Skip to main content

p53-Based Immunotherapy of Cancer

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

In recent years, there has been an increasing awareness that the immune system, in particular the T-cell component, plays a significant role in tumor eradication. Advances in molecular immunology and identification of T-cell-defined human tumor antigens have accelerated the development of vaccines to promote T-cell-mediated antitumor immune responses. In general, many shared human tumor antigens are derived from proteins overexpressed or derepressed in tumors relative to normal cells. Alteration in the tumor suppressor gene product, p53, is one of the most common events in human cancers, but mutant p53-based immunotherapy would require “custom-made” vaccines for use in relatively few patients. Because most mutations in p53 are associated with accumulation or “overexpression” of mutant p53 in the cytosol, the protein is more readily available for antigenic processing and presentation than are the low levels of p53 molecules expressed in normal cells. A vaccine targeting wild-type sequence (wt) or nonmutant sequence peptides derived from altered p53 molecules, therefore, is a more attractive approach for developing broadly applicable cancer vaccines.

Extensive preclinical murine tumor model studies using peptide-based and DNA vaccines have demonstrated that wt p53-based vaccines can induce tumor eradication in the absence of deleterious antitumor autoimmune side effects. Like any T-cell-based immunotherapy, effective p53-based immunotherapy will be dependent on patients’ responsiveness to wt p53 peptides and the ability of their tumors to present these peptides for T-cell recognition. These and other issues and concerns related to p53-based vaccines are discussed together with a brief summary of the initial clinical trials of p53- based immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 1979; 76:2420–2424.

    Article  PubMed  CAS  Google Scholar 

  2. Jay G, DeLeo, AB, Appella E, DuBois GC, Law LW, Khoury G, Old, LJ. A common transformationrelated protein in murine sarcomas and leukemias, Cold Spring Harbor Sym Quant Biol. 1980; 44:659–664.

    CAS  Google Scholar 

  3. Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88:1442–1455.

    Article  PubMed  CAS  Google Scholar 

  4. Hollstein M, Shomer B, Greenblatt M, et al. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 1996; 24:141–146.

    Article  PubMed  CAS  Google Scholar 

  5. Oliver M, Eeles R, Hollstein, M, Khan MA, Harris CC, Hainaut P. TP53 Database: new online mutation analysis and recommendations to users. Hum Mutat 2002; 19:607–614.

    Article  CAS  Google Scholar 

  6. Lane D. p53 from pathway to therapy. Carcinogenesis 2004; 25:1077–1081.

    Article  PubMed  CAS  Google Scholar 

  7. Li M, Brooks CL, Kon N, Gu W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell 2004; 13:879–886.

    Article  PubMed  CAS  Google Scholar 

  8. McCormick F. Cancer-specific viruses and the development of ONYX-015. Cancer Biol Ther 2003; 2:S157–S160.

    PubMed  CAS  Google Scholar 

  9. Sogn JA. Tumor immunology: the glass is half full. Immunity 1998; 9:757–763.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenberg SA. Shedding light on immunotherapy for cancer. N Engl J Med 2004; 350:1461–1463.

    Article  PubMed  CAS  Google Scholar 

  11. Toes RE, Ossendorp F, Offringa Melief CJM. CD4 T cells and their role in antitumor immune responses. J Exp Med 1999; 189:753–756.

    Article  PubMed  CAS  Google Scholar 

  12. Hung K. Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998; 188:2357–2368.

    Article  PubMed  CAS  Google Scholar 

  13. Ossendorp F, Mengede E, Camps M, Filius R, Melief CJM. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 1998; 187:693–702.

    Article  PubMed  CAS  Google Scholar 

  14. Rotzschke O, Falk K, Deres K, et al. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 1990; 348:252–254.

    Article  PubMed  CAS  Google Scholar 

  15. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351:290–296.

    Article  PubMed  CAS  Google Scholar 

  16. Renkvist N, Castelli C, Robbins PF, Parmiani G. A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 2001; 50:3–15.

    Article  PubMed  CAS  Google Scholar 

  17. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer 1982; 30:403 08.

    Article  PubMed  CAS  Google Scholar 

  18. Bourhis J, Lubin R, Roche B, et al. Analysis of p53 serum antibodies in patients with head and neck squamous cell carcinoma. J Natl Cancer Inst 1996; 88:1228–1233.

    Article  PubMed  CAS  Google Scholar 

  19. Soussi T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 2000; 60:1777–1788.

    PubMed  CAS  Google Scholar 

  20. Houbiers JG, van der Burg SH, van de Watering LM, et al. Antibodies against p53 are associated with poor prognosis of colorectal cancer. Br J Cancer 1995; 72:637–641.

    PubMed  CAS  Google Scholar 

  21. van der Burg SH, de Cock K, Menon AG, et al. Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur J Immunol 2001; 31:146–155.

    Article  PubMed  Google Scholar 

  22. Hauser U, Balz V, Carey TE, et al. Reliable detection of p53 aberrations in squamous cell carcinomas of the head and neck requires transcript analysis of the entire coding region. Head Neck 2002; 24:868–873.

    Article  PubMed  Google Scholar 

  23. Balz V, Scheckenbach K, Gotte K, Bockmuhl U, Petersen I, Bier H. Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2-11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens. Cancer Res 2003; 63:1188–1191.

    PubMed  CAS  Google Scholar 

  24. Nijman, HW, Van der Burg SH. Vierboom MP, Houbiers JG, Kast WM, Melief CJ. p53, apotential target for tumor-directed T cells. Immunol Lett 1994; 40:171–178.

    Article  PubMed  CAS  Google Scholar 

  25. Mayordomo JI, Loftus DJ, Sakamoto H, et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183:1357–1365.

    Article  PubMed  CAS  Google Scholar 

  26. Hilburger Ryan M, Abrams SI. Characterization of CD8+ cytotoxic T lymphocyte/tumor cell interactions reflecting recognition of an endogenously expressed murine wild-type p53 determinant. Cancer Immunol Immunother 2001; 49:603–612.

    Article  PubMed  CAS  Google Scholar 

  27. Tuting T, DeLeo AB, Lotze MT, Storkus WJ. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or &quote;self&quote; antigens induce antitumor immunity in vivo. Eur J Immunol 1997; 27:2702–2707.

    Article  PubMed  CAS  Google Scholar 

  28. Nikitina EY, Chada S, Muro-Cacho C, et al. An effective immunization and cancer treatment with activated dendritic cells transduced with full-length wild-type p53. Gene Ther 2002; 9:345–352.

    Article  PubMed  CAS  Google Scholar 

  29. Tuting T, Gambotto A, Robbins PD, Storkus WJ, DeLeo AB. Co-delivery of T helper 1-biasing cytokine genes enhances the efficacy of gene gun immunization of mice: studies with the model tumor antigen beta-galactosidase and the BALB/c Meth A p53 tumor-specific antigen. Gene Ther 1999; 6:629–636.

    Article  PubMed  CAS  Google Scholar 

  30. Putzer BM, Bramson JL, Addison CL, et al. Combination therapy with interleukin-2 and wild-type p53 expressed by adenoviral vectors potentiates tumor regression in a murine model of breast cancer. Hum Gene Ther 1998; 9:707–718.

    PubMed  CAS  Google Scholar 

  31. Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA. Tolerance to p53 by A2.1restricted cytotoxic T lymphocytes. J Exp Med 1997; 185:833–841.

    Article  PubMed  CAS  Google Scholar 

  32. Hernandez J, Lee PP, Davis MM, Sherman LA. The use of HLA A2. 1/p53 peptide tetramers to visualize the impact of self tolerance on the TCR repertoire. J Immunol 2000; 164:596–602.

    PubMed  CAS  Google Scholar 

  33. Vierboom MP, Nijman HW, Offringa R, et al. Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med 1997; 186:695–704.

    Article  PubMed  CAS  Google Scholar 

  34. Zwaveling S, Vierboom MP, Ferreira Mota SC, et al. Antitumor efficacy of wild-type p53-specific CD4(+) T-helper cells. Cancer Res 2002; 62:6187–6193.

    PubMed  CAS  Google Scholar 

  35. McCarty TM, Liu X, Sun JY, Peralta EA, Diamond DJ, Ellenhorn JD. Targeting p53 for adoptive T-cell immunotherapy. Cancer Res 1998; 58:2601–2605.

    PubMed  CAS  Google Scholar 

  36. Hernandez J, Ko A, Sherman LA. CTLA-4 blockade enhances the CTL responses to the p53 self-tumor antigen. J Immunol 2001; 166:3908–3914.

    PubMed  CAS  Google Scholar 

  37. Espenschied J, Lamont J, Longmate J, et al. CTLA-4 blockade enhances the therapeutic effect of an attenuated poxvirus vaccine targeting p53 in an established murine tumor model. J Immunol 2003; 170:3401–3407.

    PubMed  CAS  Google Scholar 

  38. Daftarian P, Song GY, Ali S, et al. Two distinct pathways of immuno-modulation improve potency of p53 immunization in rejecting established tumors. Cancer Res 2004; 64:5407–5414.

    Article  PubMed  CAS  Google Scholar 

  39. Wojdani A, Alfred LJ. Alterations in cell-mediated immune functions induced in mouse splenic lymphocytes by polycyclic aromatic hydrocarbons. Cancer Res 1984; 44:942–945.

    PubMed  CAS  Google Scholar 

  40. Burchiel SW, Luster MI. Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol 2001; 98:2–10.

    Article  PubMed  CAS  Google Scholar 

  41. Lutz CT, Browne G, Petzold CR. Methylcholanthrene causes increased thymocyte apoptosis. Toxicology 1998; 128:151–167.

    Article  PubMed  CAS  Google Scholar 

  42. Cicinnati VR Dworacki G, Albers A, et al. Impact of p53-based immunization on primary chemically induced tumors. Int J Cancer 2004; 113:961–970.

    Article  CAS  Google Scholar 

  43. Liu, X, Peralta, EA, Ellenhorn JD, Diamond DJ. Targeting of human p53-overexpressing tumor cells by an HLA A*0201-restricted murine T-cell receptor expressed in Jurkat T cells. Cancer Res 2000; 60:693–701.

    PubMed  CAS  Google Scholar 

  44. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. S YFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1991; 50:213–219.

    Article  Google Scholar 

  45. Ropke M, Hald J, Guldberg P, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci USA 1996; 93:14,704–14,707.

    Article  PubMed  CAS  Google Scholar 

  46. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A 1995; 92:11,993–11,997.

    Article  PubMed  CAS  Google Scholar 

  47. Gnjatic S, Cai Z, Viguier M, Chouaib S, Guillet JG, Choppin J. Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 1998; 160:328–333.

    PubMed  CAS  Google Scholar 

  48. Chikamatsu K, Nakano K, Storkus WJ, et al. Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using autologous dendritic cells. Clin Cancer Res 1999; 5:1281–1288.

    PubMed  CAS  Google Scholar 

  49. Eura M, Chikamatsu K, Katsura F, et al. A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck. Clin Cancer Res 2000; 6:979–986.

    PubMed  CAS  Google Scholar 

  50. McArdle SE, Rees RC, Mulcahy KA, Saba J, McIntyre CA, Murray AK. Induction of human cytotoxic T lymphocytes that preferentially recognise tumour cells bearing a conformational p53 mutant. Cancer Immunol Immunother 2000; 49:417–125.

    Article  PubMed  CAS  Google Scholar 

  51. Barfoed AM, Petersen TR, Kirkin AF, Thor Straten P, Claesson MH, Zeuthen J. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells in vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand J Immunol 2000; 51:128–133.

    Article  PubMed  CAS  Google Scholar 

  52. Schirle M, Keilholz W, Weber B, et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 2000; 30:2216–2225.

    Article  PubMed  CAS  Google Scholar 

  53. Wurtzen PA, Pedersen LO, Poulsen HS, Claesson MH. Specific killing of P53 mutated tumor cell lines by a cross-reactive human HLA-A2-restricted P53-specific CTL line. Int J Cancer 2001; 93:855–861.

    Article  PubMed  CAS  Google Scholar 

  54. Casares N, Lasarte JJ, de Cerio AL, et al. Immunization with a tumor-associated CTL epitope plus a tumor-related or unrelated Th1 helper peptide elicits protective CTL immunity. Eur J Immunol 2001; 31:1780–1789.

    Article  PubMed  CAS  Google Scholar 

  55. Wang L, Miyahara Y, Kato T, Aota T, Kuribayashi K, Shiku H. Essential roles of tumor-derived helper T cell epitopes for an effective peptide-based tumor vaccine. Cancer Immun 2003; 3:16.

    PubMed  Google Scholar 

  56. Tilkin AF, Lubin R, Soussi T, et al. Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol 1995; 25:1765–1769.

    Article  PubMed  CAS  Google Scholar 

  57. Fujita H, Senju S, Yokomizo H, et al. Evidence that HLA class II-restricted human CD4+ T cells specific to p53 self peptides respond to p53 proteins of both wild and mutant forms. Eur J Immunol 1998; 28:305–316.

    Article  PubMed  CAS  Google Scholar 

  58. Brusic V, Rudy G, Honeyman, G, Hammer J, Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998; 14:121–130.

    Article  PubMed  CAS  Google Scholar 

  59. Chikamatsu K, Albers A, Stanson J, et al. P53(1 10-124)-specific human CD4+ T-helper cells enhance in vitro generation and antitumor function of tumor-reactive CD8+ T cells. Cancer Res 2003; 63:3675–3681.

    PubMed  CAS  Google Scholar 

  60. Theobald M, Ruppert T, Kuckelkorn U, et al. The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J Exp Med 1998; 188:1017–1028.

    Article  PubMed  CAS  Google Scholar 

  61. Wiedenfeld E A, Fernandez-Vina M, Berzofsky JA, Carbone DP. Evidence for selection against human lung cancers bearing p53 missense mutations which occur within the HLA A*0201 peptide consensus motif. Cancer Res 1994; 54:1175–1177.

    PubMed  CAS  Google Scholar 

  62. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor. Nat Immunol 2002; 3:991–998.

    Article  PubMed  CAS  Google Scholar 

  63. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of &quote;tumor escape&quote; phenotypes. Nat Immunol 2002; 3:999–1005.

    Article  PubMed  CAS  Google Scholar 

  64. Nikitina EY, Clark JI, Van Beynen J, et al. Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin Cancer Res 2001; 7:127–135.

    PubMed  CAS  Google Scholar 

  65. Hoffmann TK, Nakano K, Elder EM, et al. Generation of T cells specific for the wild-type sequence p53(264-272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J Immunol 2000; 165:5938–5944.

    PubMed  CAS  Google Scholar 

  66. Hoffmann TK, Loftus DJ, Nakano K, et al. The ability of variant peptides to reverse the nonresponsiveness of T lymphocytes to the wild-type sequence p53(264-272) epitope. J Immunol 2002; 168:1338–1347.

    PubMed  CAS  Google Scholar 

  67. Vierboom MP, Zwaveling S, Bos GMJ, et al. High steady-state levels of p53 are not a prerequisite for tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. Cancer Res 2000; 60:5508–5513.

    PubMed  CAS  Google Scholar 

  68. Boehncke WH, Takeshita T, Pendleton CD, et al. The importance of dominant negative effects of amino acid side chain substitution in peptide-MHC molecule interactions and T cell recognition. J Immunol 1993; 150:331–341.

    PubMed  CAS  Google Scholar 

  69. Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 1997; 57:4570–577.

    PubMed  CAS  Google Scholar 

  70. Rivoltini L, Squarcina P, Loftus DJ, et al. A superagonist variant of peptide MART1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 1999; 59:301–306.

    PubMed  CAS  Google Scholar 

  71. Slansky JE, Rattis, FM, Boyd LF, et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 2000; 13:529–538.

    Article  PubMed  CAS  Google Scholar 

  72. Petersen TR, Buus S, Brunak S, Nissen MH, Sherman LA, Claesson MH. Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity. Scand J Immunol 2001; 53:357–364.

    Article  PubMed  CAS  Google Scholar 

  73. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74:181–273.

    Article  PubMed  CAS  Google Scholar 

  74. Hoffmann TK, Donnenberg AD, Finkelstein SD, et al. Frequencies of tetramer+ T cells specific for the wild-type sequence p53(264-272) peptide in the circulation of patients with head and neck cancer. Cancer Res 2002; 62:3521–3529.

    PubMed  CAS  Google Scholar 

  75. McKaig RG, Baric RS, Olshan AF. Human papillomavirus and head and neck cancer: epidemiology and molecular biology. Head Neck 1998; 20:250–265.

    Article  PubMed  CAS  Google Scholar 

  76. Waku T, Fujiwara T, Shao J, et al. Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy for human cancer. J Immunol 2000; 165:5884–5890.

    PubMed  CAS  Google Scholar 

  77. Disis ML, Goodell V, Schiffman K, Knutson KL. Humoral epitope-spreading following immunization with a her-2/neu Peptide based vaccine in cancer patients. J Clin Immunol 2004; 24:571–578.

    Article  PubMed  CAS  Google Scholar 

  78. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 2004; 64:4328–1337.

    Article  PubMed  CAS  Google Scholar 

  79. Herrin V, Behrens RJ, Achtar M, et al. Wild type p53 peptide vaccine can generate a specific immune response in low burden ovarian adenocarcinoma. 2003; ASCO Chicago, IL, U S A Abstract 67846.

    Google Scholar 

  80. Svane IM, Pedersen AE, Johnsen HE, et al. Vaccination withp53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from aphaseIstudy. C ancer Immunol Immuno ther 2004; 53:633–641.

    CAS  Google Scholar 

  81. Kuball J, Schuler M, Antunes Ferreira E, et al. Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Ther 2002; 9:833–843.

    Article  PubMed  CAS  Google Scholar 

  82. Rosenwirth B, Kuhn EM, Heeney JL, et al. Safety and immunogenicity of ALVAC wild-type human p53 (vCP207) by the intravenous route in rhesus macaques. Vaccine 2001; 19:1661–1670.

    Article  PubMed  CAS  Google Scholar 

  83. van der Burg SH, Menon AG, Redeker A, et al. Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res 2002; 8:1019–1027.

    PubMed  Google Scholar 

  84. Menon AG, Kuppen PJ, van der Burg SH, et al. Safety of intravenous administration of acanarypox virus encoding the human wild-type p53 gene in colorectal cancer patients. Cancer Gene Ther 2003; 10:509–517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

DeLeo, A.B. (2006). p53-Based Immunotherapy of Cancer. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics