Skip to main content

Amplification in DNA Copy Numbers as a Mechanism of Acquired Drug Resistance

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1629 Accesses

Abstract

Resistance to chemotherapeutic agents represents a chief cause of mortality in cancer patients with advanced disease. Gene amplification has been shown to be one of the molecular mechanisms for tumors to escape the effect of chemotherapeutic drugs. The amplification and subsequent overexpression of the chemoresistant gene product are likely the results of tumor cell clonal expansion under the selective pressure of chemotherapeutic agents. In the past few decades, researchers have correlated the amplification of several target genes to drug resistance status in in vitro cell culture models. Although it is possible for gene amplification to be a widespread mechanismof chemore-sistance in cancer patients, only a few well-studied examples are presently available. Therefore, the future application of new advances in molecular genetic technology holds promise for the discovery of novel amplified chemoresistant genes, which may significantly affect our understanding of how tumors become chemoresistant as well as provide a molecular platform for customized treatment of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yasui K, Mihara S, Zhao C, et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Res 2004; 64:1403–1410.

    Article  PubMed  CAS  Google Scholar 

  2. Schimke RT. Gene amplification in cultured cells. J Biol Chem 1988; 263:5989–5892.

    PubMed  CAS  Google Scholar 

  3. Gollin SM. Chromosomal instability. Curr Opin Oncol 2004; 16:25–31.

    Article  PubMed  Google Scholar 

  4. Ma C, Martin S, Trask B, Hamlin JL. Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells. Genes Dev 1993; 7:605–620.

    Article  PubMed  CAS  Google Scholar 

  5. Singer MJ, Mesner LD, Friedman CL, Trask BJ, Hamlin JL. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc Natl Acad Sci USA 2000; 97:7921–7926.

    Article  PubMed  CAS  Google Scholar 

  6. Goker E, Waltham M, Kheradpour A, et al. Amplification of the dihydrofolate reductase gene is a mechanism of acquired resistance to methotrexate in patients with acute lymphoblastic leukemia and is correlated with p53 gene mutations. Blood 1995; 86:677–684.

    PubMed  CAS  Google Scholar 

  7. Roninson IB. Molecular mechanism of multidrug resistance in tumor cells. Clin Physiol Biochem 1987; 5:140–51.

    PubMed  CAS  Google Scholar 

  8. Reeve JG, Rabbitts PH, Twentyman PR. Amplification and expression of mdr1 gene in a multidrug resistant variant of small cell lung cancer cell line NCI-H69. Br J Cancer 1989; 60:339–342.

    PubMed  CAS  Google Scholar 

  9. Carman MD, Schornagel JH, Rivest RS, et al. Resistance to methotrexate due to gene amplification in a patient with acute leukemia. J Clin Oncol 1984; 2:16–20.

    PubMed  CAS  Google Scholar 

  10. Horns RC, Jr., Dower WJ, Schimke RT. Gene amplification in a leukemic patient treated with methotrexate. J Clin Oncol 1984; 2:2–7.

    PubMed  Google Scholar 

  11. Trent JM, Buick RN, Olson S, Horns RC Jr, Schimke RT. Cytologic evidence for gene amplification in methotrexate-resistant cells obtained from a patient with ovarian adenocarcinoma. J Clin Oncol 1984; 2:8–15.

    PubMed  CAS  Google Scholar 

  12. Merkel DE, Fuqua SA, McGuire WL. P-glycoprotein in breast cancer. Cancer Treat Res 1989; 48:97–105.

    PubMed  CAS  Google Scholar 

  13. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3:330–338.

    Article  PubMed  CAS  Google Scholar 

  14. Giacchetti S, Perpoint B, Zidani R, et al. Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 2000; 18:136–147.

    PubMed  CAS  Google Scholar 

  15. de Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 2000; 18:2938–2947.

    PubMed  Google Scholar 

  16. Wang TL, Diaz LA Jr, Romans K, et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci U S A 2004; 101:3089–3094.

    Article  PubMed  CAS  Google Scholar 

  17. Goktas S, Ziada A, Crawford ED. Combined androgen blockade for advanced prostatic carcinoma. Prostate Cancer Prostatic Dis 1999; 2:172–179.

    Article  PubMed  CAS  Google Scholar 

  18. Edwards J, Krishna NS, Grigor KM, Bartlett JM. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003; 89:552–556.

    Article  PubMed  CAS  Google Scholar 

  19. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61:3550–3555.

    PubMed  CAS  Google Scholar 

  20. Ford OH III, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol 2003; 170:1817–1821.

    Article  PubMed  CAS  Google Scholar 

  21. Brown RS, Edwards J, Dogan A, et al. Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. J Pathol 2002; 198:237–244.

    Article  PubMed  CAS  Google Scholar 

  22. Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9:401–406.

    Article  PubMed  CAS  Google Scholar 

  23. Koivisto P, Kononen J, Palmberg C, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57:314–319.

    PubMed  CAS  Google Scholar 

  24. Bubendorf L, Kononen J, Koivisto P, et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999; 59:803–806.

    PubMed  CAS  Google Scholar 

  25. Hochhaus A, La Rosee P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia 2004; 18:1321–1331.

    Article  PubMed  CAS  Google Scholar 

  26. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 2003; 4:75–85.

    Article  PubMed  Google Scholar 

  27. le Coutre P, Tassi E, Varella-Garcia M, et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 2000; 95:1758–1766.

    PubMed  Google Scholar 

  28. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293:876–880.

    Article  PubMed  CAS  Google Scholar 

  29. Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16:2190–2196.

    Article  PubMed  CAS  Google Scholar 

  30. Morel F, Bris MJ, Herry A, et al. Double minutes containing amplified bcr-abl fusion gene in a case of chronic myeloid leukemia treated by imatinib. Eur J Haematol 2003; 70:235–239.

    Article  PubMed  Google Scholar 

  31. Gambacorti-Passerini CB, Rossi F, Verga M, et al. Differences between in vivo and in vitro sensitivity to imatinib of Bcr/Abl+ cells obtained from leukemic patients. Blood Cells Mol Dis 2002; 28:361–372.

    Article  PubMed  Google Scholar 

  32. Ozols RF. Current status of chemotherapy for ovarian cancer. Semin Oncol 1995; 22(Suppl 12):S61–S66.

    Google Scholar 

  33. Inoue J, Otsuki T, Hirasawa A, et al. Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol 2004; 165:71–81.

    PubMed  CAS  Google Scholar 

  34. Takano M, Kudo K, Goto T, Yamamoto K, Kita T, Kikuchi Y. Analyses by comparative genomic hybridization of genes relating with cisplatin-resistance in ovarian cancer. Hum Cell 2001; 14:267–271.

    PubMed  CAS  Google Scholar 

  35. Makhija S, Sit A, Edwards R, et al. Identification of genetic alterations related to chemoresistance in epithelial ovarian cancer. Gynecol Oncol 2003; 90:3–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992; 258:818–821.

    Article  PubMed  CAS  Google Scholar 

  37. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20:207–211.

    Article  PubMed  CAS  Google Scholar 

  38. Wang TL, Maierhofer C, Speicher MR, et al. Digital karyotyping. Proc Natl Acad Sci U S A 2002; 99:16,156–16,161.

    Article  PubMed  CAS  Google Scholar 

  39. Neuteboom ST, Karjian PL, Boyer CR, et al. Inhibition of cell growth by NB1011 requires high thymidylate synthase levels and correlates with p53, p21, bax, and GADD45 induction. Mol Cancer Ther 2002; 1:377–384.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jim Yen, M., Shih, IM., Velculescu, V.E., Wang, TL. (2006). Amplification in DNA Copy Numbers as a Mechanism of Acquired Drug Resistance. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics