google Scholar 

  222. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005;179:4–29.

    CAS  Google Scholar 

  223. D’Aniello A, Di Fiore MM, Fisher GH, et al. Occurrence of D-aspartic acid and N-methyl-D- aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J 2000;14:699–714.

    PubMed  CAS  Google Scholar 

  224. Benz B, Grima G, Do KQ. Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience 2004;124:377–386.

    PubMed  CAS  Google Scholar 

  225. Do KQ, Benz B, Binns KE, et al. Release of homocysteic acid from rat thalamus following stimulation of somatosensory afferents in vivo: feasibility of glial participation in synaptic transmission. Neuroscience 2004;124:387–393.

    PubMed  CAS  Google Scholar 

  226. Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999;96:13409–13414.

    PubMed  CAS  Google Scholar 

  227. Panatier A, Theodosis DT, Mothet JP, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 2006;125:775–784.

    PubMed  CAS  Google Scholar 

  228. Kartvelishvily E, Shleper M, Balan L, et al. Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006;281:14151–14162.

    PubMed  CAS  Google Scholar 

  229. Nahum-Levy R, Fossom LH, Skolnick P, et al. Putative partial agonist 1-aminocyclopropanecarboxylic acid acts concurrently as a glycine-site agonist and a glutamate-site antagonist at N-methyl-D-aspartate receptors. Mol Pharmacol 1999;56:1207–1218.

    PubMed  CAS  Google Scholar 

  230. Mott DD, Doherty JJ, Zhang S, et al. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1998;1:659–667.

    PubMed  CAS  Google Scholar 

  231. Neyton J, Paoletti P. Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 2006;26:1331–1333.

    PubMed  CAS  Google Scholar 

  232. Frizelle PA, Chen PE, Wyllie DJ. Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino-(2,3-dioxo-1,2,3,4-tetrahydroquino xalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: implications for studies of synaptic transmission. Mol Pharmacol 2006;70:1022–1032.

    PubMed  CAS  Google Scholar 

  233. Gardoni F, Schrama LH, Kamal A, et al. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci 2001;21:1501–1509.

    PubMed  CAS  Google Scholar 

  234. Leonard AS, Lim IA, Hemsworth DE, et al. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 1999;96:3239–3244.

    PubMed  CAS  Google Scholar 

  235. Bayer KU, De Koninck P, Leonard AS, et al. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 2001;411:801–805.

    PubMed  CAS  Google Scholar 

  236. Lisman JE, Zhabotinsky AM. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 2001;31:191–201.

    PubMed  CAS  Google Scholar 

  237. Bayer KU, LeBel E, McDonald GL, et al. Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J Neurosci 2006;26:1164–1174.

    PubMed  CAS  Google Scholar 

  238. Gardoni F, Bellone C, Cattabeni F, et al. Protein kinase C activation modulates alpha-calmodulin kinase II binding to NR2A subunit of N-methyl-D-aspartate receptor complex. J Biol Chem 2001;276:7609–7613.

    PubMed  CAS  Google Scholar 

  239. Fong DK, Rao A, Crump FT, et al. Rapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II. J Neurosci 2002;22:2153–2164.

    PubMed  CAS  Google Scholar 

  240. Dosemeci A, Tao-Cheng JH, Vinade L, et al. Glutamate-induced transient modification of the postsynaptic density. Proc Natl Acad Sci USA 2001;98:10428–10432.

    PubMed  CAS  Google Scholar 

  241. Ali DW, Salter MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 2001;11:336–342.

    PubMed  CAS  Google Scholar 

  242. Liao GY, Kreitzer MA, Sweetman BJ, et al. The postsynaptic density protein PSD-95 differentially regulates insulin- and Src-mediated current modulation of mouse NMDA receptors expressed in Xenopus oocytes. J Neurochem 2000;75:282–287.

    Google Scholar 

  243. Takasu MA, Dalva MB, Zigmond RE, et al. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 2002;295:491–495.

    PubMed  CAS  Google Scholar 

  244. Gingrich JR, Pelkey KA, Fam SR, et al. Unique domain anchoring of Src to synaptic NMDA receptors via the mitochondrial protein NADH dehydrogenase subunit 2. Proc Natl Acad Sci USA 2004;101:6237–6242.

    PubMed  CAS  Google Scholar 

  245. Yaka R, Thornton C, Vagts AJ, et al. NMDA receptor function is regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci USA 2002;99:5710–5715.

    PubMed  CAS  Google Scholar 

  246. Crump FT, Dillman KS, Craig AM. cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J Neurosci 2001;21:5079–5088.

    PubMed  CAS  Google Scholar 

  247. Westphal RS, Tavalin SJ, Lin JW, et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 1999;285:93–96.

    PubMed  CAS  Google Scholar 

  248. Kadotani H, Hirano T, Masugi M, et al. Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 1996;16:7859–7867.

    PubMed  CAS  Google Scholar 

  249. Miyamoto Y, Yamada K, Noda Y, et al. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor epsilon 4 subunit. J Neurosci 2002;22:2335–2342.

    PubMed  CAS  Google Scholar 

  250. Okabe S, Collin C, Auerbach JM, et al. Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J Neurosci 1998;18:4177–4188.

    PubMed  CAS  Google Scholar 

  251. Sprengel R, Single FN. Mice with genetically modified NMDA and AMPA receptors. Ann N Y Acad Sci 1999;868:494–501.

    PubMed  CAS  Google Scholar 

  252. Mohn AR, Gainetdinov RR, Caron MG, et al. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999;98:427–436.

    PubMed  CAS  Google Scholar 

  253. Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice. Nature 1999;401:63–69.

    PubMed  CAS  Google Scholar 

  254. Wei F, Wang GD, Kerchner GA, et al. Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 2001;4:164–169.

    PubMed  CAS  Google Scholar 

  255. Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 1998;92:279–289.

    PubMed  CAS  Google Scholar 

  256. Das S, Sasaki YF, Rothe T, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 1998;393:377–381.

    PubMed  CAS  Google Scholar 

  257. Lau LF, Mammen A, Ehlers MD, et al. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse-associated protein, SAP102. J Biol Chem 1996;271:21622–21628.

    PubMed  CAS  Google Scholar 

  258. Niethammer M, Kim E, Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 1996;16:2157–2163.

    PubMed  CAS  Google Scholar 

  259. Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001;24:1–29.

    PubMed  CAS  Google Scholar 

  260. Cai C, Coleman SK, Niemi K, et al. Selective binding of synapse-associated protein 97 to GluR-A alpha-amino-5-hydroxy-3-methyl-4-isoxazole propionate receptor subunit is determined by a novel sequence motif. J Biol Chem 2002;277:31484–31490.

    PubMed  CAS  Google Scholar 

  261. Wyszynski M, Lin J, Rao A, et al. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 1997;385:439–442.

    Google Scholar 

  262. Ehlers MD, Zhang S, Bernhadt JP, et al. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996;84:745–755.

    PubMed  CAS  Google Scholar 

  263. van Rossum D, Kuhse J, Betz H. Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. J Neurochem 1999;72:962–973.

    PubMed  Google Scholar 

  264. Ehlers MD, Fung ET, O’Brien RJ, et al. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 1998;18:720–730.

    PubMed  CAS  Google Scholar 

  265. Wechsler A, Teichberg VI. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J 1998;17:3931–3939.

    PubMed  CAS  Google Scholar 

  266. Lin JW, Wyszynski M, Madhavan R, et al. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci 1998;18:2017–2027.

    PubMed  CAS  Google Scholar 

  267. Jo K, Derin R, Li M, et al. Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN-7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 1999;19:4189–4199.

    PubMed  CAS  Google Scholar 

  268. Gurd JW, Bissoon N. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma. J Neurochem 1997;69:623–630.

    PubMed  CAS  Google Scholar 

  269. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein–protein interactions with the dopamine D1 receptor. Cell 2002;111:219–230.

    PubMed  CAS  Google Scholar 

  270. Krapivinsky G, Krapivinsky L, Manasian Y, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2003;40:775–784.

    PubMed  CAS  Google Scholar 

  271. Li BS, Sun MK, Zhang L, et al. Regulation of NMDA receptors by cyclindependent kinase-5. Proc Natl Acad Sci USA 2001;98:12742 –12747.

    Google Scholar 

  272. Wang J, Liu S, Fu Y, et al. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 2003;6:1039–1047.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this chapter

Cite this chapter

Petralia, R.S., Wenthold, R.J. (2008). NMDA Receptors. In: Gereau, R.W., Swanson, G.T. (eds) The Glutamate Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-055-3_2

Download citation

Publish with us

Policies and ethics