Skip to main content

Tumor Oxygenation and Treatment Response

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Solid tumor oxygenation is highly heterogeneous, often showing regions of hypoxia that demonstrate oxygen concentrations much lower than those encountered in normal tissues. Tumor hypoxia can cause treatment resistance, resulting in a poorer treatment outcome. In addition, hypoxia forms a part of the pathophysiologic microenvironment that characterizes solid tumors and is involved in disease progression, possibly through alterations in gene expression. This chapter discusses recent research focused on methods of measuring tumor hypoxia accurately and extensively, with the aim of tailoring treatment on an individual patient basis. Examples of therapeutic approaches designed to exploit tumor hypoxia directly or indirectly, are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaupel P, Kelleher DK, Höckel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 2001; 28:29–35.

    Article  PubMed  CAS  Google Scholar 

  2. Subarsky P, Hill RP. The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 2003; 20:237–250.

    Article  PubMed  CAS  Google Scholar 

  3. Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer Metastasis Rev 2004; 23:293–310.

    Article  PubMed  CAS  Google Scholar 

  4. Bussink J, Kaanders JH, van der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 2003; 67:3–15.

    Article  PubMed  Google Scholar 

  5. Olive PL, Banath JP, Aquino-Parsons C. Measuring hypoxia in solid tumours-is there a gold standard? Acta Oncol 2001; 40:917–923.

    Article  PubMed  CAS  Google Scholar 

  6. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004; 4:437–447.

    Article  PubMed  CAS  Google Scholar 

  7. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3:721–732.

    Article  PubMed  CAS  Google Scholar 

  8. Dewhirst MW. Concepts of oxygen transport at the microcirculatory level. Semin Radiat Oncol 1998; 8:143–150.

    Article  PubMed  CAS  Google Scholar 

  9. Li CY, Shan S, Huang Q, et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 2000; 92: 143–147.

    Article  PubMed  CAS  Google Scholar 

  10. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407:242–248.

    Article  PubMed  CAS  Google Scholar 

  11. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989; 49:6449–6465.

    PubMed  CAS  Google Scholar 

  12. Dewhirst MW, Ong ET, Braun RD, et al. Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia. Br J Cancer 1999; 79: 1717–1722.

    Article  PubMed  CAS  Google Scholar 

  13. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003; 163:1801–1815.

    PubMed  Google Scholar 

  14. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955; 9:539–549.

    PubMed  CAS  Google Scholar 

  15. Chaplin DJ, Olive PL, Durand RE. Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 1987; 47:597–601.

    PubMed  CAS  Google Scholar 

  16. Pigott KH, Hill SA, Chaplin DJ, Saunders MI. Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother Oncol 1996; 40:45–50.

    Article  PubMed  CAS  Google Scholar 

  17. Li X, Brown SL, Hill RP. Factors influencing the thermosensitivity of two rodent tumors. Radiat Res 1992; 130:211–219.

    Article  PubMed  CAS  Google Scholar 

  18. Kimura H, Braun RD, Ong ET, et al. Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 1996; 56:5522–5528.

    PubMed  CAS  Google Scholar 

  19. Dewhirst MW, Braun RD, Lanzen JL. Temporal changes in pO2 of R3230AC tumors in Fischer-344 rats. Int J Radiat Oncol Biol Phys 1998; 42:723–726.

    Article  PubMed  CAS  Google Scholar 

  20. Brurberg KG, Graff B A, Rofstad EK. Temporal heterogeneity in oxygen tension in human melanoma xenografts. Br J Cancer 2003; 89:350–356.

    Article  PubMed  CAS  Google Scholar 

  21. Hall EJ. Radiobiology for the Radiologist. Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  22. Horan AD, Koch CJ. The Km for radiosensitization of human tumor cells by oxygen is much greater than 3 mmHg and is further increased by elevated levels of cysteine. Radiat Res 2001; 156:388–398.

    Article  PubMed  CAS  Google Scholar 

  23. Teicher B A. Hypoxia and drug resistance. Cancer Metastasis Rev 1994; 13: 139–168.

    Article  PubMed  CAS  Google Scholar 

  24. Kallinowski F, Zander R, Hoeckel M, Vaupel, P. Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int J Radiat Oncol Biol Phys 1990; 19:953–961.

    PubMed  CAS  Google Scholar 

  25. Milosevic M, Fyles A, Hedley D, Hill R. The human tumor microenvironment: Invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 2004; 14:249–258.

    Article  PubMed  Google Scholar 

  26. Evans SM, Koch CJ. Prognostic significance of tumor oxygenation in humans. Cancer Lett 2003; 195:1–16.

    Article  PubMed  CAS  Google Scholar 

  27. Nordsmark M, Loncaster J, Chou SC, et al. Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys 2001; 49:581–586.

    Article  PubMed  CAS  Google Scholar 

  28. Evans SM, Hahn S, Pook DR, et al. Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 2000; 60:2018–2024.

    PubMed  CAS  Google Scholar 

  29. Evans SM, Judy KD, Dunphy I, et al. Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 2004; 64:1886–1892.

    Article  PubMed  CAS  Google Scholar 

  30. Kaanders JH, Wijffels KI, Marres HA, et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res 2002; 62:7066–7074.

    PubMed  CAS  Google Scholar 

  31. Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 2000; 59:47–53.

    Article  PubMed  CAS  Google Scholar 

  32. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996; 271:32,253–32,259.

    Article  PubMed  CAS  Google Scholar 

  33. Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399:271–275.

    Article  PubMed  CAS  Google Scholar 

  34. Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59:5830–5835.

    PubMed  CAS  Google Scholar 

  35. Birner P, Schindl M, Obermair A, etal. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 2000; 60:4693–4596.

    PubMed  CAS  Google Scholar 

  36. Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 2001; 61:2911–2916.

    PubMed  CAS  Google Scholar 

  37. Chia SK, Wykoff CC, Watson PH, et al. Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 2001; 19:3660–3688.

    PubMed  CAS  Google Scholar 

  38. Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradio-therapy. Clin Cancer Res 2001; 7:3399–3403.

    PubMed  CAS  Google Scholar 

  39. Loncaster JA, Harris AL, Davidson SE, et al. Carbonic anhydrase (CAIX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 2001; 61:6394–6399.

    PubMed  CAS  Google Scholar 

  40. Maseide K, Kandel RA, Bell RS, et al. Carbonic anhydrase IX as a marker for poor prognosis in soft tissue sarcoma. Clin Cancer Res 2004; 10:4464–4471.

    Article  PubMed  CAS  Google Scholar 

  41. Airley R, Loncaster J, Davidson S, et al. Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 2001; 7:928–934.

    PubMed  CAS  Google Scholar 

  42. Beasley NJ, Leek R, Alam M, et al. Hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 2002; 62:2493–2497.

    PubMed  CAS  Google Scholar 

  43. Bui MH, Seligson D, Han KR, et al. Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 2003; 9:802–811.

    PubMed  CAS  Google Scholar 

  44. Kaluz S, Kaluzova M, Chrastina A, et al. Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1 alpha stabilization: a role for phosphatidylinositol 3′-kinase. Cancer Res 2002; 62:4469–4477.

    PubMed  CAS  Google Scholar 

  45. Maxwell PH, Dachs GU, Gleadle JM, et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997; 94:8104–8109.

    Article  PubMed  CAS  Google Scholar 

  46. West CM, Jones T, Price P. The potential of positron-emission tomography to study anticancer-drug resistance. Nat Rev Cancer 2004; 4:457–469.

    Article  PubMed  CAS  Google Scholar 

  47. Koch CJ, Evans SM. Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 2003; 510:285–292.

    PubMed  CAS  Google Scholar 

  48. Mazurchuk R, Zhou R, Straubinger RM, Chau RI, Grossman Z. Functional magnetic resonance (fMR) imaging of a rat brain tumor model: implications for evaluation of tumor microvasculature and therapeutic response. Magn Reson Imaging 1999; 17:537–548.

    Article  PubMed  CAS  Google Scholar 

  49. Fyles A, Milosevic M, Hedley D, et al. Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 2002; 20:680–687.

    Article  PubMed  CAS  Google Scholar 

  50. Hockel M, Schlenger K, Mitze M, Schaffer U, Vaupel P. Hypoxia and radiation response in human tumors. Semin Radiat Oncol 1996; 6:3–9.

    Article  PubMed  Google Scholar 

  51. Rofstad EK, Sundfor K, Lyng H, Trope CG. Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. Br J Cancer 2000; 83:354–359.

    Article  PubMed  CAS  Google Scholar 

  52. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol 1999; 53:113–117.

    Article  PubMed  CAS  Google Scholar 

  53. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996; 41:31–39.

    PubMed  CAS  Google Scholar 

  54. Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 2000; 57:39–43.

    Article  PubMed  CAS  Google Scholar 

  55. Nordsmark M, Alsner J, Keller J, et al. Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 2001; 84:1070–1075.

    Article  PubMed  CAS  Google Scholar 

  56. Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996; 56:941–943.

    PubMed  CAS  Google Scholar 

  57. Parker C, Milosevic M, Toi A, et al. Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 2004; 58:750–757.

    Article  PubMed  Google Scholar 

  58. Movsas B, Chapman JD, Hanlon AL, et al. Hypoxia in human prostate carcinoma: an Eppendorf pO2 study. Am J Clin Oncol 2001; 24:458–461.

    Article  PubMed  CAS  Google Scholar 

  59. Movsas B, Chapman JD, Hanlon AL, et al. Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology 2002; 60:634–639.

    Article  PubMed  Google Scholar 

  60. Young SD, Marshall RS, Hill RP. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci U S A 1988; 85:9533–9537.

    Article  PubMed  CAS  Google Scholar 

  61. De Jaeger K, Kavanagh MC, Hill RP. Relationship of hypoxia to metastatic ability in rodent tumours. Br J Cancer 2001; 84:1280–1285.

    Article  PubMed  Google Scholar 

  62. Buchler P, Reber HA, Lavey RS, et al. Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model. J Surg Res 2004; 120:295–303.

    Article  PubMed  CAS  Google Scholar 

  63. Rofstad EK, Danielsen T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 1999; 80:1697–1707.

    Article  PubMed  CAS  Google Scholar 

  64. Cairns RA, Kalliomaki T, Hill RP. Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 2001; 61:8903–8908.

    PubMed  CAS  Google Scholar 

  65. Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 2004; 64:2054–2061.

    Article  PubMed  CAS  Google Scholar 

  66. Rofstad EK. Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000; 76:589–605.

    Article  PubMed  CAS  Google Scholar 

  67. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996; 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang L, Hill RP. Hypoxia enhances metastatic efficiency by up regulating mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res 2004; 64:4180–4190.

    Article  PubMed  CAS  Google Scholar 

  69. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment. Cancer Res 1996; 56:5754–5757.

    PubMed  CAS  Google Scholar 

  70. Mihaylova VT, Bindra RS, Yuan J, et al. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 2003; 23:3265–3573.

    Article  PubMed  CAS  Google Scholar 

  71. Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev 2001; 11:293–299.

    Article  PubMed  CAS  Google Scholar 

  72. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998; 95:7987–7992.

    Article  PubMed  CAS  Google Scholar 

  73. Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 1999; 274:6519–6525.

    Article  PubMed  CAS  Google Scholar 

  74. Salceda S, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on re-dox-induced changes. J Biol Chem 1997; 272:22,642–22,647.

    Article  PubMed  CAS  Google Scholar 

  75. Wang GL, Jiang BH, Rue EA, Semenza GL.Hypoxia-inducible factor 1 is abasic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995; 92:5510–5514.

    Article  PubMed  CAS  Google Scholar 

  76. Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000; 2:423–427.

    Article  PubMed  CAS  Google Scholar 

  77. Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 2000; 19:4298–4309.

    Article  PubMed  CAS  Google Scholar 

  78. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxy-lation: implications for O2 sensing. Science 2001; 292:464–468.

    PubMed  CAS  Google Scholar 

  79. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292:468–472.

    PubMed  CAS  Google Scholar 

  80. Lando D, Gorman JJ, Whitelaw ML, Peet DJ. Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 2003; 270:781–790.

    Article  PubMed  CAS  Google Scholar 

  81. Blancher C, Moore JW, Talks KL, Houlbrook S, Harris AL. Relationship of hypoxia-inducible factor (HIF)-1 alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 2000; 60:7106–7113.

    PubMed  CAS  Google Scholar 

  82. Bos R, van der Groep P, Greijer AE, et al. Levels of hypoxia-inducible factor-1 alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 2003; 97:1573–1581.

    Article  PubMed  Google Scholar 

  83. Koukourakis MI, Giatromanolaki A, Sivridis E, et al. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer 2003; 89:877–885.

    Article  PubMed  CAS  Google Scholar 

  84. Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157:411–421.

    PubMed  CAS  Google Scholar 

  85. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 2000; 6:1335–1340.

    Article  PubMed  CAS  Google Scholar 

  86. Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 2001; 61:6548–6554.

    PubMed  CAS  Google Scholar 

  87. Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 2003; 63:1138–1143.

    PubMed  CAS  Google Scholar 

  88. Jaffar M, Williams KJ, Stratford IJ. Bioreductive and gene therapy approaches to hypoxic diseases. Adv Drug Deliv Rev 2001; 53:217–228.

    Article  PubMed  CAS  Google Scholar 

  89. Stratford IJ, Adams GE, Bremner JC, et al. Manipulation and exploitation of the tumour environment for therapeutic benefit. Int J Radiat Biol 1994; 65:85–94.

    Article  PubMed  CAS  Google Scholar 

  90. Stratford IJ, Williams KJ, Cowen RL, Jaffar M. Combining bioreductive drugs and radiation for the treatment of solid tumors. Semin Radiat Oncol 2003; 13:42–52.

    Article  PubMed  Google Scholar 

  91. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58:1408–1416.

    PubMed  CAS  Google Scholar 

  92. Koch CJ. Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res 1993; 53:3992–3997.

    PubMed  CAS  Google Scholar 

  93. Biedermann KA, Wang J, Graham RP, Brown JM. SR4233 cytotoxicity and metabolism in DNA repair-competent and repair-deficient cell cultures. Br J Cancer 1991; 63:358–362.

    PubMed  CAS  Google Scholar 

  94. Dorie MJ, Brown JM. Modification of the antitumor activity of chemotherapeutic drugs by the hypoxic cytotoxic agent tirapazamine. Cancer Chemother Pharmacol 1997; 39:361–366.

    Article  PubMed  CAS  Google Scholar 

  95. Johnson CA, Kilpatrick D, von Roemeling R, et al. Phase I trial of tirapazamine in combination with cisplatin in a single dose every 3 weeks in patients with solid tumors. J Clin Oncol 1997; 15:773–780.

    PubMed  CAS  Google Scholar 

  96. Miller VA, Ng KK, Grant SC, et al. Phase II study of the combination of the novel bioreductive agent, tirapazamine, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 1997; 8:1269–1271.

    Article  PubMed  CAS  Google Scholar 

  97. Bedikian AY, Legha SS, Eton O, et al. Phase II trial of tirapazamine combined with cisplatin in chemotherapy of advanced malignant melanoma. Ann Oncol 1997; 8:363–367.

    Article  PubMed  CAS  Google Scholar 

  98. von Pawel J, von Roemeling R, Gatzemeier U, et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. Cisplatin and Tirapazamine in Subjects with Advanced Previously Untreated Non-Small-Cell Lung Tumors. J Clin Oncol 2000; 18:1351–1359.

    Google Scholar 

  99. Lee DJ, Trotti A, Spencer S, et al. Concurrent tirapazamine and radiotherapy for advanced head and neck carcinomas: a Phase II study. Int J Radiat Oncol Biol Phys 1998; 42:811–815.

    Article  PubMed  CAS  Google Scholar 

  100. Craighead PS, Pearcey R, Stuart G. A phase I/II evaluation of tirapazamine administered intravenously concurrent with cisplatin and radiotherapy in women with locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 2000; 48:791–795.

    Article  PubMed  CAS  Google Scholar 

  101. Del Rowe J, Scott C, Werner-Wasik M, et al. Single-arm, open-label phase II study of intravenously administered tirapazamine and radiation therapy for glioblastoma multiforme. J Clin Oncol 2000; 18:1254–1259.

    PubMed  CAS  Google Scholar 

  102. Rischin D, Peters L, Hicks R, et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 2001; 19:535–542.

    PubMed  CAS  Google Scholar 

  103. Rischin D, Peters L, Fisher R, et al. Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin and radiation in patients with locally advanced head and neck cancer: a randomised phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol 2005; 23(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  104. Patterson LH. Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy. Drug Metab Rev 2002; 34:581–592.

    Article  PubMed  CAS  Google Scholar 

  105. Hejmadi MV, McKeown SR, Friery OP, McIntyre IA, Patterson LH, Hirst DG. DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells. Br J Cancer 1996; 73:499–505.

    PubMed  CAS  Google Scholar 

  106. Loadman PM, Swaine DJ, Bibby MC, Welham KJ, Patterson LH. Apreclinical pharmacokinetic study of the bioreductive drug AQ4N. Drug Metab Dispos 2001; 29:422–426.

    PubMed  CAS  Google Scholar 

  107. Patterson LH, McKeown SR. AQ4N: a new approach to hypoxia-activated cancer chemotherapy. Br J Cancer 2000; 83:1589–1593.

    Article  PubMed  CAS  Google Scholar 

  108. McCarthy HO, Yakkundi A, McErlane V, et al. Bioreductive GDEPT using cytochrome P450 3 A4 in combination with AQ4N. Cancer Gene Ther 2003; 10:40–48.

    Article  PubMed  CAS  Google Scholar 

  109. Dachs GU, Patterson AV, Firth JD, et al. Targeting gene expression to hypoxic tumor cells. Nat Med 1997; 3:515–520.

    Article  PubMed  CAS  Google Scholar 

  110. Patterson AV, Williams KJ, Cowen RL, et al. Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours. Gene Ther 2002; 9:946–954.

    Article  PubMed  CAS  Google Scholar 

  111. O’Neill P, McNeil SS, Jenkins TC. Induction of DNA crosslinks in vitro upon reduction of the nitroimidazole-aziridines RSU-1069 and RSU-1131. Biochem Pharmacol 1987; 36:1787–1792.

    Article  PubMed  CAS  Google Scholar 

  112. Stratford IJ, Walling JM, Silver AR. The differential cytotoxicity of RSU 1069: cell survival studies indicating interaction with DNA as a possible mode of action. Br J Cancer 1986; 53:339–344.

    PubMed  CAS  Google Scholar 

  113. Cowen RL, Williams KJ, Chinje EC, et al. Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure. Cancer Res 2004; 64:1396–1402.

    Article  PubMed  CAS  Google Scholar 

  114. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosen-sitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5:429–441.

    Article  PubMed  CAS  Google Scholar 

  115. Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 2003; 22:3213–3220.

    Article  PubMed  CAS  Google Scholar 

  116. Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hy-poxia-inducible factor 1 transcriptional activation pathway. Cancer Res 2002; 62:4316–4324.

    PubMed  CAS  Google Scholar 

  117. Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 2003; 95:516–525.

    Article  PubMed  CAS  Google Scholar 

  118. Rapisarda A, Uranchimeg B, Sordet O, et al. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res 2004; 64:1475–1482.

    Article  PubMed  CAS  Google Scholar 

  119. Becker A, Hansgen G, Bloching M, et al. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 1998; 42:35–41.

    Article  PubMed  CAS  Google Scholar 

  120. Koong AC, Mehta VK, Le QT, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000; 48:919–922.

    Article  PubMed  CAS  Google Scholar 

  121. Lyng H, Sundfor K, Rofstad EK. Oxygen tension in human tumours measured with polarographic needle electrodes and its relationship to vascular density, necrosis and hypoxia. Radiother Oncol 1997; 44:163–169.

    Article  PubMed  CAS  Google Scholar 

  122. Sundfor K, Lyng H, Trope CG, Rofstad EK. Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascularization. Radiother Oncol 2000; 54:101–107.

    Article  PubMed  CAS  Google Scholar 

  123. Knocke TH, Weitmann HD, Feldmann HJ, Selzer E, Potter R. Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 1999; 53:99–104.

    Article  PubMed  CAS  Google Scholar 

  124. Hockel M, Schlenger K, Hockel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999; 59:4525–4528.

    PubMed  CAS  Google Scholar 

  125. Rudat V, Stadler P, Becker A, et al. Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlenther Onkol 2001; 177:462–468.

    Article  PubMed  CAS  Google Scholar 

  126. Rudat V, Vanselow B, Wollensack P, et al. Repeatability and prognostic impact of the pretreatment pO2 histography in patients with advanced head and neck cancer. Radiother Oncol 2000; 57:31–37.

    Article  PubMed  CAS  Google Scholar 

  127. Stadler P, Becker A, Feldmann HJ, et al. Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 1999; 44:749–754.

    Article  PubMed  CAS  Google Scholar 

  128. Brown JM. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 1993; 67:1163–1170.

    PubMed  CAS  Google Scholar 

  129. Patterson LH, McKeown SR, Ruparelia K, et al. Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, abioreductively activated anti-tumour agent. BrJ Cancer 2000; 82:1984–1990.

    Article  CAS  Google Scholar 

  130. Papadopoulou MV, Bloomer WD. NLCQ-1 (NSC 709257): exploiting hypoxia with a weak DNA-intercalating bioreductive drug. Clin Cancer Res 2003; 9:5714–5720.

    PubMed  CAS  Google Scholar 

  131. Chen J, Zhao S, Nakada K, et al. Dominant-negative hypoxia-inducible factor-1 alpha reduces tumori-genicity of pancreatic cancer cells through the suppression of glucose metabolism. Am J Pathol 2003; 162:1283–1291.

    PubMed  CAS  Google Scholar 

  132. Sun X, Kanwar JR, Leung E, et al. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 2001; 8:638–645.

    Article  PubMed  CAS  Google Scholar 

  133. Sun X, Kanwar JR, Leung E, Vale M, Krissansen GW. Regression of solid tumors by engineered overexpression of von Hippel-Lindau tumor suppressor protein and antisense hypoxia-inducible factor-1alpha. Gene Ther 2003; 10:2081–2089.

    Article  PubMed  CAS  Google Scholar 

  134. Aquino VM, Weitman SD, Winick NJ, et al. Phase I trial of tirapazamine and cyclophosphamide in children with refractory solid tumors: apediatric oncology group study. J Clin Oncol 2004; 22:1413–1419.

    Article  PubMed  CAS  Google Scholar 

  135. Hoff PM, Saad ED, Ravandi-Kashani F, Czerny E, Pazdur R. Phase I trial of i.v. administered tirapazamine plus cyclophosphamide. Anticancer Drugs 2001; 12:499–503.

    Article  PubMed  CAS  Google Scholar 

  136. Lara PN, Jr., Frankel P, Mack PC, et al. Tirapazamine plus carboplatin and paclitaxel in advanced malignant solid tumors: a California cancer consortium phase I and molecular correlative study. Clin Cancer Res 2003; 9:4356–4362.

    PubMed  CAS  Google Scholar 

  137. Shulman LN, Buswell L, Riese N, et al. Phase I trial of the hypoxic cell cytotoxin tirapazamine with concurrent radiation therapy in the treatment of refractory solid tumors. Int J Radiat Oncol Biol Phys 1999; 44:349–353.

    Article  PubMed  CAS  Google Scholar 

  138. Aghajanian C, Brown C, O’Flaherty C, et al. Phase I study of tirapazamine and cisplatin in patients with recurrent cervical cancer. Gynecol Oncol 1997; 67:127–130.

    Article  PubMed  CAS  Google Scholar 

  139. Senan S, Rampling R, Graham MA, et al. Phase I and pharmacokinetic study of tirapazamine (SR 4233) administered every three weeks. Clin Cancer Res 1997; 3:31–38.

    PubMed  CAS  Google Scholar 

  140. Bedikian AY, Legha SS, Eton O, et al. Phase II trial of escalated dose of tirapazamine combined with cisplatin in advanced malignant melanoma. Anticancer Drugs 1999; 10:735–739.

    Article  PubMed  CAS  Google Scholar 

  141. Treat J, Johnson E, Langer C, et al. Tirapazamine with cisplatin in patients with advanced non-small-cell lung cancer: a phase II study. J Clin Oncol 1998; 16:3524–3527.67

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lunt, S.J., Hill, R.P. (2006). Tumor Oxygenation and Treatment Response. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics