Skip to main content

Corneal Angiogenesis

  • Chapter

Part of the Opthalmology Research book series (OPHRES)

Abstract

Corneal neovascularization (angiogenesis) results from the formation of new vascular structures from the limbal vasculature at the corneal edge. These new blood vessels may invade the normally avascular corneal stroma at different levels within the cornea (see Fig. 1).

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cursiefen C, Kuchle M, Naumann GOH. Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea 1998;17:611–613.

    Article  PubMed  CAS  Google Scholar 

  2. Ehlers H. Some experimental researches on corneal vessels. Acta Ophthalmol 1927;5:99–112.

    Article  Google Scholar 

  3. Hill JC. The relative importance of risk factors used to define high-risk keratoplasty. Ger J Ophthalmol 1996;5:36–41.

    PubMed  CAS  Google Scholar 

  4. Edelhauser HF, Ubels JL. The cornea and the sclera. In: Adler’s physiology of the Eye, Kaufman PL, Alm A, eds. Mosby, St. Louis, MO: 2003:47–114.

    Google Scholar 

  5. Zieske JD. Extracellular matrix and wound healing. Curr Opin Ophthalmol 2001;12:237–241.

    Article  PubMed  CAS  Google Scholar 

  6. Maurice DM. The structure and transparency of the cornea. J Physiol 1957;136:263–286.

    PubMed  CAS  Google Scholar 

  7. Cogan DG. Vascularization of the cornea. Its experimental induction by small lesions and a new theory of its pathogenesis. Arch Ophthalmol 1949;41:406–416.

    CAS  Google Scholar 

  8. Bron AJ, Tripathi RC, Tripathi BJ. Wolff’s anatomy of the eye and orbit. Chapman & Hall, London, 1997.

    Google Scholar 

  9. Funk R, Rohen JW. Scanning electron microscopic study on the vasculature of the human anterior eye segment, especially with respect to the ciliary processes. Exp Eye Res 1990;51:651–661.

    Article  PubMed  CAS  Google Scholar 

  10. Meyer PAR. The circulation of the human limbus. Eye 1989;3:121–127.

    PubMed  Google Scholar 

  11. Hayreh SS. Posterior ciliary artery circulation in health and disease. The Weisenfeld lecture. Invest Ophthalmol Vis Sci 2004;45:749–757.

    Article  PubMed  Google Scholar 

  12. Duke-Elder S, Leigh AG. System of Ophthalmology. Mosby, St. Louis, MO: 1965:676–691.

    Google Scholar 

  13. Arffa RC. Grayson’s Diseases of the Cornea. Mosby-Year Book, St. Louis, MO: 1991.

    Google Scholar 

  14. Dixon JM, Lawaczeck E. Corneal vascularization due to contact lenses. Arch Ophthalmol 1963;69:72–75.

    PubMed  CAS  Google Scholar 

  15. Madigan MC, Penfold PL, Holden BA, Billson FA. Ultrastructural features of contact lens-induced deep corneal neovascularization and associated stromal leukocytes. Cornea 1990;9:144–151.

    Article  PubMed  CAS  Google Scholar 

  16. Rozenman Y, Donnenfeld ED, Cohen EJ, Arentsen JJ, Bernardino VJ, Laibson PR. Contact lens-related deep stromal neovascularization. Am J Ophthalmol 1989;107:27–32.

    PubMed  CAS  Google Scholar 

  17. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. Storage of a heparin-binding angiogenic factor in the cornea: a new mechanism for corneal neovascularisation. Invest Ophthalmol Vis Sci 1987;28 (Suppl):230.

    Google Scholar 

  18. Chang J, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol 2001;12:242–249.

    Article  PubMed  CAS  Google Scholar 

  19. Klintworth GK. Corneal Angiogenesis. A Comprehensive Review. Springer-Verlag, New York: 1991.

    Google Scholar 

  20. Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 1998;43:245–269.

    Article  PubMed  CAS  Google Scholar 

  21. Burger PC, Chandler DB, Klintworth GK. Experimental corneal neovascularization: biomicroscopic, angiographic, and morphological correlation. Cornea 1985;4:35–41.

    Article  PubMed  Google Scholar 

  22. Yaylali V, Ohta T, Kaufman SC, Maitchouk DY, Beuerman RW. In vivo confocal imaging of corneal neovascularization. Cornea 1998;17:646–653.

    Article  PubMed  CAS  Google Scholar 

  23. Junghans BM, Collin HB. The limbal vascular response to corneal injury. An autoradiographic study. Cornea 1989;8:141–149.

    Article  PubMed  CAS  Google Scholar 

  24. Michaelson IC. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 1948;68:137–180.

    Google Scholar 

  25. Ashton N. Retinal angiogenesis in the human embryo. Br Med Bull 1970;26:103–106.

    PubMed  CAS  Google Scholar 

  26. Campbell FW, Michaelson IC. Blood-vessel formation in the cornea. Br J Ophthalmol 1949;33:248–255.

    Article  PubMed  CAS  Google Scholar 

  27. Rowson NJ, Dart JKG, Buckley RJ. Corneal neovascularisation in acute hydrops. Eye 1992;6:404–406.

    PubMed  Google Scholar 

  28. Burger PC, Chandler DB, Klintworth GK. Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest 1983;48:169–180.

    PubMed  CAS  Google Scholar 

  29. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996;37:1625–1632.

    PubMed  CAS  Google Scholar 

  30. Nishida T, Tanaka T. Extracellular matrix and growth factors in corneal wound healing. Curr Opin Ophthalmol 1996;7:2–11.

    Article  PubMed  CAS  Google Scholar 

  31. Ahmadi AJ, Jakobiec FA. Corneal wound healing: cytokines and extracellular matrix proteins. Int Ophthalmol Clin 2002;42:13–22.

    PubMed  Google Scholar 

  32. Pepose JS, Ubels JL. The cornea. In: Adler’s Physiology of the Eye, Hart WM Jr, ed. Mosby Year Book, St. Louis, MO:1992:29–70.

    Google Scholar 

  33. Moore JE, McMullen TCB, Campbell IL, et al. The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. Invest Ophthalmol Vis Sci 2002;43:2905–2915.

    PubMed  Google Scholar 

  34. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  35. Tombran-Tink J, Barnstable CJ. Therapeutic prospects for PEDF: more than a promising angiogenesis inhibitor. Trends Mol Med 2003;9:244–250.

    Article  PubMed  CAS  Google Scholar 

  36. Adamis AP, Aiello LP, D’Amato RA. Angiogenesis and ophthalmic disease. Angiogenesis 1999;3:9–14.

    Article  PubMed  CAS  Google Scholar 

  37. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Org 2001;79:214–221.

    PubMed  CAS  Google Scholar 

  38. Bourcier T, Thomas F, Borderie V, Chaumeil C, Laroche L. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. Br J Ophthalmol 2003;87:834–838.

    Article  PubMed  CAS  Google Scholar 

  39. Gilbert CE, Wood M, Waddel K, Foster A. Causes of childhood blindness in east Africa: results in 491 pupils attending 17 schools for the blind in Malawi, Kenya and Uganda. Ophthalmic Epidemiol 1995;2:77–84.

    PubMed  CAS  Google Scholar 

  40. Schwab L, Kagame K. Blindness in Africa: Zimbabwe schools for the blind survey. Br J Ophthalmol 1993;77:410–412.

    Article  PubMed  CAS  Google Scholar 

  41. Foster A, Sommer A. Childhood blindness from corneal ulceration in Africa: causes, prevention, and treatment. Bull World Health Org 1986;64:619–623.

    PubMed  CAS  Google Scholar 

  42. Foster A, Sommer A. Corneal ulceration, measles, and childhood blindness in Tanzania. Br J Ophthalmol 1987;71:331–343.

    Article  PubMed  CAS  Google Scholar 

  43. Sandford-Smith JH, Whittle HC. Corneal ulceration following measles in Nigerian children. Br J Ophthalmol 1979;63:720–724.

    Article  PubMed  CAS  Google Scholar 

  44. Carmichael TR, Wolpert M, Koornhof HJ. Corneal ulceration at an urban African hospital. Br J Ophthalmol 1985;69:920–926.

    Article  PubMed  CAS  Google Scholar 

  45. Upadhyay MP, Karmacharya PCD, Koirala S, et al. Epidemiologic characteristics, predisposing factors, and etiologic diagnosis of corneal ulceration in Nepal. Am J Ophthalmol 1991;111:92–99.

    PubMed  CAS  Google Scholar 

  46. Bucher PJM, Ijsselmuiden CB. Prevalence and causes of blindness in the northern Transvaal. Br J Ophthalmol 1988;72:721–726.

    Article  PubMed  CAS  Google Scholar 

  47. Weisbrod DJ, Sit M, Naor J, Slomovic AR. Outcomes of repeat penetrating keratoplasty and risk factors for graft failure. Cornea 2003;22:429–434.

    Article  PubMed  Google Scholar 

  48. Price MO, Thompson RW Jr, Price FW Jr. Risk factors for various causes of failure in initial corneal grafts. Arch Ophthalmol 2003;121:1087–1092.

    Article  PubMed  Google Scholar 

  49. Williams KA, Muehlberg SM, Lewis RF, Coster DJ. How successful is corneal transplantation? A report from the Australian corneal graft register. Eye 1995;9:219–227.

    PubMed  Google Scholar 

  50. Yorston D, Wood M, Foster A. Penetrating keratoplasty in Africa: graft survival and visual outcome. Br J Ophthalmol 1996;80:890–894.

    Article  PubMed  CAS  Google Scholar 

  51. Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis 1998;26:541–553.

    PubMed  CAS  Google Scholar 

  52. Liesegang TJ. Herpes simplex virus epidemiology and ocular importance. Cornea 2001;20:1–13.

    Article  PubMed  CAS  Google Scholar 

  53. Dawson CR, Togni B. Herpes simplex eye infections: clinical manifestations, pathogenesis and management. Surv Ophthalmol 1976;21:121–135.

    Article  PubMed  CAS  Google Scholar 

  54. Centifanto-Fitzgerald YM, Fenger T, Kaufman HE. Virus proteins in herpetic keratitis. Exp Eye Res 1982;35:425–441.

    Article  PubMed  CAS  Google Scholar 

  55. Lass JH, Berman MB, Campbell RC, Pavan-Langston D, Gage J. Treatment of experimental herpetic interstitial keratitis with medroxyprogesterone. Arch Ophthalmol 1980;98:520–527.

    PubMed  CAS  Google Scholar 

  56. Hendricks RL, Epstein RJ, Tumpey T. The effect of cellular immune tolerance to HSV-1 antigens on the immunopathology of HSV-1 keratitis. Invest Ophthalmol Vis Sci 1989;30:105–115.

    PubMed  CAS  Google Scholar 

  57. Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT. Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol 2001;75:9828–9835.

    Article  PubMed  CAS  Google Scholar 

  58. Sethi CS, Bailey TA, Luthert PJ, Chong NHV. Matrix metalloproteinase biology applied to vitreoretinal disorders. Br J Ophthalmol 2000;84:654–666.

    Article  PubMed  CAS  Google Scholar 

  59. Lee S, Zheng M, Kim B, Rouse BT. Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 2002;110:1105–1111.

    Article  PubMed  CAS  Google Scholar 

  60. Kremer I, Cohen EJ, Eagle RC, Udell I, Laibson PR. Histopathologic evaluation of stromal inflammation in Acanthamoeba keratitis. CLAO J 1994;20:45–48.

    PubMed  CAS  Google Scholar 

  61. Gottsch JD, Liu SH, Minkovitz JB, Goodman DF, Srinivasan M, Stark WJ. Autoimmunity to a cornea-associated stromal antigen in patients with Mooren’s ulcer. Invest Ophthalmol Vis Sci 1995;36:1541–1547.

    PubMed  CAS  Google Scholar 

  62. Chen J, Xie H, Wang Z, et al. Mooren’s ulcer in China: a study of clinical characteristics and treatment. Br J Ophthalmol 2000;84:1244–1249.

    Article  PubMed  CAS  Google Scholar 

  63. Watson PG. Management of Mooren’s ulceration. Eye 1997;11:349–356.

    PubMed  Google Scholar 

  64. Carmichael TR, Mervitz MD, Bezwoda W, Rush PS. Plasma exchange in the treatment of Mooren’s ulcer. Ann Ophthalmol 1985;17:311–314.

    PubMed  CAS  Google Scholar 

  65. Brodovsky SC, McCarty CA, Snibson G, et al. Management of alkali burns. Ophthalmology 2000;107:1829–1835.

    Article  PubMed  CAS  Google Scholar 

  66. Nishida K, Kinoshita S, Ohashi S, Kuwayama Y, Yamamoto S. Ocular surface abnormalities in aniridia. Am J Ophthalmol 1995;120:368–375.

    PubMed  CAS  Google Scholar 

  67. Huang AJW, Watson BD, Hernandez E, Tseng SCG. Induction of conjunctival transdifferentiation on vascularized corneas by photothrombotic occlusion of corneal neovascularization. Ophthalmology 1988;95:228–235.

    PubMed  CAS  Google Scholar 

  68. Joussen AM, Poulaki V, Mitsiades N, et al. VEGF-dependent conjunctivalization of the corneal surface. Invest Ophthalmol Vis Sci 2003;44:117–123.

    Article  PubMed  Google Scholar 

  69. Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP. Requirement for vascular endothelial growth factor in wound-and inflammation-related corneal neovascularisation. Invest Ophthalmol Vis Sci 1998;39:18–22.

    PubMed  CAS  Google Scholar 

  70. Zhang H, Li C, Baciu PC. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 2002;43:955–962.

    PubMed  Google Scholar 

  71. Braude LS, Sugar J. Circinate-pattern interstitial keratopathy in daily wear soft contact lens wearers. Arch Ophthalmol 1985;103:1662–1665.

    PubMed  CAS  Google Scholar 

  72. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene 2003;22:6549–6556.

    Article  PubMed  CAS  Google Scholar 

  73. Spaide RF, Ho-Spaide WC, Browne RW, Armstrong D. Characterization of peroxidized lipids in Bruch’s membrane. Retina 1999;19:141–147.

    Article  PubMed  CAS  Google Scholar 

  74. Marsh RJ, Marshal J. Treatment of lipid keratopathy with the argon laser. Br J Ophthalmol 1982;66:127–135.

    Article  PubMed  CAS  Google Scholar 

  75. Fossarello M, Peiretti E, Zucca I, Serra A. Photodynamic therapy of corneal neovascularization with verteporphin. Cornea 2003;22:485–488.

    Article  PubMed  Google Scholar 

  76. Pillai CT, Dua HS, Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest Ophthalmol Vis Sci 2000;41:2148–2153.

    PubMed  CAS  Google Scholar 

  77. Gordon YJ, Mann RK, Mah TS, Gorin MB. Fluorescein-potentiated argon laser therapy improves symptoms and appearance of corneal neovascularization. Cornea 2002;21:770–773.

    Article  PubMed  Google Scholar 

  78. Zauberman H. Pterygium and its recurrence. Am J Ophthalmol 1967;63:1780–1786.

    PubMed  CAS  Google Scholar 

  79. Hill JC, Maske R. Pathogenesis of pterygium. Eye 1989;3:218–226.

    PubMed  Google Scholar 

  80. Coroneo MT. Pterygium as an early indicator of ultraviolet insolation: a hypothesis. Br J Ophthalmol 1993;77:734–739.

    Article  PubMed  CAS  Google Scholar 

  81. Mackenzie FD, Hirst LW, Battistutta D, Green A. Risk analysis in the development of pterygia. Ophthalmology 1992;99:1056–1061.

    PubMed  CAS  Google Scholar 

  82. Booth F. Heredity in one hundred patients admitted for excision of pterygia. Aust N Z J Ophthalmol 1985;13:59–61.

    PubMed  CAS  Google Scholar 

  83. Carmichael TR. Genetic factors in pterygium in South Africans. S Afr Med J 2001;91:22.

    Google Scholar 

  84. Wong WW. A hypothesis on the pathogenesis of pterygiums. Ann Ophthalmol 1978;10:303–308.

    PubMed  CAS  Google Scholar 

  85. Ashton N, Cook C. Mechanism of corneal vascularization. Br J Ophthalmol 1953;37:193–209.

    Article  PubMed  CAS  Google Scholar 

  86. Jin J, Guan M, Sima J, et al. Decreased pigment epithelium-derived factor and increased vascular endothelial growth factor levels in pterygia. Cornea 2003;22:473–477.

    Article  PubMed  Google Scholar 

  87. Nolan TM, Di Girolamo N, Coroneo MT, Wakefield D. Proliferative effects of heparinbinding epidermal growth factor-like growth factor on pterygium epithelial cells and fibroblasts. Invest Ophthalmol Vis Sci 2004;45:110–113.

    Article  PubMed  Google Scholar 

  88. Carmichael TR, Gibson IHN, Küstner HGV. Blinding trachoma—a public health challenge. S Afr Med J 1982;61:5–8.

    PubMed  CAS  Google Scholar 

  89. Dawson CR, Juster R, Marx R, Daghfous MT, Djerad AB. Limbal disease in trachoma and other ocular chlamydial infections: risk factors for corneal vasclarisation. Eye 1989;3:204–209.

    PubMed  Google Scholar 

  90. Campochiaro PA, Hackett SF. Ocular neovascularization: a valuable model system. Oncogene 2003;22:6537–6548.

    Article  PubMed  CAS  Google Scholar 

  91. Fam NP, Verma S, Kutryk M, Stewart DJ. Clinician guide to angiogenesis. Circulation 2003;108:2613–2618.

    Article  PubMed  Google Scholar 

  92. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671–674.

    Article  PubMed  CAS  Google Scholar 

  93. Higazi TB, Pearlman E, Whikehart DR, Unnasch TR. Angiogenic activity of an Onchocerca volvulus Ancylostoma secreted protein homologue. Biochem Parasitol 2003;129:61–68.

    Article  CAS  Google Scholar 

  94. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235:442–447.

    Article  PubMed  CAS  Google Scholar 

  95. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    Article  PubMed  CAS  Google Scholar 

  96. Hanahan D. Signaling vascular morphogenesis and maintenance. Science 1997;277:48–50.

    Article  PubMed  CAS  Google Scholar 

  97. Goldmann E. The growth of malignant disease in man and the lower animals, with special reference to the vascular system. Proc R Soc Med 1 (Surgical section) 1907;1–13.

    Google Scholar 

  98. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  99. Frank RN. Vascular endothelial growth factor—Its role in retinal vascular proliferation. N Engl J Med 1994;331:1519–1520.

    Article  PubMed  CAS  Google Scholar 

  100. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimu-lates endothelial cell growth and angiogenesis. J Clin Invest 1989;84:1470–1478.

    Article  PubMed  CAS  Google Scholar 

  101. Leung DW, Cachianes G, Kuang W, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  102. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  103. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003;3:643–651.

    Article  PubMed  CAS  Google Scholar 

  104. Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 2000;41:2514–2522.

    PubMed  CAS  Google Scholar 

  105. Usui T, Ishida S, Yamashiro K, et al. VEGF 164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2. Invest Ophthalmol Vis Sci 2004;45:368–374.

    Article  PubMed  Google Scholar 

  106. Varela JC, Goldstein MH, Baker HV, Schultz GS. Microarray analysis of gene expression patterns during healing of rat corneas after excimer laser photorefractive keratectomy. Invest Ophthalmol Vis Sci 2002;43:1772–1782.

    PubMed  Google Scholar 

  107. Sullivan DC, Bicknell R. New molecular pathways in angiogenesis. Br J Cancer 2003;89:228–231.

    Article  PubMed  CAS  Google Scholar 

  108. Friedberg ML, Pleyer U, Mondino BJ. Device drug delivery to the eye. Collagen shields, iontophoresis, and pumps. Ophthalmology 1991;98:725–732.

    PubMed  CAS  Google Scholar 

  109. Sippel KC, Ma JJK, Foster CS. Amniotic membrane surgery. Curr Opin Ophthalmol 2001;12:269–281.

    Article  PubMed  CAS  Google Scholar 

  110. Jones IS, Meyer K. Inhibition of vascularization of the rabbit cornea by local application of cortisone. Proc Soc Exp Biol Med 1950;74:102–104.

    PubMed  CAS  Google Scholar 

  111. Ashton N, Cook C, Langham M. Effect of cortisone on vascularization and opacification of the cornea induced by alloxan. Br J Ophthalmol 1951;35:718–724.

    Article  PubMed  CAS  Google Scholar 

  112. Phillips K, Arffa R, Cintron C, et al. Effects of prednisolone and medroxyprogesterone on corneal wound healing, ulceration and neovascularization. Arch Ophthalmol 1983;101:640–643.

    PubMed  CAS  Google Scholar 

  113. McNatt LG, Weimer L, Yanni J, Clark AF. Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization. J Ocul Pharmacol Ther 1999;15:413–423.

    PubMed  CAS  Google Scholar 

  114. Carmichael TR, Gelfand Y, Welsh NH. Topical steroids in the treatment of central and paracentral corneal ulcers. Br J Ophthalmol 1990;74:528–531.

    Article  PubMed  CAS  Google Scholar 

  115. Stern GA, Buttross M. Use of corticosteroids in combination with antimicrobial drugs in the treatment of infectous corneal disease. Ophthalmology 1991;98:847–853.

    PubMed  CAS  Google Scholar 

  116. BenEzra D, Griffin BW, Maftzir G, Sharif NA, Clark AF. Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci 1997;38:1954–1962.

    PubMed  CAS  Google Scholar 

  117. Takahashi K, Saishin Y, Saishin Y, et al. Topical nepafenac inhibits ocular neovascularization. Invest Ophthalmol Vis Sci 2003;44:409–415.

    Article  PubMed  Google Scholar 

  118. Lipman RM, Epstein RJ, Hendricks RL. Suppression of corneal neovascularization with cyclosporine. Arch Ophthalmol 1992;110:405–407.

    PubMed  CAS  Google Scholar 

  119. Joussen AM, Beecken WD, Moromizato Y, Schwartz A, Kirchhof B, Poulaki V. Inhibition of inflammatory corneal angiogenesis by TNP-470. Invest Ophthalmol Vis Sci 2001;42:2510–2516.

    PubMed  CAS  Google Scholar 

  120. Ambati BK, Joussen AM, Kuziel WA, Adamis AP, Ambati J. Inhibition of corneal neovas-cularization by genetic ablation of CCR2. Cornea 2003;22:465–467.

    Article  PubMed  Google Scholar 

  121. Ambati BK, Anand A, Joussen AM, Kuziel WA, Adamis AP, Ambati J. Sustained inhibition of corneal neovascularization by genetic ablation of CCR5. Invest Ophthalmol Vis Sci 2003;44:590–593.

    Article  PubMed  Google Scholar 

  122. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.

    Article  PubMed  CAS  Google Scholar 

  123. Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 2004;295:2456–2459.

    Article  Google Scholar 

  124. Wu P-C, Liu C-C, Chen C-H, et al. Inhibition of experimental angiogenesis of cornea by somatostatin. Graefe’s Arch Clin Exp Ophthalmol 2003;241:63–69.

    CAS  Google Scholar 

  125. Murthy RC, McFarland TJ, Yoken J, et al. Corneal transduction to inhibit angiogenesis and graft failure. Invest Ophthalmol Vis Sci 2003;44:1837–1842.

    Article  PubMed  Google Scholar 

  126. King GL, Suzuma K. Pigment-epithelium-derived factor—a key coordinator of retinal neuronal and vascular functions. N Engl J Med 2000;342:349–351.

    Article  PubMed  CAS  Google Scholar 

  127. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999;285:245–248.

    Article  PubMed  CAS  Google Scholar 

  128. Tombran-Tink J, Barnstable CJ. PEDF: a multifacted neurotrophic factor. Nat Rev Neurosci 2003;4:628–636.

    Article  PubMed  CAS  Google Scholar 

  129. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 2002;43:2428–2434.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Carmichael, T.R. (2006). Corneal Angiogenesis. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics