Skip to main content

X Chromosome Rearrangements

  • Chapter
Genomic Disorders

Abstract

X chromosome rearrangements usually convey clinical manifestations in the hemizygous males and are, thus, readily ascertained. They are found in all parts of the X chromosome and are associated with more than 20 disorders. Some of the rearrangements are the results of homologous recombination between low-copy repeats (LCRs) on the X chromosome or between large homologous regions on the X and Y chromosome, whereas others are caused by nonhomologous end-joining (NHEJ). For most large deletions associated with contiguous gene syndromes, the deletion breakpoints remain uncharacterized. The deletions, as well as inversions and duplications on the X chromosome, occur mainly in male germ cells, indicating intrachromatid or sister chromatid exchange as the underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002;18:74–82.

    Article  PubMed  CAS  Google Scholar 

  2. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003;423:825–837.

    Article  PubMed  CAS  Google Scholar 

  3. Hentemann M, Reiss J, Wagner M, Cooper DN. Rapid detection of deletions in the Duchenne muscular dystrophy gene by PCR amplification of deletion-prone exon sequences. Hum Genet 1990;84:228–232.

    Article  PubMed  CAS  Google Scholar 

  4. Voskova-Goldman A, Peier A, Caskey CT, Richards CS, Shaffer LG. DMD-specific FISH probes are diag-nostically useful in the detection of female carriers of DMD gene deletions. Neurology 1997;48:1633–1638.

    PubMed  CAS  Google Scholar 

  5. Nomura K, Nakano H, Umeki K, et al. A study of the steroid sulfatase gene in families with X-linked ichthyosis using polymerase chain reaction. Acta Derm Venereol 1995;75:340–342.

    PubMed  CAS  Google Scholar 

  6. Valdes-Flores M, Kofman-Alfaro SH, Jimenez-Vaca AL, Cuevas-Covarrubias SA (2001) Carrier identification by FISH analysis in isolated cases of X-linked ichthyosis. Am J Med Genet 2001; 102:146–148.

    Article  PubMed  CAS  Google Scholar 

  7. Yen PH, Li XM, Tsai SP, Johnson C, Mohandas T, Shapiro LJ. Frequent deletions of the human X chromosome distal short arm result from recombination between low copy repetitive elements. Cell 1990;61: 603–610.

    Article  PubMed  CAS  Google Scholar 

  8. Nathans J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 1999;24:299–312.

    Article  PubMed  CAS  Google Scholar 

  9. Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 2000;405:466–472.

    Article  PubMed  CAS  Google Scholar 

  10. Aradhya S, Bardaro T, Galgoczy P, et al. Multiple pathogenic and benign genomic rearrangements occur at a 35 kb duplication involving the NEMO and LAGE2 genes. Hum Mol Genet 2001; 10:2557–2567.

    Article  PubMed  CAS  Google Scholar 

  11. Shaw-Smith C, Redon R, Rickman L, et al. Microarray based comparative genomic hybridization (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/ mental retardation and dysmorphic features. J Med Genet 2004;41:241–248.

    Article  PubMed  CAS  Google Scholar 

  12. Shapiro LJ. Steroid sulfatase deficiency and the genetics of the short arm of the human X chromosome. Adv Hum Genet 1985;14:331–381.

    PubMed  CAS  Google Scholar 

  13. Yen PH, Marsh B, Allen E, et al. The human X-linked steroid sulfatase gene and a Y-encoded pseudogene: evidence for an inversion of the Y chromosome during primate evolution. Cell 1988;55:1123–1135.

    Article  PubMed  CAS  Google Scholar 

  14. Hernandez-Martin A, Gonzalez-Sarmiento R, de Unamuno P. X-linked ichthyosis: an update. Brit J Dermat 1999;141:617–627.

    Article  CAS  Google Scholar 

  15. Shapiro LJ, Yen P, Pomerantz D, Martin E, Rolewic L, Mohandas T. Molecular studies of deletions at the human steroid sulfatase locus. Proc Natl Acad Sci USA 1989;86:8477–8481.

    Article  PubMed  CAS  Google Scholar 

  16. Ballabio A, Carrozzo R, Parenti G, et al. Molecular heterogeneity of steroid sulfatase deficiency: amulticenter study on 57 unrelated patients, at DNA and protein levels. Genomics 1989;4:36–40.

    Article  PubMed  CAS  Google Scholar 

  17. Saeki H, Kuwata S, Nakagawa H, Shimada S, Tamaki K, Ishibashi Y. Deletion pattern of the steroid sulphatase gene in Japanese patients with X-linked ichthyosis. Br J Dermatol 1998; 139:96–98.

    Article  PubMed  CAS  Google Scholar 

  18. Jimenez Vaca AL, Valdes-Flores Mdel R, Rivera-Vega MR, Gonzalez-Huerta LM, Kofman-Alfaro SH, Cuevas-Covarrubias S A. Deletion pattern of the STS gene in X-linked ichthyosis in a Mexican population. Mol Med 2001;7:845–849.

    PubMed  CAS  Google Scholar 

  19. Yen PH, Ellison J, Salido EC., Mohandas T, Shapiro L. Isolation of a new gene from the distal short arm of the human X chromosome that escapes X-inactivation. Hum Mol Genet 1992;1:47–52.

    Article  PubMed  CAS  Google Scholar 

  20. Lee W-C, Salido E, and Yen PH (1994) Isolation of anew gene GS2 (DXS1283E) from a CpG island between STS and KAL1 on Xp22.3. Genomics 22, 372–376.

    Article  PubMed  CAS  Google Scholar 

  21. Lahn BT, Page DC. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum Mol Genet 2000;9:311–319.

    Article  PubMed  CAS  Google Scholar 

  22. Li XM, Yen PH, Shapiro LJ. Characterization of a low copy repetitive element S232 involved in the generation of frequent deletions of the distal short arm of the human X chromosome. Nucl Acids Res 1992;20: 1117–1122.

    Article  PubMed  CAS  Google Scholar 

  23. Zou SW, Zhang JC, Zhang XD, et al. Expression and localization of VCX/Y proteins and their possible involvement in regulation of ribosome assembly during spermatogenesis. Cell Res 2003;13:171–177.

    Article  PubMed  CAS  Google Scholar 

  24. Wu TC, Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 1994;263:515–518.

    Article  PubMed  CAS  Google Scholar 

  25. Berlin AL, Paller AS, Chan LS. Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol 2002;47:169–187.

    Article  PubMed  Google Scholar 

  26. Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum Mol Genet 2001;10:2171–2179.

    Article  PubMed  CAS  Google Scholar 

  27. Rossiter JP, Young M, Kimberland ML, et al. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum Mol Genet 1994;3:1035–1039.

    Article  PubMed  CAS  Google Scholar 

  28. Hoyer LW. Hemophilia A. New Engl J Med 1994;330:38–47.

    Article  PubMed  CAS  Google Scholar 

  29. Antonarakis SE, Kazazian HH, Tuddenham EG. Molecular etiology of factor VIII deficiency in hemophilia A. Hum Mutat 1995;5:1-22.

    Google Scholar 

  30. Naylor JA, Buck D, Green P, Williamson H, Bentley D, Giannelli F. Investigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion junctions. Hum Mol Genet 1995;4:1217–1224.

    Article  PubMed  CAS  Google Scholar 

  31. Lakich D, Kazazian HH Jr, Antonarakis SE, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet 1993;5:236–241.

    Article  PubMed  CAS  Google Scholar 

  32. Naylor JA, Nicholson P, Goodeve A, Hassock S, Peake I, Giannelli F. A novel DNA inversion causing severe hemophilia A. Blood 1996;87:3255-3261.

    Google Scholar 

  33. Young ID, Harper PS. Incidence of Hunter’s syndrome. Hum Genet 1982;60:391–392.

    Article  PubMed  CAS  Google Scholar 

  34. Flomen RH, Green EP, Green PM, Bentley DR, Giannelli F. Determination of the organisation of coding sequences within the iduronate sulphate sulphatase (IDS) gene. Hum Mol Genet 1993;2:5–10.

    Article  PubMed  CAS  Google Scholar 

  35. Bondeson ML, Dahl N, Malmgren H, et al. Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet 1995;4:615–621.

    Article  PubMed  CAS  Google Scholar 

  36. Timms KM, Bondeson ML, Ansari-Lari MA, et al. Molecular and phenotypic variation in patients with severe Hunter syndrome. Hum Mol Genet 1997;6:479–486.

    Article  PubMed  CAS  Google Scholar 

  37. Bunge S, Rathmann M, Steglich C, et al. Homologous nonallelic recombinations between the iduronate-sulfatase gene and pseudogene cause various intragenic deletions and inversions in patients with mucopolysaccharidosis type II. Eur J Hum Genet 1998;6:492–00.

    Article  PubMed  CAS  Google Scholar 

  38. Emery AEH. Emery-Dreifuss syndrome. J Med Genet 1989;26:637–641.

    PubMed  CAS  Google Scholar 

  39. Bione S, Maestrini E, Rivella S, et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 1994;8:323–327.

    Article  PubMed  CAS  Google Scholar 

  40. Small K, Iber J, Warren ST. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat Genet 1997;16:96–99.

    Article  PubMed  CAS  Google Scholar 

  41. Small K, Warren ST. Emerin deletions occurring on both Xq28 inversion backgrounds. Hum Mol Genet 1998;7:135–139.

    Article  PubMed  CAS  Google Scholar 

  42. O’Brien KF, Kunkel LM. Dystrophin and muscular dystrophy: past, present, and future. Mol Genet Metab 2001;74:75–88.

    Article  PubMed  CAS  Google Scholar 

  43. Inoue K, Osaka H, Thurston VC, et al. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am J Hum Genet 2002;71:838–853.

    Article  PubMed  Google Scholar 

  44. Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 1995;9:184–190.

    Article  PubMed  CAS  Google Scholar 

  45. Den Dunnen JT, Grootscholten PM, Bakker E, et al. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am J Hum Genet 1989;45:835–847.

    Google Scholar 

  46. Shomrat R, Gluck E, Legum C, Shiloh Y. Relatively low proportion of dystrophin gene deletions in Israeli Duchenne and Becker muscular dystrophy patients. Am J Med Genet 1994;49:369–373.

    Article  PubMed  CAS  Google Scholar 

  47. Baumbach LL, Chamberlain JS, Ward PA, Farwell NJ, Caskey CT. Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies. Neurology 1989;39:465–474.

    PubMed  CAS  Google Scholar 

  48. Sironi M, Pozzoli U, Cagliani R, et al. Relevance of sequence and structure elements for deletion events in the dystrophin gene major hot-spot. Hum Genet 2002;112:272–288.

    Google Scholar 

  49. Toffolatti L, Cardazzo B, Nobile C, et al. Investigating the mechanism of chromosomal deletion: characterization of 39 deletion breakpoints in introns 47 and 48 of the human dystrophin gene. Genomics 2002;80:523–530.

    Article  PubMed  CAS  Google Scholar 

  50. Oudet C, Hanauer A, Clemens P, Caskey T, Mandel JL. Two hot spots of recombination in the DMD gene correlate with the deletion prone regions. Hum Mol Genet 1992;1:599–603.

    Article  PubMed  CAS  Google Scholar 

  51. Hu X, Ray PN, Murphy EG, Thompson MW, Worton RG. Duplicational mutation at the Duchenne muscular dystrophy locus: its frequency, distribution, origin, and phenotype genotype correlation. Am J Hum Genet 1990;46:682–695.

    PubMed  CAS  Google Scholar 

  52. Rao E, Weiss B, Fukami M, et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 1997;16:54–63.

    Article  PubMed  CAS  Google Scholar 

  53. Ellison JW, Wardak Z, Young MF, Gehron Robey P, Laig-Webster M, Chiong W. PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum Mol Genet 1997;6:1341–1347.

    Article  PubMed  CAS  Google Scholar 

  54. Rao E, Blaschke RJ, Marchini A, Niesler B, Burnett M, Rappold GA. The Leri-Weill and Turner syndrome homeobox gene SHOX encodes a cell-type-specific transcriptional activator. Hum Mol Genet 2001; 10: 3083–3091.

    Article  PubMed  CAS  Google Scholar 

  55. Blaschke RJ, Rappold GA. SHOX: Growth, Leri-Weill and Turner syndromes. Trends Endocrinol Metab 2000; 11:227–230.

    Article  PubMed  CAS  Google Scholar 

  56. Belin V, Cusin V, Viot G, et al. SHOX mutations in dyschondrosteosis (Leri-Weill syndrome). Nat Genet 1998;19:67–69.

    Article  PubMed  CAS  Google Scholar 

  57. Shears DJ, Vassal HJ, Goodman FR, et al. Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet 1998;19:70–73.

    Article  PubMed  CAS  Google Scholar 

  58. Schiller S, Spranger S, Schechinger B, et al. Phenotypic variation and genetic heterogeneity in Leri-Weill syndrome. Eur J Hum Genet 2000;8:54–62.

    Article  PubMed  CAS  Google Scholar 

  59. Flanagan SF, Munns CFJ, Hayes M, et al. Prevalence of mutations in the short stature homeobox containing gene (SHOX) in Madulung deformity of childhood. J Med Genet 2002;39:758–763.

    Article  PubMed  CAS  Google Scholar 

  60. Rappold GA, Fukami M, Niesler B, et al. Deletions of the homeobox gene SHOX (Short Stature Homeobox) are an important cause of growth failure in children with short stature. J Clin Encocrinol Metab 2002;87: 1402–1406.

    Article  CAS  Google Scholar 

  61. Ballabio A. Contiguous deletion syndromes. Curr Opin Genet Dev 1991;1:25–29.

    Article  PubMed  CAS  Google Scholar 

  62. Schaefer L, Ferrero GB, Grillo A, et al. A high resolution deletion map of human chromosome Xp22. Nat Genet 1993;4:272–279.

    Article  PubMed  CAS  Google Scholar 

  63. Seidel J, Schiller S, Kelbova C, et al. Brachytelephalangic dwarfism due to the loss of ARSE and SHOX genes resulting from an X;Y translocation. Clin Genet 2001;59:115–121.

    Article  PubMed  CAS  Google Scholar 

  64. Frints SG, Fryns J, Lagae L, Syearsrou M, Marynen P, Devriendt K. Xp22.3; Yq11.2 chromosome translocation and its clinical manifestations. Ann Genet 2001;44:71–76.

    PubMed  CAS  Google Scholar 

  65. Franco B, Meroni G, Parenti G, et al. A cluster of sulfatase genes on Xp22.3: Mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy. Cell 1995;81:5–25.

    Article  Google Scholar 

  66. Legouis R, Hardelin J-P, Levilliers J, et al. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 1991;67:423–435.

    Article  PubMed  CAS  Google Scholar 

  67. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991;353:529–536.

    Article  PubMed  CAS  Google Scholar 

  68. Bassi MT, Schiaffino MV, Renieri A, et al. Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromosome. Nat Genet 1995;10:13–19.

    Article  PubMed  CAS  Google Scholar 

  69. Prakash SK, Cormier TA, McCall AE, et al. Loss of holocytochrome c-type synthetase causes the male lethality of X-linked dominant microphthalmia with linear skin defects (MLS) syndrome. Hum Mol Genet 2002; 11:3237–3248.

    Article  PubMed  CAS  Google Scholar 

  70. Fukami M, Kirsch S, Schiller S, et al. A member of a gene family on Xp22.3, VCX-A, is deleted in patients with X-linked nonspecific mental retardation. Am J Hum Genet 2000;67:563–573.

    Article  PubMed  CAS  Google Scholar 

  71. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–297.

    Article  PubMed  CAS  Google Scholar 

  72. Lindsay EA, Grillo A, Ferrero GB, et al. Microphthalmia with linear skin defects (MLS) syndrome: clinical, cytogenetic, and molecular characterization. Am J Med Genet 1994;49:229–234.

    Article  PubMed  CAS  Google Scholar 

  73. Yen PH, Tsai SP, Wenger SL, Steele MW, Mohandas TK, Shapiro LJ. X/Y translocations resulting from recombination between homologous sequences on Xp and Yq. Proc Natl Acad Sci USA 1991;88:8944–8948.

    Article  PubMed  CAS  Google Scholar 

  74. Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science 1999;286:964–967.

    Article  PubMed  CAS  Google Scholar 

  75. Meroni G, Franco B, Archidiacono N, et al. Characterization of a cluster of sulfatase genes on Xp22.3 suggests gene duplications in an ancestral pseudoautosomal region. Hum Mol Genet 1996;5:423–431.

    Article  PubMed  CAS  Google Scholar 

  76. Incerti B, Guioli S, Pragliola A, et al. Kallmann syndrome gene on the X and Y chromosomes: implications for evolutionary divergence of human sex chromosomes. Nat Genet 1992;2:311–314.

    Article  PubMed  CAS  Google Scholar 

  77. Knowlton RG, Nelson CA, Brown VA, Page DC, Donis-Keller H. An extremely polymorphic locus on the short arm of the human X chromosome with homology to the long arm of the Y chromosome. Nucl Acids Res 1989;17:423–437.

    Article  PubMed  CAS  Google Scholar 

  78. Bardoni B, Guioli S, Raimondi E, et al. Isolation and characterization of a family of sequences dispersed on the human X chromosome. Genomics 1988;3:32–38.

    Article  PubMed  CAS  Google Scholar 

  79. Ballabio A, Bardoni B, Guioli S, Basler E, Camerino G. Two families of low-copy-number repeats are interspersed on Xp22.3implications for the high frequency of deletions in this region. Genomics 1990;8: 263–270.

    Article  PubMed  CAS  Google Scholar 

  80. Martinez-Garay I, Jablonka S, Sutajova M, Steuernagel P, Gal A, Kutsche K. A new gene family (FAM9) of low-copy repeats in Xp22.3 expressed exclusively in testis: implications for recombinations in this region. Genomics 2002;80:259–267.

    Article  PubMed  CAS  Google Scholar 

  81. McCabe ER, Towbin JA, van den Engh G, Trask BJ. Xp21 contiguous gene syndromes: deletion quanti-tation with bivariate flow karyotyping allows mapping of patient breakpoints. Am J Hum Genet 1992;51: 1277–1285.

    PubMed  CAS  Google Scholar 

  82. Sjarif DR, Ploos van Amstel JK, Duran M, Beemer FA, Poll-The BT. Isolated and contiguous glycerolkinase gene disorders: a review. J Inherit Metab Dis 2000;23:529–547.

    Google Scholar 

  83. Hellerud C, Adamowicz M, Jurkiewicz D, et al. Clinical heterogeneity and molecular findings in five Polish patients with glycerol kinase deficiency: investigation of two splice site mutations with computerized splice junction analysis and Xp21 gene-specific mRNA analysis. Mol Genet Metab 2003;79:149–159.

    Article  PubMed  CAS  Google Scholar 

  84. Sasaki R, Inamo Y, Saitoh K, Hasegawa T, Kinoshita E, Ogata T. Mental retardation in a boy with congenital adrenal hypoplasia: a clue to contiguous gene syndrome involving DAX1 and IL1RAPL. Endocr J 2003;50:303–307.

    Article  PubMed  CAS  Google Scholar 

  85. Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994;372:635–641.

    Article  PubMed  CAS  Google Scholar 

  86. Bardoni B, Zanaria E, Guioli S, et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 1994;7:497–501.

    Article  PubMed  CAS  Google Scholar 

  87. Royer-Pokora B, Kunkel LM, Monaco AP, et al. Cloning the gene for an inherited human disorder-chronic granulomatous disease-on the basis of its chromosomal location. Nature 1986;322:32–38.

    Article  PubMed  CAS  Google Scholar 

  88. Collins FA, Murphy DL, Reiss AL, et al. Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am J Med Genet 1992;42:127–134.

    Article  PubMed  CAS  Google Scholar 

  89. Chen ZY, Denney RM, Breakefield XO. Norrie disease and MAO genes: nearest neighbors. Hum Mol Genet 1995;4:1729–1737.

    Article  PubMed  CAS  Google Scholar 

  90. Suarez-Merino B, Bye J, McDowall J, Ross M, Craig IW. Sequence analysis and transcript identification within 1.5 MB of DNA deleted together with the NDP and MAO genes in atypical Norrie disease patients presenting with a profound phenotype. Hum Mutat 2001;17:523.

    Article  PubMed  CAS  Google Scholar 

  91. Davies HR, Hughes IA, Savage MO, et al. Androgen insensitivity with mental retardation: a contiguous gene syndrome? J Med Genet 1997;34:158–160.

    Article  PubMed  CAS  Google Scholar 

  92. Schueler MG, Higgins AW, Nagaraja R, et al. Large-insert clone/STS contigs in Xq1 1-q12, spanning deletions in patients with androgen insensitivity and mental retardation. Genomics 2000;66:104–109.

    Article  PubMed  CAS  Google Scholar 

  93. Merry DE, Lesko JG, Sosnoski DM, et al. Choroideremia and deafness with stapes fixation: a contiguous gene deletion syndrome in Xq21. Am J Hum Genet 1989;45:530–540.

    PubMed  CAS  Google Scholar 

  94. Kandpal G, Jacob AN, Kandpal RP. Transcribed sequences encoded in the region involved in contiguous deletion syndrome that comprises X-linked stapes fixation and deafness. Somat Cell Mol Genet 1996;22: 511–517.

    Article  PubMed  CAS  Google Scholar 

  95. de Kok YJ, Vossenaar ER, Cremers CW, et al. Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Hum Mol Genet 1996;5: 1229–1235.

    Article  PubMed  Google Scholar 

  96. Yntema HG, van den Helm B, Kissing J, et al. A novel ribosomal S6-kinase (RSK4; RPS6KA6) is commonly deleted in patients with complex X-linked mental retardation. Genomics 1999;62:332–343.

    Article  PubMed  CAS  Google Scholar 

  97. Richter D, Conley ME, Rohrer J, et al. A contiguous deletion syndrome of X-linked agammaglobulinemia and sensorineural deafness. Pediatr Allergy Immunol 2001;12:107–111.

    Article  PubMed  CAS  Google Scholar 

  98. Garcia-Torres R, Cruz D, Orozco L, Heidet L, Gubler MC. Alport syndrome and diffuse leiomyomatosis. Clinical aspects, pathology, molecular biology and extracellular matrix studies. A synthesis. Nephrologie 2000;21:9–12.

    CAS  Google Scholar 

  99. Jonsson JJ, Renieri A, Gallagher PG, et al. Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome? J Med Genet 1998;35:273–278.

    PubMed  CAS  Google Scholar 

  100. Piccini M, Vitelli F, Bruttini M, et al. FACL4, a new gene encoding long-chain acyl-CoA synthetase 4, is deleted in a family with Alport syndrome, elliptocytosis, and mental retardation. Genomics 1998;47: 350–358.

    Article  PubMed  CAS  Google Scholar 

  101. Vitelli F, Piccini M, Caroli F, et al. Identification and characterization of a highly conserved protein absent in the Alport syndrome (A), mental retardation (M), midface hypoplasia (M), and elliptocytosis (E) contiguous gene deletion syndrome (AMME). Genomics 1999;55:335–340.

    Article  PubMed  CAS  Google Scholar 

  102. Piccini M, Vitelli F, Seri M, et al. KCNE1-like gene is deleted in AMME contiguous gene syndrome: identification and characterization of the human and mouse homologs. Genomics 1999;60:251–257.

    Article  PubMed  CAS  Google Scholar 

  103. Corzo D, Gibson W, Johnson K, et al. Contiguous deletion of the X-linked adrenoleukodystrophy gene (ABCD1) and DXS1357E: a novel neonatal phenotype similar to peroxisomal biogenesis disorders. Am J Hum Genet 2002;70:1520–1531.

    Article  PubMed  CAS  Google Scholar 

  104. Hu LJ, Laporte J, Kress W, et al. Deletions in Xq28 in two boys with myotubular myopathy and abnormal genital development define a new contiguous gene syndrome in a 430 kb region. Hum Mol Genet 1996;5: 139–143.

    Article  PubMed  CAS  Google Scholar 

  105. Bartsch O, Kress W, Wagner A, Seemanova E. The novel contiguous gene syndrome of myotubular myopathy (MTM1), male hypogenitalism and deletion in Xq28:report of the first familial case. Cytogenet Cell Genet 1999;85:310–314.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yen, P.H. (2006). X Chromosome Rearrangements. In: Lupski, J.R., Stankiewicz, P. (eds) Genomic Disorders. Humana Press. https://doi.org/10.1007/978-1-59745-039-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-039-3_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-559-0

  • Online ISBN: 978-1-59745-039-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics