Skip to main content

Cardiac Troponin After Revascularization Procedures

  • Chapter
Cardiovascular Biomarkers

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1393 Accesses

Abstract

A significant proportion (≈20%) of patients undergoing percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) surgery develop elevated levels of creatine kinase MB isoform (CK-MB) afterward. Large increases in the concentration of CK-MB after PCI are associated with the risk of death, myocardial infarction, and repeat revascularization. However, the prognostic significance of modest elevations (less than five times the upper limit of normal [ULN]) after PCI remains controversial. It has been shown in some studies have shown that even minor elevations in CK or CKMB levels (more than one time the ULN) after PCI are associated with worse outcomes, but other studies have shown no association between small elevations in CK or CK-MB (less than five times the ULN) and recurrent cardiac events. Following CABG, almost all patients have elevated levels of CK-MB and the clinical significance is less well established. However, clinical studies show that large elevations (more than five times ULN) are associated with worse prognosis. Cardiac troponin is elevated more frequently after PCI and CABG. A number of procedure-related factors contribute to the rises in troponin, including unrecognized complications of PCI (distal embolization, minor side-branch occlusion), inflammation, direct cardiac manipulation, and direct current defibrillation during CABG. Although troponin levels are helpful in diagnosing periprocedural myonecrosis as well as predicting long-term outcomes, the optimal diagnostic and prognostic cutoff levels remain to be determined. Moreover, to date, the appropriate clinical response to these findings remains uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Califf RM, Abdelmeguid AE, Kuntz RE, et al. Myonecrosis after revascularization procedures. J Am Coll Cardiol 1998;31:241–251.

    Article  PubMed  CAS  Google Scholar 

  2. Tardiff BE, Califf RM, Tcheng JE, et al. Clinical outcomes after detection of elevated cardiac enzymes in patients undergoing percutaneous intervention. IMPACT-II Investigators. Integrilin (eptifibatide) to Minimize Platelet Aggregation and Coronary Thrombosis-II. J Am Coll Cardiol 1999;33:88–96.

    Article  PubMed  CAS  Google Scholar 

  3. Abdelmeguid AE, Topol EJ, Whitlow PL, Sapp SK, Ellis SG. Significance of mild transient release of creatine kinase-MB fraction after percutaneous coronary interventions. Circulation 1996;94:1528–1536.

    PubMed  CAS  Google Scholar 

  4. Kini A, Marmur JD, Kini S, et al. Creatine kinase-MB elevation after coronary intervention correlates with diffuse atherosclerosis, and low-to-medium level elevation has a benign clinical course: implications for early discharge after coronary intervention. J Am Coll Cardiol 1999;34:663–671.

    Article  PubMed  CAS  Google Scholar 

  5. Saucedo JF, Mehran R, Dangas G, et al. Long-term clinical events following creatine kinase-myocardial band isoenzyme elevation after successful coronary stenting. J Am Coll Cardiol 2000;35:1134–1141.

    Article  PubMed  CAS  Google Scholar 

  6. Ricciardi MJ, Wu E, Davidson CJ, et al. Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 2001;103:2780–2783.

    Article  PubMed  CAS  Google Scholar 

  7. Newby LK, Alpert JS, Ohman EM, Thygesen K, Califf RM. Changing the diagnosis of acute myocardial infarction: implications for practice and clinical investigations. Am Heart J 2002;144:957–980.

    Article  PubMed  Google Scholar 

  8. Klatte K, Chaitman BR, Theroux P, et al. Increased mortality after coronary artery bypass graft surgery is associated with increased levels of postoperative creatine kinase-myocardial band isoenzyme release: results from the GUARDIAN trial. J Am Coll Cardiol 2001;38:1070–1077.

    Article  PubMed  CAS  Google Scholar 

  9. Burns RJ, Gladstone PJ, Tremblay PC, et al. Myocardial infarction determined by technetium-99m pyrophosphate single-photon tomography complicating elective coronary artery bypass grafting for angina pectoris. Am J Cardiol 1989;63:1429–1434.

    Article  PubMed  CAS  Google Scholar 

  10. Mandadi VR, DeVoe MC, Ambrose JA, et al. Predictors of troponin elevation after percutaneous coronary intervention. Am J Cardiol 2004;93(6):747–750.

    Article  PubMed  CAS  Google Scholar 

  11. Miller WL, Garratt KN, Burritt MF, Reeder GS, Jaffe AS. Timing of peak troponin T and creatine kinase-MB elevations after percutaneous coronary intervention. Chest 2004;125(1):275–280.

    Article  PubMed  Google Scholar 

  12. Christenson RH, Duh SH, Apple FS, et al. Standardization of cardiac troponin I assays: round robin of ten candidate reference materials. Clin Chem 2001;47:431–437.

    PubMed  CAS  Google Scholar 

  13. Bertinchant JP, Polge A, Ledermann B, et al. Relation of minor cardiac troponin I elevation to late cardiac events after uncomplicated elective successful percutaneous transluminal coronary angioplasty for angina pectoris. Am J Cardiol 1999;84:51–57.

    Article  PubMed  CAS  Google Scholar 

  14. Johansen O, Brekke M, Stromme JH, et al. Myocardial damage during percutaneous transluminal coronary angioplasty as evidenced by troponin T measurements. Eur Heart J 1998;19:112–117.

    Article  PubMed  CAS  Google Scholar 

  15. Katoh H, Shimada T, Sano K, et al. Troponin T in the coronary sinus and percutaneous transluminal coronary angioplasty related myocardial injury. Clin Exp Pharmacol Physiol 2000;27:14–17.

    Article  PubMed  CAS  Google Scholar 

  16. Talasz H, Genser N, Mair J, et al. Side-branch occlusion during percutaneous transluminal coronary angioplasty. Lancet 1992;339:1380–1382.

    Article  PubMed  CAS  Google Scholar 

  17. La Vecchia L, Bedogni F, Finocchi G, et al. Troponin T, troponin I and creatine kinase-MB mass after elective coronary stenting. Coron Artery Dis 1996;7:535–540.

    Article  PubMed  Google Scholar 

  18. Natarajan MK, Kreatsoulas C, Velianou JL, Mehta SR, Pericak D, Goodhart DM. Incidence, predictors, and clinical significance of troponin-I elevation without creatine kinase elevation following percutaneous coronary interventions. Am J Cardiol 2004;93(6):750–753.

    Article  PubMed  CAS  Google Scholar 

  19. Ricciardi MJ, Davidson CJ, Gubernikoff G, et al. Troponin I elevation and cardiac events after percutaneous coronary intervention. Am Heart J 2003;145:522–528.

    Article  PubMed  CAS  Google Scholar 

  20. Fuchs S, Kornowski R, Mehran R, et al. Prognostic value of cardiac troponin-I levels following catheterbased coronary interventions. Am J Cardiol 2000;85:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  21. Bolognese L, Ducci K, Angioli P, et al. Elevations in troponin I after percutaneous coronary interventions are associated with abnormal tissue-level perfusion in high-risk patients with non-ST-segmentelevation acute coronary syndromes. Circulation 2004;110:1592–1597.

    Article  PubMed  CAS  Google Scholar 

  22. Cantor WJ, Newby LK, Christenson RH, et al. Prognostic significance of elevated troponin-I after percutaneous coronary intervention. J Am Coll Cardiol 2002;39:1738–1744.

    Article  PubMed  CAS  Google Scholar 

  23. La Vecchia L, Bedogni F, Finocchi G, et al. Troponin T, troponin I and CK-MB (mass) in the detection of periprocedural myocardial damage after coronary angioplasty. Cardiologia 1997;42:405–413.

    PubMed  Google Scholar 

  24. Shyu KG, Kuan PL, Cheng JJ, Hung CR. Cardiac troponin T, creatine kinase, and its isoform release after successful percutaneous transluminal coronary angioplasty with or without stenting. Am Heart J 1998; 135:862–867.

    Article  PubMed  CAS  Google Scholar 

  25. Segev A, Goldman LE, Cantor WJ, et al. Elevated troponin-I after percutaneous coronary interventions: incidence and risk factors. Cardiovasc Radiat Med 2004;5:59–63.

    Article  PubMed  Google Scholar 

  26. Saadeddin SM, Habbab MA, Sobki SH, Ferns GA. Association of systemic inflammatory state with troponin I elevation after elective uncomplicated percutaneous coronary intervention. Am J Cardiol 2002; 89(8):981–983.

    Article  PubMed  CAS  Google Scholar 

  27. Pasceri V, Patti G, Nusca A, Pristipino C, Richichi G, Di Sciascio G. Randomized trial of atorvastatin for reduction of myocardial damage during coronary intervention: results from the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) study. Circulation 2004;110:674–678.

    Article  PubMed  CAS  Google Scholar 

  28. Akkerhuis KM, Alexander JH, Tardiff BE, et al. Minor myocardial damage and prognosis: are spontaneous and percutaneous coronary intervention-related events different? Circulation 2002;105:554–556.

    Article  PubMed  Google Scholar 

  29. Kizer JR, Muttrej MR, Matthai WH, et al. Role of cardiac troponin T in the long-term risk stratification of patients undergoing percutaneous coronary intervention. Eur Heart J 2003;24(14):1314–1322.

    Article  PubMed  CAS  Google Scholar 

  30. Gruberg L, Fuchs S, Waksman R, et al. Prognostic value of cardiac troponin I elevation after percutaneous coronary intervention in patients with chronic renal insufficiency: a 12-month outcome analysis [see comment]. Cathet Cardiovasc Intervent 2002;55(2):174–179.

    Article  Google Scholar 

  31. Saadeddin SM, Habbab MA, Sobki SH, Ferns GA. Minor myocardial injury after elective uncomplicated successful PTCA with or without stenting: detection by cardiac troponins. Cathet Cardiovasc Intervent 2001;53:188–192.

    Article  CAS  Google Scholar 

  32. Genser N, Mair J, Talasz H, et al. Cardiac troponin I to diagnose percutaneous transluminal coronary angioplasty-related myocardial injury. Clin Chim Acta 1997;265:207–217.

    Article  PubMed  Google Scholar 

  33. Nageh T, Sherwood RA, Harris BM, Byrne JA, Thomas MR. Cardiac troponin T and I and creatine kinase-MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol 2003;92:285–293.

    Article  PubMed  Google Scholar 

  34. Stromme JH, Johansen O, Brekke M, Seljeflot I, Arnesen H. Markers of myocardial injury in blood following PTCA: a comparison of CKMB, cardiospecific troponin T and troponin I. Scand J Clin Lab Invest 1998;58:693–699.

    Article  PubMed  CAS  Google Scholar 

  35. Harris BM, Nageh T, Marsden JT, Thomas MR, Sherwood RA. Comparison of cardiac troponin T and I and CK-MB for the detection of minor myocardial damage during interventional cardiac procedures. Ann Clin Biochem 2000;37(Pt 6):764–769.

    Article  PubMed  CAS  Google Scholar 

  36. Gustavsson CG, Hansen O, Frennby B. Troponin must be measured before and after PCI to diagnose procedure-related myocardial injury. Scand Cardiovasc J 2004;38(2):75–79.

    Article  PubMed  CAS  Google Scholar 

  37. Atmaca Y, Gulec S, Ertas F, Pamir G, Oral D. The prevention of minor myocardial injury with ticlopidine pretreatment in patients undergoing elective coronary stenting. Int J Cardiol 2003;87(2-3):151–157.

    Article  PubMed  Google Scholar 

  38. Atmaca Y, Dandachi R, Gulec S, Dincer I, Oral D. Comparison of clopidogrel versus ticlopidine for prevention of minor myocardial injury after elective coronary stenting. Int J Cardiol 2003;87(2-3):143–149.

    Article  PubMed  Google Scholar 

  39. Cantor WJ, Vandenbroucke A, Strauss BH, et al. Do glycoprotein IIb/IIIa inhibitors interact with assays for myocardial necrosis? Clin Biochem 2003;36:663–666.

    Article  PubMed  CAS  Google Scholar 

  40. Kini AS, Richard M, Suleman J, et al. Effectiveness of tirofiban, eptifibatide, and abciximab in minimizing myocardial necrosis during percutaneous coronary intervention (TEAM pilot study). Am J Cardiol 2002;90(5):526–529.

    Article  PubMed  CAS  Google Scholar 

  41. Rupprecht HJ, Terres W, Ozbek C, et al. Recombinant hirudin (HBW 023) prevents troponin T release after coronary angioplasty in patients with unstable angina. J Am Coll Cardiol 1995;26:1637–1642.

    Article  PubMed  CAS  Google Scholar 

  42. Kurz DJ, Naegeli B, Bertel O. A double-blind, randomized study of the effect of immediate intravenous nitroglycerin on the incidence of postprocedural chest pain and minor myocardial necrosis after elective coronary stenting. Am Heart J 2000;139:35–43.

    Article  PubMed  CAS  Google Scholar 

  43. Sakai K, Yamagata T, Teragawa H, Matsuura H, Chayama K. Nicorandil-induced preconditioning as evidenced by troponin T measurements after coronary angioplasty in patients with stable angina pectoris. Jpn Heart J 2002;43(5):443–453.

    Article  PubMed  CAS  Google Scholar 

  44. Baim DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 2002;105:1285–1290.

    Article  PubMed  Google Scholar 

  45. Leborgne L, Cheneau E, Pichard A, et al. Effect of direct stenting on clinical outcome in patients treated with percutaneous coronary intervention on saphenous vein graft. Am Heart J 2003;146:501–506.

    Article  PubMed  Google Scholar 

  46. Sharma SK, Kini A, Marmur JD, Fuster V. Cardioprotective effect of prior beta-blocker therapy in reducing creatine kinase-MB elevation after coronary intervention: benefit is extended to improvement in intermediate-term survival. Circulation 2000;102(2):166–172.

    PubMed  CAS  Google Scholar 

  47. Ellis SG, Brener SJ, Lincoff AM, et al. Beta-blockers before percutaneous coronary intervention do not attenuate postprocedural creatine kinase isoenzyme rise. Circulation 2001;104(22):2685–2688.

    Article  PubMed  CAS  Google Scholar 

  48. Ellis SG, Schneider JP, Topol EJ. Comparison of long-term survival following non-Q-wave creatine kinase elevation after percutaneous coronary intervention in patients discharged on a beta blocker versus those not so treated. Am J Cardiol 2002;89(6):751–753.

    Article  PubMed  Google Scholar 

  49. Bonnefoy E, Filley S, Kirkorian G, et al. Troponin I, troponin T, or creatine kinase-MB to detect perioperative myocardial damage after coronary artery bypass surgery. Chest 1998;114:482–486.

    Article  PubMed  CAS  Google Scholar 

  50. Gensini GF, Fusi C, Conti AA, et al. Cardiac troponin I and Q-wave perioperative myocardial infarction after coronary artery bypass surgery. Crit Care Med 1998;26:1986–1990.

    Article  PubMed  CAS  Google Scholar 

  51. Jacquet L, Noirhomme P, El Khoury G, et al. Cardiac troponin I as an early marker of myocardial damage after coronary bypass surgery. Eur J Cardiothorac Surg 1998;13:378–384.

    Article  PubMed  CAS  Google Scholar 

  52. Alyanakian MA, Dehoux M, Chatel D, et al. Cardiac troponin I in diagnosis of perioperative myocardial infarction after cardiac surgery. J Cardiothorac Vasc Anesth 1998;12(3):288–294.

    Article  PubMed  CAS  Google Scholar 

  53. Etievent JP, Chocron S, Toubin G, et al. Use of cardiac troponin I as a marker of perioperative myocardial ischemia. Ann Thorac Surg 1995;59:1192–1194.

    Article  PubMed  CAS  Google Scholar 

  54. Horvath KA, Parker MA, Frederiksen JW, Palmer AS, Fullerton DA. Postoperative troponin I values: insult or injury? Clin Cardiol 2000;23:731–733.

    Article  PubMed  CAS  Google Scholar 

  55. Braun SL, Barankay A, Mazzitelli D. Plasma troponin T and troponin I after minimally invasive coronary bypass surgery. Clin Chem 2000;46(2):279–281.

    PubMed  CAS  Google Scholar 

  56. Birdi I, Caputo M, Hutter JA, Bryan AJ, Angelini GD. Troponin I release during minimally invasive coronary artery surgery. J Thorac Cardiovasc Surg 1997;114:509,510.

    Google Scholar 

  57. Krejca M, Skiba J, Szmagala P, Gburek T, Bochenek A. Cardiac troponin T release during coronary surgery using intermittent cross-clamp with fibrillation, on-pump and off-pump beating heart. Eur J Cardiothorac Surg 1999;16:337–341.

    Article  PubMed  CAS  Google Scholar 

  58. Koh TW, Carr-White GS, DeSouza AC, et al. Intraoperative cardiac troponin T release and lactate metabolism during coronary artery surgery: comparison of beating heart with conventional coronary artery surgery with cardiopulmonary bypass. Heart 1999;81:495–500.

    PubMed  CAS  Google Scholar 

  59. Kilger E, Pichler B, Weis F, et al. Markers of myocardial ischemia after minimally invasive and conventional coronary operation. Ann Thorac Surg 2000;70:2023–2038.

    Article  PubMed  CAS  Google Scholar 

  60. Swaanenburg JC, Loef BG, Volmer M, et al. Creatine kinase MB, troponin I, and troponin T release patterns after coronary artery bypass grafting with or without cardiopulmonary bypass and after aortic and mitral valve surgery. Clin Chem 2001;47:584–587.

    PubMed  CAS  Google Scholar 

  61. Bennetts JS, Baker RA, Ross IK, Knight JL. Assessment of myocardial injury by troponin T in off-pump coronary artery grafting and conventional coronary artery graft surgery [see comment]. ANZ J Surg 2002; 72(2):105–109.

    Article  PubMed  Google Scholar 

  62. Crescenzi G, Cedrati V, Landoni G, et al. Cardiac biomarker release after CABG with different surgical techniques. J Cardiothorac Vasc Anesth 2004;18(1):34–37.

    Article  PubMed  CAS  Google Scholar 

  63. Pichon H, Chocron S, Alwan K, et al. Crystalloid versus cold blood cardioplegia and cardiac troponin I release. Circulation 1997;96:316–320.

    PubMed  CAS  Google Scholar 

  64. Chocron S, Alwan K, Toubin G, et al. Crystalloid cardioplegia route of delivery and cardiac troponin I release. Ann Thorac Surg 1996;62:4801–485.

    Article  Google Scholar 

  65. Caputo M, Dihmis W, Birdi I, et al. Cardiac troponin T and troponin I release during coronary artery surgery using cold crystalloid and cold blood cardioplegia. Eur J Cardiothorac Surg 1997;12:254–260.

    Article  PubMed  CAS  Google Scholar 

  66. Benoit MO, Paris M, Silleran J, Fiemeyer A, Moatti N. Cardiac troponin I: its contribution to the diagnosis of perioperative myocardial infarction and various complications of cardiac surgery. Crit Care Med 2001;29:1880–1886.

    Article  PubMed  CAS  Google Scholar 

  67. Carrier M, Pellerin M, Perrault LP, Solymoss BC, Pelletier LC. Troponin levels in patients with myocardial infarction after coronary artery bypass grafting. Ann Thorac Surg 2000;69(2):435–440.

    Article  PubMed  CAS  Google Scholar 

  68. Mair J, Larue C, Mair P, Balogh D, Calzolari C, Puschendorf B. Use of cardiac troponin I to diagnose perioperative myocardial infarction in coronary artery bypass grafting. Clin Chem 1994;40:2066–2070.

    PubMed  CAS  Google Scholar 

  69. Sadony V, Korber M, Albes G, et al. Cardiac troponin I plasma levels for diagnosis and quantitation of perioperative myocardial damage in patients undergoing coronary artery bypass surgery [see comment]. Eur J Cardio-Thorac Surg 1998;13:57–65.

    Article  CAS  Google Scholar 

  70. Fransen EJ, Diris JH, Maessen JG, Hermens WT, Dieijen-Visser MP. Evaluation of “new” cardiac markers for ruling out myocardial infarction after coronary artery bypass grafting. Chest 2002;122(4):1316–1321.

    Article  PubMed  Google Scholar 

  71. Holmvang L, Jurlander B, Rasmussen C, Thiis JJ, Grande P, Clemmensen P. Use of biochemical markers of infarction for diagnosing perioperative myocardial infarction and early graft occlusion after coronary artery bypass surgery. Chest 2002;121(1):103–111.

    Article  PubMed  CAS  Google Scholar 

  72. Thielmann M, Massoudy P, Marggraf G, et al. Role of troponin I, myoglobin, and creatine kinase for the detection of early graft failure following coronary artery bypass grafting. Eur J Cardio-Thorac Surg 2004;26:102–109.

    Article  Google Scholar 

  73. Fellahi JL, Gue X, Richomme X, Monier E, Guillou L, Riou B. Short-and long-term prognostic value of postoperative cardiac troponin I concentration in patients undergoing coronary artery bypass grafting. Anesthesiology 2003;99(2):270–274.

    Article  PubMed  CAS  Google Scholar 

  74. Januzzi JL, Lewandrowski K, MacGillivray TE, et al. A comparison of cardiac troponin T and creatine kinase-MB for patient evaluation after cardiac surgery. J Am Coll Cardiol 2002;39:1518–1523.

    Article  PubMed  CAS  Google Scholar 

  75. Baggish AL, MacGillivray TE, Hoffman W, et al. Postoperative troponin-T predicts prolonged intensive care unit length of stay following cardiac surgery. Crit Care Med 2004;32:1866–1871.

    Article  PubMed  CAS  Google Scholar 

  76. Kathiresan S, Servoss SJ, Newell JB, et al. Cardiac troponin T elevation after coronary artery bypass grafting is associated with increased one-year mortality. Am J Cardiol 2004;94:879–881.

    Article  PubMed  CAS  Google Scholar 

  77. Lasocki S, Provenchere S, Benessiano J, et al. Cardiac troponin I is an independent predictor of in-hospital death after adult cardiac surgery. Anesthesiology 2002;97(2):405–411.

    Article  PubMed  CAS  Google Scholar 

  78. Lehrke S, Steen H, Sievers HH, et al. Cardiac troponin T for prediction of short-and long-term morbidity and mortality after elective open heart surgery. Clin Chem 2004;50(9):1560–1567.

    Article  PubMed  CAS  Google Scholar 

  79. Lyon WJ, Baker RA, Andrew MJ, Tirimacco R, White GH, Knight JL. Relationship between elevated preoperative troponin T and adverse outcomes following cardiac surgery. ANZ J Surg 2003;73:40–44.

    Article  PubMed  Google Scholar 

  80. Greenson N, Macoviak J, Krishnaswamy P, et al. Usefulness of cardiac troponin I in patients undergoing open heart surgery. Am Heart J 2001;141:447–455.

    Article  PubMed  CAS  Google Scholar 

  81. Attali P, Aleil B, Petitpas G, et al. Sensitivity and long-term prognostic value of cardiac troponin-I increase shortly after percutaneous transluminal coronary angioplasty. Clin Cardiol 1998;21:353–356.

    Article  PubMed  CAS  Google Scholar 

  82. Bonz AW, Lengenfelder B, Strotmann J, et al. Effect of additional temporary glycoprotein IIb/IIIa receptor inhibition on troponin release in elective percutaneous coronary interventions after pretreatment with aspirin and clopidogrel (TOPSTAR trial). J Am Coll Cardiol 2002;40(4):662–668.

    Article  PubMed  CAS  Google Scholar 

  83. Garbarz E, Iung B, Lefevre G, et al. Frequency and prognostic value of cardiac troponin I elevation after coronary stenting. Am J Cardiol 1999;84:515–518.

    Article  PubMed  CAS  Google Scholar 

  84. Herrmann J, Von Birgelen C, Haude M, et al. Prognostic implication of cardiac troponin T increase following stent implantation. Heart 2002;87:549–553.

    Article  PubMed  CAS  Google Scholar 

  85. Hunt AC, Chow SL, Shiu MF, Chilton DC, Cummins B, Cummins P. Release of creatine kinase-MB and cardiac specific troponin-I following percutaneous transluminal coronary angioplasty. Eur Heart J 1991;12:690–693.

    PubMed  CAS  Google Scholar 

  86. Karim MA, Shinn MS, Oskarsson H, Windle J, Deligonul U. Significance of cardiac troponin T release after percutaneous transluminal coronary angioplasty. Am J Cardiol 1995;76:521–523.

    Article  PubMed  CAS  Google Scholar 

  87. Kini AS, Lee P, Marmur JD, et al. Correlation of postpercutaneous coronary intervention creatine kinase-MB and troponin I elevation in predicting mid-term mortality. Am J Cardiol 2004;93:18–23.

    Article  PubMed  CAS  Google Scholar 

  88. Ravkilde J, Nissen H, Mickley H, Andersen PE, Thayssen P, Horder M. Cardiac troponin T and CK-MB mass release after visually successful percutaneous transluminal coronary angioplasty in stable angina pectoris. Am Heart J 1994;127:13–20.

    Article  PubMed  CAS  Google Scholar 

  89. Reimers B, Lachin M, Cacciavillani L, et al. Troponin T, creatine kinase MB mass, and creatine kinase MB isoform ratio in the detection of myocardial damage during non-surgical coronary revascularization. Int J Cardiol 1997;60:7–13.

    Article  PubMed  CAS  Google Scholar 

  90. Ricchiuti V, Shear WS, Henry TD, Paulsen PR, Miller EA, Apple FS. Monitoring plasma cardiac troponin I for the detection of myocardial injury after percutaneous transluminal coronary angioplasty. Clin Chim Acta 2000;302:161–170.

    Article  PubMed  CAS  Google Scholar 

  91. Saadeddin SM, Habbab MA, Sobki SH, Ferns GA. Biochemical detection of minor myocardial injury after elective, uncomplicated, successful percutaneous coronary intervention in patients with stable angina: clinical outcome. Ann Clin Biochem 2002;39(Pt 4):392–397.

    Article  PubMed  CAS  Google Scholar 

  92. Sribhen K, Leowattana W, Kiartivich S, Jootar P. Cardiac troponin T concentration after coronary balloon angioplasty. Am J Cardiol 1997;79:1439.

    Article  PubMed  CAS  Google Scholar 

  93. Wu AH, Boden WE, McKay RG. Long-term follow-up of patients with increased cardiac troponin concentrations following percutaneous coronary intervention. Am J Cardiol 2002;89:1300–1302.

    Article  PubMed  CAS  Google Scholar 

  94. Selvanayagam JB, Porto I, Channon K, et al. Troponin elevation after percutaneous coronory intervention directly represents the extent of irreversible myocardial injury: insights from cardiovascular magnetic resonance imaging. Circulation 2005;111:1027–1032.

    Article  PubMed  CAS  Google Scholar 

  95. Eigel P, van Ingen G, Wagenpfeil S. Predictive value of perioperative cardiac troponin I for adverse outcome in coronary artery bypass surgery. Eur J Cardiothorac Surg 2001;20:544–549.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Cantor, W.J., Newby, L.K. (2006). Cardiac Troponin After Revascularization Procedures. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics